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Introduction

The notion that gastro-intestinal (GI) surgery may alter 
glucose tolerance curve in peptic ulcer patients was 
first reported in 1930’s (1). Then, Evensen described 
the development of hypoglycemia several years after 
gastrectomy for peptic ulcer disease in 1942 (2). Increased 
insulin sensitivity as the underlying mechanism was 
proposed. However, the initiation of metabolic surgery 
started from the report by Pories et al. in 1995 (3). In this 
landmark paper, the authors reported that gastric bypass 
is the most effective therapy for type 2 diabetes (T2D) in 
morbidly obese patients and 90% of them remained diabetes 
free 10 years later. He suggested that caloric restriction 
played a key role and the relative Rubino, then, rejuvenated 

the metabolic surgery by publishing the provoke concept 
of duodenum exclusion for the treatment of diabetes by 
an elaborate animal experiment in 2004 (4). Historically, 
bariatric operations were thought to promote weight loss by 
causing gastric restriction and/or mal-absorption. However, 
discrete parts of GI tract differentially influence glucose 
homeostasis and may be influenced by various types of 
bariatric/metabolic procedures. Rubino’s study initiated 
many elaborated basic studies, in parallel with establishment 
of the GI tract as a key regulator of energy and glucose 
homeostasis, improved the understanding of the mechanism 
of T2D remission after metabolic surgery. Diabetes 
remission after metabolic surgery results from improvement 
in both insulin resistance and beta-cell dysfunction, mainly 
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the increase in early phase insulin release (5,6). Nevertheless, 
the dramatic resolution of T2D was induced by the 
interaction of multiple organ-related pathways involving 
the brain, gut, liver, pancreas, muscle, adipose tissue and 
others (7-9). Different type of metabolic surgery have 
different degree of their improvement and provide a best 
chance for scientist to investigate the mechanism involved 
in T2D remission after surgery. Understanding which part 
of the anatomical rearrangement of GI metabolic surgery 
is essential for the glycemic control of T2D and may help 
us to elucidate the molecular mechanism of T2D control. 
Despite a lot of progress in the past decade, the physiology 
of remission is still incompletely understood. This review 
will describe the anatomic and physiologic changes in GI 
metabolic surgery. The main proposed hypotheses of the 
possible mechanism underlying the glycemic effects of 
metabolic surgery are also discussed below. 

Anatomic changes and GI reroute

Metabolic surgery is a GI surgery and its effect is through 
various GI anatomic changes and reroute. It can be 
summarized into:

Gastric restriction

Intestinal total bypass was the first bariatric surgery but 
failed in high incidence of severe malnutrition causing 
protein deficiency, liver cirrhosis and mortality (10). 
Instead of total intestinal bypass, partial jejunoileal bypass 
was proposed for the control of hyperlipidemia (11).  
This procedure was effective in lipid control and only a 
minimal weight loss effect at 25-year follow-up. Vertical 
banded gastroplasty (VBG) was the first successful 
bariatric procedure with a pure gastric restriction effect. 
Laparoscopic adjustable gastric banding (LAGB) is another 
pure gastric restrictive procedure. Both procedures can 
provide about an average of 15% total weight loss in a 
long-term but many patients required revision for weight 
regain (12). The gastric restrictive effect of gastric bypass 
was provided by a small gastric pouch and small gastro-
jejunal anastomosis. Weight regain after gastric bypass 
was commonly attributed to dilated gastric pouch and 
wide anastomosis (13). Proposed management of weight 
regain after gastric bypass were resizing the gastric pouch 
or endoscopic downsizing the gastrojejunostomy (14,15). 
Therefore, gastric restrictive effect was considered to be 

the most important part of metabolic surgery and consisted 
about 70% of the effect of gastric bypass (16).

Exclusion of duodenum and upper intestine

Duodenum and upper intestine plays an important role on 
nutrient absorption and glycemic control through a complex 
series of hormonal and neural responses (9). The duodenum 
and upper jejunum sense nutrients and initiate feed-back 
mechanisms through a gut-brain-liver neuron axis to 
regulate glycemia (17). The pathophysiology of T2D may 
be due to a malfunction of duodenum glycemic regulation 
mechanism (4). Reroute the GI tract by Roux-en-Y 
reconstruction cause exclusion of duodenum and upper part 
of the jejunum from exposure to ingestion nutrients. This 
anatomic change may change the physiologic response of 
digestive enzyme secretion from duodenum, gut hormone 
changes and nutrient sensing of upper small intestine 
(18,19). For example, duodenojejunal bypass (DJB), was a 
procedure to exclude the duodenum and proximal jejunum 
without gastric restriction, improved glycemic control 
without reduction of food intake and weight loss (20). A 
recent developed new device, duodenum jejuna sleeve tube, 
also had the similar effect as DJB (21).

