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Introduction

MicroRNAs (miRNAs) are endogenous small noncoding 
segments of RNA, ~22 nucleotides (nt) in length, 
that negatively regulate gene expression at the post-
transcriptional level and have a role in fine-tuning gene 
expression in the cells (1). After being transcribed by 
RNA polymerase II, the primary miRNA transcripts (pri-
miRNAs) are first processed by the RNase-III endonuclease 
Drosha and its associated binding partner DGCR8, which 
cut the pri-miRNAs into ~70-nt stem and loop miRNA 
precursors (pre-miRNAs), containing the mature miRNA 
sequence in one of its arms and the less abundant partially 
complementary miRNA mature form in the other arm 
(2,3). After the first processing step, pre-miRNAs are 
actively transported from the nucleus to the cytoplasm 
by the RanGTP-dependent RNA-binding protein (RBP) 
Exportin-5, where they are processed by another RNase-
III endonuclease termed Dicer (4). The result of this 
processing event is a double stranded RNA, where one of its 
strands is incorporated into the argonaute (Ago) protein of 
the RNA-induced silencing complex (RISC), that based on 

the miRNA sequence, targets it to a 3’ untranslated region 
(3’UTR) of a specific mRNA and leads to its degradation (5). 
MiRNA target recognition mostly depends on the seed 
region (nt 2–8 from the 5' end of miRNA) (1). According 
to computational miRNA target prediction programs each 
miRNA can potentially regulate the expression of hundreds 
of different genes and it is therefore becoming increasingly 
apparent that miRNAs are involved in almost every cellular 
process investigated so far, and in the development of many 
human diseases. 

miRNA repression associated with 
carcinogenesis

A massive downregulation of miRNAs was observed in 
human cancers, where miRNAs show lower expression 
levels in tumors compared with normal tissues (6). In 
their study, Lu et al. (6) determined the expression pattern 
of miRNAs across a large panel of samples representing 
diverse human tissues and tumor types, including colon, 
kidney, prostate, bladder, uterus, lung and breast, and 
observed differential expression of many miRNAs across 
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the aforementioned cancer types. Most striking was their 
observation that most of the differentially expressed 
miRNAs had lower expression levels in tumors compared 
with normal tissues. Moreover, the same phenomenon was 
even more pronounced in aggressive poorly differentiated 
tumors (PDTs) of lung, breast and ovary, and was also seen 
in a mouse model of lung adenocarcinoma, which showed 
low miRNA expression relative to normal lungs (6).

The observation of a global miRNA repression in the 
lungs of rodents exposed to cigarette smoke (CS) has also 
been reported (7-10). Izzotti et al. show in their results the 
extensive down-regulation of 126 miRNAs in lungs of rats, 
4 weeks after CS exposure (7). Such a short-lasting exposure 
to CS resulted in reversible miRNA alterations, as miRNA 
down-regulation was considerably attenuated one week 
after smoking cessation (9). By contrast, the repression 
of miRNA detected in mice exposed to CS for 4 months 
still persisted 3 months after smoking cessation, with the 
progressive development of cancer in the lung, suggesting 
that long-lasting exposure is needed to induce irreversible 
miRNA alterations (9,11). In previous published results, 
using the same animal model, Izzotti et al. have found that 
CS up-regulates gene transcription and protein expression 
(12,13). Similar results have also been published by Schembri 
et al. (14), who found that most of the differentially expressed 
miRNAs in the human bronchial airway epithelium were 
down-regulated in smokers and were inversely correlated 
with their predicted targets. The same phenomenon was 
also observed in alveolar macrophages of smokers, where 
CS decreased global miRNA expression, while increased 
their predicted targets (15). In this later study the decrease 
in global miRNA expression was more pronounced in 
heavy smokers, suggesting that the magnitude of miRNA 
repression is related to the extent of smoking history (15).

