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Introduction

The increasing number of people living with cancer and the 
resulting millions of deaths each year makes it a growing 
global epidemic (1,2). Lung cancer (LC) is the most 
commonly diagnosed cancer, and the leading cause of cancer 
death worldwide (3). The etiology of LC is mainly related 
to harmful chemicals found in cigarette smoke (CS), such 
as polycyclic aromatic hydrocarbons (PHAs) and nicotine-
derived nitrosamine ketone (NNK) (4). However, growing 
epidemiological evidences suggest rather consistently 
that general ambient air pollution may be responsible for 
increased rates of LC (5-10). According to The International 
Agency for Research on Cancer (IARC) the carcinogenicity 
of outdoor air pollution as a complex mixture of particulates 
[particulate matter (PM)] seems to be consistent with the 
increased risk of LC in epidemiological research studies and 

in experimental animals (8,9). LC can also be the result of an 
endogenous metabolic process, such as in the case of estrogen 
[17β-estradiol (E2)] and estrogen receptors (ERs) alteration 
by CS or chemicals with estrogenic activity (6,11). Exposure 
to environmental pollutants is also associated with changes 
in the expression of genes involved in DNA damage and 
repair, inflammation, immune and oxidative stress response, 
as well as altered telomere length and epigenetic effects such 
as DNA methylation (12,13). During the initiation stage of 
carcinogenesis, chemical and physical agents bind and form 
adducts with DNA. This damage can then be converted 
into mutations by error-prone repair, which in turn may 
cause inactivation of tumor suppressor genes or activation 
of proto-oncogenes and initiate the carcinogenic process 
(14). One of the most typical DNA adducts is 8-hydroxy-2'-
deoxyguanosine (8-OHdG) which is an oxidative product 
of damage done to the guanine (G) nucleobase (15) that has 
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lower oxidation potential and most easily oxidized among 
the four nucleobases (16). Several cellular mechanisms repair 
DNA damage and thereby help to prevent cancer (17), 
including the base excision repair (BER) system used to repair 
oxidative lesions such as 8-OHdG (18). However, modern 
life constantly exposes us to many stressors that lead to the 
development of chronic illnesses like cancer, and therefore 
the importance of disease prevention is gaining increasing 
recognition. In recent years, epidemiological studies have 
shown that daily fruit and vegetable consumption confers 
effective protection against various types of cancer, and the 
preventive effects of their dietary phytochemicals are also 
well documented (19,20). Among them, the cruciferous (also 
known as brassica) vegetables have been extensively studied 
and are especially known for their cancer chemopreventive 
function (21,22). The cruciferous family, whose name is 
derived from the cross-shaped flowers, includes several 
vegetable members with different edible parts, such as; seeds 
(mustard), flowers (broccoli, cauliflower), leaves (cabbage, 
brussels sprouts, kale, rocket, watercress), stem (kohlrabi) and 
roots (radish, turnip). Here, we summarize recent published 
information about cruciferous vegetables, and describe 
epidemiological and molecular studies showing their LC 
prevention properties.

Cruciferous vegetables and LC prevalence: 
epidemiological studies

Several studies have previously shown an inverse association 
between cruciferous vegetables consumption and the 
prevalence of different types of cancer (21-23). The study 
of Bosetti et al. have analyzed data from a series of case–
control studies conducted in Italy and Switzerland between 
the years 1991 and 2009, that included 11,493 controls and 
12,469 cases of 12 different cancer types (24). Using a 78-
item food frequency questionnaire (FFQ), which included 
a specific question on weekly consumption of cruciferous 
vegetables, the investigators could evaluate the consumption 
of vegetables at least once a week as compared with no/
occasional consumption. The results found a significant 
reduced risk for developing cancers of the digestive track 
(oral cavity and pharynx, esophagus, colorectum), breast 
and kidney, for people who consumed at least one portion 
(~125 grams) of cruciferous weekly. Moreover, although not 
statistically significant, the odds ratio (OR) of all the other 
investigated cancer types (stomach, liver, pancreas, larynx, 
endometrium, ovary, prostate) were below unity (24). Similar 
results were also shown in a large number of epidemiological 

