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Background: We recently demonstrated that adaptogenic plant extracts prevent cytostatic drug-induced 
changes in transcriptome-wide mRNA microarray profiles of isolated neuroglial cells associated with 
neuronal function and cognitive impairment in cancer chemotherapy. The aim of the present study was 
to assess the effects of Andrographis paniculate (AP), Eleutherococcus senticosus (ES), Rhodiola rosea (RR), and 
Schisandra chinensis (SC) extracts and their combinations on fixed combination 5-fluorouracil, epirubicin, and 
cyclophosphamide (FEC)-induced transcriptome changes associated with nuclear factor erythroid 2-related 
factor-2 (Nrf2) signaling pathways in neuroglia cell culture.
Methods: Gene expression profiling was performed by transcriptome-wide mRNA microarray in human 
T98G neuroglia cells after treatment with adaptogens. Interactive pathway downstream analysis was 
performed with datasets of significantly up- or downregulated genes and predicted effects on cellular 
function and disease were identified by Ingenuity Pathway Analysis (IPA) software.
Results: FEC significantly deregulated 23 genes of the Nrf2 signaling pathways. Co-incubation with 
adaptogens induces the upregulation of heme oxygenase 1 gene expression and genes encoding Kelch-
like ECH-associated protein (KEAP1) transcription factor and nuclear transcription factors MAF 
bZIP transcription factor F and MAF bZIP transcription factor G. Adaptogens prevent FEC-induced 
downregulation of genes PIK3R2 and RALA encoding Nrf2 upstream signaling proteins PI3K and/Ras 
as well, as genes NQO1, GSR, GCLC encoding the expression of cytoplasmatic antioxidant and enzymes 
glutathione-disulfide reductase, NAD(P)H quinone dehydrogenase 1, and glutamate-cysteine ligase catalytic 
subunit.
Conclusions: The results of our study suggest that the beneficial effects of adaptogens on impaired 
neuronal and cognitive function are due to mitigating oxidative stress-induced cellular damage by multitarget 
regulation of redox homeostasis via the regulation of gene expression, activating KEAP1-Nrf2 signaling 
pathway proteins, and modulating antioxidant, metabolizing, and detoxifying enzymes.
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Introduction

Several plants widely used in traditional Chinese medicine 
(TCM), Ayurveda and other traditional medicinal systems, 
such as Panax ginseng Meyer root, Eleutherococcus senticosus 
(Rupr. & Maxim.) Maxim. root (ES), Rhodiola rosea L. 
rhizome and root (RR), Andrographis paniculata L. Nees 
herb (AP), and Schisandra chinensis (Turcz.) Bail. (berry) 
(SC), are known for their pleiotropic effects, which are 
considered to be associated with the adaptogenic activity; 
that is, an ability to increase adaptability (presumably 
“xiehuo” in TCM), resilience, and survival of organisms in 
stress- and aging-related disorders (1-5). This could be due 
to increasing the “state of non-specific resistance” (6-8),  
which is negatively associated with the state of increased 
susceptibility to stressors—“shanghuo” or “re-qi” in 
TCM—resulting in disease progression due to threatened 
homeostasis (yin-yang balance) (9,10).

The neuroprotective, hepatoprotective, cardioprotective, 
antioxidant, immunomodulatory, antiviral, stress-protective, 
antifatigue, hypoglycemic, antidepressant, chemopreventive, 
and antitoxic effects of various adaptogenic preparations 
have been shown in many isolated cells and in experimental 
animal models (11-35).

The cytoprotective effect of andrographolide (AND; an 
active compound of AP), AP, ES, AP-ES combination, and 
ES-RR-SC combination on the chemotherapy-induced 
deregulation of gene expression in neuroglia cell culture 
has been recently demonstrated (36-38). These studies 
suggest that adaptogens might be useful for preventing 
and mitigating the toxic effect of chemotherapy in cancer 
(e.g., in “chemobrain”) (39), but also for reducing oxidative 
stress-induced cellular damage and detoxification in many 
inflammatory conditions, including low-grade chronic 
inflammation (“inflammaging”) in aging (40). Oxidative 
stress is increasing in aging-related disorders, including 
atherosclerosis, angiogenesis, and neurodegeneration 
(40,41). Oxidative stress-induced redox signaling results in 
cellular response and the activation of defense mechanisms, 
including the induction of antioxidant and detoxifying 
enzymes and molecular chaperones (42). Nuclear factor 
erythroid 2-related factor 2 (Nrf2) is a principal regulator of 
redox homeostasis, triggering the expression of antioxidant 