Izzotti et al. (16) evaluated miRNA expression in the 
lungs of rats exposed to CS and treated with several cancer 
chemopreventive agents. Administration of the dietary 
agents Phenethyl Isothiocyanate (PEITC) and Indole-
3-Carbinol (I3C), two major components of cruciferous 
vegetables, attenuated the CS-induced down-regulation of 
miRNA expression. In the case of the combined treatment 
with PEITC and I3C, they had profound effects on almost 
all CS- down-regulated miRNAs and their expression 
even exceeded the baseline situation (16). Interestingly, 
both PEITC and I3C have proved to be anti-estrogenic 
compounds and inhibited ER-alpha expression (17-20). 
A similar effect was seen when mice were treated with 
the anti-diabetic drug Metformin (21). Exposure of mice 

to CS resulted in down-regulation of miRNA expression 
in the lungs. Metformin effectively changed the miRNA 
alterations resulted from exposure to CS in the mouse 
lung and normalized the expression of several down-
regulated miRNAs (21). Intriguingly, there is evidence 
that Metformin is also an anti-estrogenic molecule; it was 
shown to inhibit ER-alpha expression in cancer cells and 
to decrease estrogen levels in the serum of breast cancer 
female patients (22,23).

These results raise the possibility that the hormone 
estrogen might regulate the CS-induced miRNA alterations 
in the lungs (24). Estrogens and their receptors were 
detected within murine lung tissue (25,26), and there is 
evidence for higher susceptibility of women to smoking-
related lung cancer (27-29), and that anti-estrogens can 
prevent lung tumorigenesis (30). Moreover, CS was found 
to accelerate the production of the carcinogenic estrogenic 
metabolites 4-OHEs in the lungs (26), and the estrogen-
metabolizing enzyme Cytochrome P450 1b1 (CYP1B1) was 
shown to be consistently induced following exposure to CS 
(25,26,31,32).

microRNA repression associated with estrogen 
exposure

Several studies have demonstrated that exposure to the 
hormone estrogen leads to widespread repression in miRNA 
expression (33-36). Maillot et al. showed that the expression 
of 23 miRNAs decreases following 17beta-estradiol (E2) 
treatment and also showed the involvement of several of 
the repressed miRNAs in E2-dependent cell growth and 
proliferation (33). This is further supported by the study of 
Yamagata et al. who showed a similar repression in miRNA 
expression in E2-injected, ovariectomized mice (34).

We have shown the global miRNA downregulation in 
the zebrafish liver after E2 treatment (35). Since regulation 
by miRNAs resulted in miRNA-mediated gene repression, 
it can be assumed that the regulation by repressed miRNAs 
is weakened and as a consequence the mRNA stability of 
target genes is increased. Indeed, using the combination of 
computational prediction with data obtained from miRNAs 
and mRNAs microarrays, performed from the same 
biological samples, our results showed that putative targets 
of miRNAs predominantly tend to be upregulated after E2 
treatment (35). 

Estrogen can cause cellular growth, proliferation and 
cancer by inducing proto-oncogenes such as c-myc (37). 
C-Myc physically interacts with ER-alpha and is recruited 
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to estrogen-responsive genes (38). Most interestingly, a 
widespread miRNA repression by c-Myc was also reported, 
and the observed substantial down-regulation of miRNAs 
was correlated with enhanced cellular proliferation and 
contributed to Myc-mediated tumorigenesis (39). 

Mounting evidence suggests that oxidative metabolites 
may contribute to estrogen carcinogenesis (40). The 
potential carcinogenic activity of estrogen involves the 
oxidative metabolism of estrone (E1) or E2 to catechol 
estrogens and the reactive quinone metabolites (41,42), 
that bind covalently with purines in DNA to form specific 
DNA adducts at the N-3 of adenine (Ade) and N-7 of 
guanine (Gua) (43,44). These adducts generate apurinic 
sites that can be converted into mutations by error-prone 
repair, which in turn may initiate tumorigenesis (45). Two 
types of DNA-adduct can be formed: a stable adduct and 
a depurinating adduct, where evidence indicates that the 
second one plays a major role in tumor initiation (46).