Rapid delivery of food to distal intestine or short common 
channel

Reroute GI tract of gastric bypass not only exclude the 
duodenum but also exclude the function of pylorus. 
Therefore, may rapidly deliver incompletely digested food 
to the distal bowl which may induce a strong gut hormone 
change, mainly glucagon-like peptide (GLP-1) and 
peptide YY (PYY) (22,23). This effect may also cause the 
fluctuation of bile acid and change of microbiota (24,25). 
Interestingly, sleeve gastrectomy was found to have this 
effect without reroute GI tract possibly due to rapid 
intestine transit time (26). 

Mechanism of effect

Overwhelming evidence have supported that effective 
diabetes resolution was achieved in obese T2D patients 
after undergoing metabolic surgery. The underlying 
mechanism for diabetes remission after metabolic surgery 
is intriguing. Initially, five possible mechanisms had been 
proposed, including the starvation-followed-by weight-
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loss hypothesis, the ghrelin hypothesis, the lower intestinal 
(hind-gut) hypothesis and the upper intestinal (fore-gut)  
hypothesis. More theories were proposed recently, 
including bile acid and microbiota. None of these 
theories necessarily precludes the others. Therefore, any 
combination of these mechanisms may contribute to some 
degree in T2D remission and it is very difficult to design a 
study to elucidate the exact mechanism. The main proposed 
mechanism underlying the glycemic effects of metabolic 
surgery are discussed below.

Calorie restriction and weight loss

The gastric restriction part of various type of metabolic 
surgery may contribute to calorie restriction and subsequent 
weight loss which can have potent effects on insulin 
sensitivity. Simply calorie restriction to 1,100 kcal/d for 48 h  
could result in improved hepatic insulin sensitivity with 
reduced hepatic gluconeogenesis (27). A longer calories 
restriction with very low-calorie diet (VLCD) of 500 kcal/d  
may not only improve insulin resistance but also beta-
cell function, evident by restoration of early phase insulin 
secretion (28). Using VLCD up to 8 weeks may reduce 
the pancreatic fat content which can restore the first-
phase insulin secretion of T2D patients (29,30). However, 
improvement of skeletal muscle insulin resistance required 
greater weight loss (>20%) after gastric bypass or gastric 
banding (31,32). 

Ghrelin effect

Ghrelin is an orexigenic gut hormone mainly secreted 
from the gastric fundus and displays a cyclic rhythm with 
an increase before meals and decrease after meals. Ghrelin 
has been shown to have diabetogenic effects because 
ghrelin injection in human suppresses insulin secretion and 
may induce hyperglycemia (33). It was found that weight 
loss induced by diet control may lead to compensatory 
homeostatic changes, including increased hunger, increased 
circulating ghrelin, and reduced circulating GLP-1 and 
PYY (34). These changes are likely to contribute to the high 
degree of weight recidivism with dieting. However, ghrelin 
is undoubtedly decreased long-term after fundus resection 
which may play an important role in the sustainable effect 
of weight after sleeve gastrectomy (35,36). The data after 
gastric bypass are inconsistent and contradict each other 
when the gastric segment is disconnected from food contact 
but not resected in gastric bypass procedure (37-39).  

Therefore, the maintenance of weight loss after gastric 
bypass may rely on the change of GLP-1 and PYY than 
ghrelin (21,40). 

Foregut effect

Duodenum and upper intestine plays an important role on 
glycemic by incretin effect. Incretin effect is a phenomenon 
known as when oral glucose will promote greater insulin 
release than dose isoglycemic glucose administered 
parentally. Incretin effect is predominantly mediated by the 
incretins GLP-1 and gastric inhibitory polypeptide (GIP). 
Anti-incretin or decretin was first proposed by Rubino to 
play as a counterbalance the effects of incretin (41). Patients 
with T2D are characterized by a blunt incretin effect 
control and may be due to the overproduction of anti-
incretins and can be treated by duodenum exclusion (4).  
Many  c l in ica l  s tud ies  supported  the  e f f i cacy  o f 
duodenum exclusion on T2D treatment (20, 42-44).  
Although specific human anti-incretins have not yet been 
found, a strong candidates, name as decretin, was recently 
been identified in animal (45). DJB tube was a concept 
pioneered by Rubino for the treatment of T2D in animal 
model (46). A recent developed new device, duodenum 
jejuna sleeve tube or liner, was demonstrated having a 
similar glycemic control effect in human (21). Duodenum 
exclusion might create a biliopancreatic (BP) limb which 
consisted of duodenum and upper intestine without food 
exposure. The role BP limb is intriguing because the finding 
of nutrient sensing and gut-brain talk of upper jejunum (17). 
A recent animal study reported the importance of BP limb 
length, the longer the better, in glycemic control (47). A 
more important finding of this study was the existing of BP 
limb is essential for the glycemic control because excision of 
the BP limb will abolish the glycemic effect.