and detoxifying genes, including superoxide dismutase 
(SOD), glutathione S-transferase (GST), NAD(P)H quinone 
oxidoreductase-1 (NQO1), and heme oxygenase 1 (HO-1).  
Therefore, the activation of Nrf2 translocation or the 
upregulation of gene expression resulting in the activation 
of the Nrf2 signaling pathway is the key mechanism of 
cellular defense response associated with the antioxidant 
and detoxifying effects of medicinal plants (43-46), and 
particularly of adaptogenic plants, such as AP, RR, SC, and 
ES (47-71). However, their effect on the expression of genes 
encoding antioxidant enzymes, phase II and III metabolizing 
enzymes, and transports, as well on upstream transcription 
factors, has not been investigated. Therefore, the aim of 
the present study was to assess the effects of AND, AP, 
ES, AP-ES combination, and ES-RR-SC combination on 
chemotherapy [fixed combination 5-fluorouracil, epirubicin, 
and cyclophosphamide (FEC)]-induced gene expression 
related to Nrf2 signaling pathways in neuroglia T98G cell 
culture.

We present the following article in accordance with 
the MDAR reporting checklist (available at http://dx.doi.
org/10.21037/lcm-20-24). 

Methods

All materials and methods used in the present study have 
been described in detail in our previously published studies 
(36-38). The present study is a part of the same study; 
however, the results have not been published until now. 
Therefore, only short description of herbal extracts, mRNA 
microarray hybridization and ingenuity pathway analysis 
(IPA) is provided below.

Herbal extracts

Pharmaceutical-grade extracts were manufactured in 
accordance with the ICHQ7A and European Medical 
Agency guidelines for good agricultural and collection 
practice and good manufacturing practice of active 
pharmaceutical ingredients. Working samples used in the 
experiments were prepared by diluting dimethylsulfoxide 
(DMSO) solutions of the extracts with appropriate volumes 
of phosphate-buffered saline to obtain the same final 

Received: 28 July 2020; Accepted: 20 August 2020; Published: 30 September 2020.

doi: 10.21037/lcm-20-24

View this article at: http://dx.doi.org/10.21037/lcm-20-24

http://dx.doi.org/10.21037/lcm-20-24
http://dx.doi.org/10.21037/lcm-20-24


Longhua Chinese Medicine, 2020 Page 3 of 13

© Longhua Chinese Medicine. All rights reserved. Longhua Chin Med 2020;3:4 | http://dx.doi.org/10.21037/lcm-20-24

concentrations of active markers in the incubation media.
The concentrations of the extracts and their active 

constituents were well-matched in all test samples; that is, the 
final concentration of AND was the same (2 μm, 700 μg/mL)  
in all test samples containing AND, and corresponded to 
the concentration of AND in human blood after the oral 
administration of a therapeutic dose (60 mg) of herbal 
(Table 1) (71). Similarly, eleuthero side E concentrations 
were calculated based on the results of HPLC analyses 
of its content in genuine extracts and AP-ES, ES-RR-
SC combinations. The concentrations of genuine extracts 
were calculated using AE specifications to ensure that they 
corresponded to therapeutically effective doses (35).

mRNA microarray hybridization

T98G cells were seeded and attached for 24 hours prior to 
drug treatment. Cells were treated for 24 hours at various 
combinations and concentrations of drugs or DMSO as 
the solvent control (0.5%). Total RNA was then isolated 
using the InviTrap Spin Universal RNA mini kit (250 
preps; Stratec Molecular, Germany). RNA concentrations 
were determined using the NanoDrop spectrophotometer 
(NanoDrop Technologies, USA). The quality of total 
RNA was confirmed by gel analysis using the total RNA 
Nanochip assay on an Agilent 2100 bioanalyzer (Agilent 