Izzotti and Pulliero (47) evaluated the formation of Gua-
adducts in miRNAs of the lungs of mice that were exposed 
to CS and found that the Gua-adducts level was 5.7-fold 
higher than that detectable in the DNA of the same animals, 
and therefore concluded that miRNAs are more sensitive 
than DNA to the formation of adducts induced by exposure 
to CS (47). They also showed, using bioinformatic analysis, 
that the Gua content of the terminal loop (TL) of miRNAs 
that are involved in stress response is higher than the Gua 
content of the other miRNAs (47). We have revealed, using 
miRNA expression data analysis of zebrafish, the mouse 
and human MCF-7 cells, the association of estrogen-
related miRNAs repression with a high Gua content in 
the TL sequences of their precursors (Figure 1) (48).  

Moreover, we also found a similar association, between the 
widespread miRNAs reduction that is observed in several 
types of human cancers and a high TL Gua content in 
their precursors (Figure 1) (49). These results suggest a 
possible link between miRNA-Gua adducts formation and 
carcinogenesis, while both CS and estrogen exposure form 
miRNA adducts that cause repression of tumor suppressor 
miRNAs and induction of their target oncogenes, which 
may ultimately lead to carcinogenesis (Figure 2). Indeed, 
several of the E2- and cancer-repressed miRNAs were 
also shown to function as tumor suppressors. For example, 
miR-15a, which was predominantly repressed in PDTs, is 
a well-known tumor suppressor (50,51), miRNAs of the 
let-7 family repress the expression of known oncogenes, 
including k-Ras and c-Myc (52,53), miR-143 and miR-
145 are co-expressed miRNAs that function as tumor 
suppressors (54,55), and miR-26a was shown to strongly 
inhibit estrogen-stimulated breast cancer cells and tumor 
growth (33,56).

Findings suggest that the miRNA terminal loop is an 
important platform for different RBPs that act as activators 
or repressors of Drosha and Dicer processing, and selectivity 
regulate miRNAs by binding to the RNA TLs of their 
precursors (57). For example, it was shown that miRNAs 
with the tetra-nucleotide sequence motif GGAG in their 
TL were regulated through binding of the RBP Lin28, 
which interferes with Dicer processing (58). Our results 
revealed a high enrichment for the sequence motif GGAG 
in TLs of the E2- and cancer-repressed miRNAs (48,49). 
Also, a significant enrichment of triple Gua (GGG) motif 
in TLs of the E2- and cancer-repressed miRNAs (Figure 1) 
was observed. In their study, García-Mayoral et al. described 

Figure 1 Relative enrichment of Gua (single, dual and triple G) in TLs of E2- and breast cancer-repressed miRNAs (6,33-35). T/N, tumor 
relative to normal tissue; PDT/T, poorly differentiated tumor relative to tumor.
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Figure 2 A model summarizing the miRNA biogenesis pathway and the possible disruption of miRNA processing (denoted by red “x”) 
by formation of miRNA-Gua-adducts, leading to carcinogenesis. CSC, cigarette-smoke condensate; EGFR, EGF receptor; ER, estrogen 
receptor; XPO5, exportin-5; Ago, argonaute.

the complete analysis of the RNA-binding potential of the 
four KH domains of KSRP and show that the KH3 domain 
is able to recognize a G-rich sequence (59). Insertion of 
an isolated G led to a 5-fold increase in KH3 affinity, 
whereas insertion of a GG element led to a further 4-fold  
increase (59). Most interestingly, KH3 binding docks 
KSRP to the GGG-containing TL of a subset of miRNAs 
and promotes their maturation (60). Therefore, Gua-
adducts formation that disrupts binding of KSRP to the 
TL might be a possible cause for the observed E2- and 
cancer-repressed miRNAs. Of note, single nucleotide 
polymorphisms (SNPs) which involve A>G and G<A 
nucleotide transitions, and are located at the TL sequences 
of pre-miRNAs, were shown to be associated with the 
development of breast and gastric cancers (61,62).

Perspectives

The results showing global miRNA reduction after 
estrogen and CS exposure, and in different types of cancer, 
in association with Gua enrichment in the TLs of their 

precursors, suggest the involvement of estrogen-related 
pathways in these phenomena. Elucidating the molecular 
mechanisms of estrogens involved in miRNA repression, 
and revealing the target genes of the downregulated 
miRNAs, can help better understand the processes driving 
miRNA downregulation, and has potential implications for 
cancer therapy and prevention.
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