Hindgut effect

The rapid delivery of nutrients to the distal bowel will 
stimulate the secretion of GLP-1 and PYY. GLP-1 is an 
incretin hormone, promoting post-prandial insulin release and 
improving pancreatic beta cell function. GLP-1 is suppressed 
in T2D (48) and GLP-1 agonists is now widely used in the 
treatment of T2D (49). Some reports using elegant study 
design have found that GLP-1 is playing a significant role in 
T2D resolution after gastric bypass (50,51). This response was 
also observed after sleeve gastrectomy (22,23). However, the 
role of GLP-1 in T2D resolution after metabolic surgery 
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was questioned by some reviews (52,53) as well as in some 
studies of mouse in which GLP-1 was not required for 
either T2D resolution or weight loss after bypass or sleeve 
gastrectomy (54-56).

PYY is an anorexic hormone co-secreted with GLP-1 
from the “L-cell” of distal bowel in response to nutrients. 
PYY acts to decrease food intake with faster satiation and 
may reduce insulin resistance. The elevation of PYY was 
usually associated with the elevation of GLP-1 but was not 
observed after gastric banding (57).

Recent studies had shown that hindgut theory might 
involve the molecular mediator that ameliorated T2D, 
including bile acid and microbiota. These two important 
molecular mechanisms will be discussed in following.

Bile acid

Bile acids are synthesized from cholesterol in the liver and 
secreted into duodenum through bile duct to facilitate 
the absorption of lipids via formation of micelles. Most of 
the bile acid (95%) was absorbed from small bowel and 
recycling of bile acid occurs about 6–12 times per day. 
Bile acids not only function in lipid absorption but also 
play an important role in glucose metabolism. Bile acids 
are a ligand of the farnesoid X receptor (FXR) in the liver 
and small intestine, affecting hepatic metabolism and 
G-protein-coupled bile acid activated receptors (TGR-5)  
of the L-cell and promoting the release of incretin (58-60).  
Systematic bile acid levels were found to be elevated in patients 
following gastric bypass but not in gastric banding (56,61-63), 
suggesting an increase stimulation of FXR after gastric bypass. 
In contrast to systematic reaction, bile acid release in the gut 
can selectively activates intestinal FXR and promotes adipose 
tissue browning, reduces obesity and insulin assistance (64). 
Bile acid was found in many clinical studies and animal 
models support the key role of bile acids and bile acid 
receptor is a potential target for new drug development (65).  
Recently FXR has also been shown to be the key role for 
the anti-diabetic effect of sleeve gastrectomy (66). Bile 
acids signaling through FXR may be a common mechanism 
involved in the mechanism of bariatric/metabolic surgery. 
Further delineation of the molecular mechanisms 
underlying these beneficial effects could provide targets for 
the development of new nonsurgical treatments.

Microbiota

Bacteria colonize the gut soon after birth and become 

stabilized after the age 2. The gut microbiota was recently 
recognized to play an important role in energy metabolism 
and might contribute to the epidemics of obesity 
and T2D (67). Studies have demonstrated that obesity 
is associated with increased Firmicutes and decreased 
Bacteroides levels compared with normal person (68,69). 
In addition, obesity was also found to have reduced bacterial 
diversity (70). Bariatric surgery was found to decrease 
firmicutes and increase Bacteroides level, as well as increase 
the bacterial diversity (71,72). However, these changes can 
also be induced by diet changes (73,74). Another factor 
which may contribute to the change of microbiota after 
surgery is the change of bile acid concentration and fecal 
composition in distal gut. Fecal waters were found to be 
highly cytotoxic after surgery which may cause change of 
microbiota (75). A study in human observed that change 
of bile acid concentration and composition was associated 
with dysbiosis of the gut microbiota (76). Overall, it seems 
that surgery induced food intake change, weight loss and GI 
reroute all have important role in microbiota composition 
after metabolic surgery but microbiota change is more like 
to a result rather than a cause. 

Conclusions

The success of metabolic surgery for the treatment of T2D 
depends on several mechanisms. Three important anatomic 
changes after metabolic surgery may initiate several important 
mechanisms for T2D remission. Gastric restriction is the 
first important anatomic change which will induce decreasing 
calories intake and followed by weight loss. Decrease 
of ghrelin after sleeve gastrectomy may be important in 
prevention of weight regain. Duodenum and upper intestine 
exclusion is the second anatomic change which may decrease 
fat absorption, change bile acid entero-hepatic flow. Rapid 
delivery food to distal bowel is the third anatomic change 
which will induce the GLP-1 and PYY changes but more 
important may be the change of bile acid recycle and 
increase bile acid blood level. Bile acid is a molecule that may 
play an important role in T2D remission after metabolic 
surgery. Further studies through the application of detailed 
phenotyping, genomics, metabolomics, and gut microbiome 
studies will enhance our understanding of metabolic surgery 
and help identify novel therapeutic targets. 
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