studies that investigated the association of cruciferous 
vegetable consumption with LC. In the meta-analysis of 31 
observational studies, cruciferous vegetable intake was shown 
to be inversely associated with LC risk (25). A systematic 
review, which included 19 studies, indicated that cruciferous 
vegetable intake is inversely associated with LC risk, and 
that the strongest inverse association was among individuals 
with homozygous deletion for glutathione S-transferase M1 
(GSTM1) and T1 (GSTT1) genotypes (26). Interestingly, 
this kind of polymorphism seems to be important since 
individuals with GSTM1/GSTT1 null genotypes metabolize 
compounds produced by cruciferous vegetables less 
efficiently, therefore permitting them to remain biologically 
active for a longer period (27,28). A recent large-scale 
population-based prospective study found a similar inverse 
association of cruciferous vegetables intake and LC among 
current nonsmokers in Japan (29). The study used a 5-years 
follow-up survey for 82,330 participants who responded 
to a 138-item FFQ that contained cruciferous vegetables 
and also included information on smoking. The results 
found that cruciferous vegetable intake was significantly 
inversely associated with LC risk among both never and 
past smokers, however, no such association was observed in 
current smokers (29). A previous case–control study by Tang 
et al. using 948 primary LC cases and 1,743 control cases, 
investigated the association between cruciferous vegetables 
intake and LC risk among smokers (30). A 44-item FFQ 
was used to assess usual diet in the years before diagnosis, 
including raw and cooked cruciferous vegetables, and also 
requested detailed information on cigarette smoking status. 
Conversely, the results of this study showed a significant 
inverse correlation between cruciferous vegetables intake 
and the risk of developing LC, among smokers, indicating 
that when more cruciferous vegetables are consumed the 
resulted OR is lower (30). For cooked cruciferous, the 
lowest OR (0.59) was for the consumption of >25 servings  
(1 serving =0.5 cup) per month, while for raw cruciferous, the 
lowest OR (0.58) was for the consumption of >10 servings 
per month. Therefore, intake of raw cruciferous vegetables 
was more strongly inversely associated with LC risk (30).

Phytochemicals of cruciferous vegetables and 
LC prevention: molecular mechanisms

The plant enzyme myrosinase that forms biologically 
active compounds hydrolyzes glucosinolates, the sulfur-
containing compounds that are responsible for the spicy 
taste and pungent aromas of cruciferous vegetables (23).  
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The degradation products of glucosinolates precursors 
include; indoles, such as indole-3-carbinol (I3C), and 
isothiocyanate (ITC), such as phenethyl isothiocyanates 
(PEITC), allyl isothiocyanate (AITC), benzyl isothiocyanate 
(BITC), and sulforaphane (SFN), which are some of the most 
studied components of cruciferous vegetables, and proved 
to possess anti-cancer properties (23). Numerous studies 
have revealed the contribution of ITC for various cellular 
processes used against carcinogenesis, such as inhibition of 
cell cycle progression and proliferation, and induction of  
apoptosis (31) (Figure 1). It has been recently suggested that 
ITC effects against cancer are also related with the activity of 
nuclear factor-kappaB (NF-κB) transcription factor, which is 
an active player in human cancers (32). PEITC was shown to 
be most effective agent in inhibition of CS-related cytogenetic 
damage, transcriptome alterations, and lung tumorigenesis (33-
36). Furthermore, PEITC was shown to significantly inhibit 
the formation of the xenoestrogen bisphenol A (BPA)-induced  
DNA adducts (37), and SFN-induced protective phase II 
enzymes activity, resulted in reduction of E2-induced DNA 
damage (38). In addition, I3C and its condensation product 
3,3’-diindolylmethane (DIM) exhibited potent antitumor 
activities in a wide range of human cancer cells, including 
LC (39,40), and SFN was shown to suppress LC through 
an epigenetic effect (41). Another suggested mechanism for 
the SFN anti-cancer effects is by modulating microRNA 
(miRNA) expression (42,43). MiRNAs are endogenous 

small RNA molecules with diverse biological functions that 
have been implicated in various human diseases, including 
LC (44-46). Global downregulation of miRNAs expression 
was observed in different human cancer types (47-49) after 
exposure to CS (50-52) or to the hormone E2 (53-56). Izzotti 
et al. evaluated miRNA expression in the lungs of rats exposed 
to CS and treated with several cancer chemopreventive 
agents. Administration of the dietary agents PEITC and 
I3C attenuated the CS-induced down-regulation of miRNA 
expression (57). In the case of the combined treatment with 
PEITC and I3C, they had profound effects on almost all 
CS- down-regulated miRNAs and their expression even 
exceeded the baseline situation (57). We have previously 
suggested that this effect may be related to the observed anti-
estrogenic functions of PEITC and I3C (58-61). Recently, we 
described an association between the comprehensive miRNA 
repression observed in cancer and after E2 exposure, with G 
enrichment in the terminal loops of their precursors (62,63), 
which was also associated with their tendency to act as tumor 
suppressor miRNAs in lung and breast cancers (64). Thus, it is 
plausible that the effect of cruciferous dietary phytochemicals 
on miRNA expression may also involve the aforementioned 
mechanism (65,66). 

Conclusions

The studies described above show that phytochemical 

Figure 1 Cancer chemopreventive functions of cruciferous vegetables and their phytochemicals.
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compounds, such as those found in cruciferous vegetables, 
can help attenuate the molecular effects of carcinogenic 
substances such as CS and E2, and potentially reduce 
the risk of developing LC and other types of cancer. A 
potential application for these results may be the use of 
cruciferous phytochemicals as cancer preventive agents (e.g., 
as nutritional supplements). It is well established, however, 
that increasing cruciferous vegetables intake in the diet can 
be a simple and effective way for cancer prevention.
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