Technologies GmbH, USA). Only samples with RNA index 
values >8.5 were selected for expression profiling. The 
experiment was performed in duplicate for treated samples 
and for control samples by the Genomics and Proteomics 
Core Facility at the German Cancer Research Center in 
Heidelberg, Germany. Biotin-labeled cRNA samples for 
hybridization on Illumina Human HT-12 v4 BeadChip 
arrays were prepared according to Illumina’s recommended 
sample labeling procedure based on the modified Eberwine 
protocol. In brief, 250–500 ng total RNA was used for 
cDNA synthesis, followed by an amplification/labeling step 
(in vitro transcription) to synthesize biotin-labeled cRNA 
according to the MessageAmp II aRNA amplification kit 
(Ambion, USA). Biotin-16-UTP was purchased from Roche 
Applied Science. The cRNA was column purified according 
to the Total Prep RNA amplification kit and eluted in 
60–80 μL water. The cRNA quality was controlled using 
the RNA nanochip assay on an Agilent 2100 bioanalyzer 
and was spectrophotometrically quantified (NanoDrop). 
Subsequent hybridization was performed according to 
the manufacturer’s instruction. Microarray scanning was 
done using a Beadstation array scanner with the setting 
adjusted to a scaling factor of 1 and a photomultiplier tube 
setting of 430. Data extraction was performed for all beads 
individually, and outliers were removed when the median 
absolute deviation exceeded 2.5. The mean average signals 

Table 1 The concentration of drugs used to treat T98G neuroglial cells in microarray experiments

Drug Concentration (µg/mL)

AND 0.7 (=2 µm)

AP 30.0 (AND =2 µm)

AP-ES 32.7 (AND =2 µm)

ES 2.7

ES-RR-SC 176

FEC 5-FU: 50; epirubicin: 0.5; 4-HC: 2

FEC + AND 5-FU: 50; epirubicin: 0.5; 4-HC: 2; AND: 0.7 (=2 µm)

FEC + AP 5-FU: 50; epirubicin: 0.5; 4-HC: 2; AP: 30.0 (AND =2 µm)

FEC + AP-ES 5-FU: 50; epirubicin: 0.5; 4-HC: 2; AP-ES: 32.7 (AND =2 µm)

FEC + ES 5-FU: 50; epirubicin: 0.5; 4-HC: 2; ES: 2.7 

FEC + ES-RR-SC 5-FU: 50; epirubicin: 0.5; 4-HC: 2; ES-RR-SC: 176 

AP-ES, fixed combination of Andrographis paniculata and Eleutherococcus senticosus (Kan Jang); AND, andrographolide; AP, 
Andrographis paniculata; ES, Eleutherococcus senticosus; FEC, fixed combination 5-fluorouracil, epirubicin, and cyclophosphamide; RR, 
Rhodiola rosea; ES-RR-SC, fixed combination of Eleutherococcus senticosus, Rhodiola rosea and Schisandra chinensis (ADAPT-232); 
4-HC, 4-hydroperoxycyclophosphamide; 5-FU, 5-fluorouracil.



Longhua Chinese Medicine, 2020Page 4 of 13

© Longhua Chinese Medicine. All rights reserved. Longhua Chin Med 2020;3:4 | http://dx.doi.org/10.21037/lcm-20-24

and standard deviations (SDs) were then calculated for 
each probe. Data analysis was done by normalization of the 
signals using the quantile normalization algorithm without 
background subtraction, and differentially regulated genes 
were defined by calculating the SD differences of a given 
probe in a one-by-one comparison of samples or groups. 
The data were further processed using Chipster software 
(The Finnish IT Center for Science CSC).

IPA

Microarray data were analyzed by IPA (Ingenuity Systems, 
USA). IPA software relies on the Ingenuity Knowledge 
Base, a frequently updated database containing biologic 
and chemical interactions and functional annotations 
gathered from the literature. In order to obtain information 
about cellular functions, networks, and affected pathways, 
IPA offers the Core Analysis tool, which was used for all 
datasets.

IPA performs different calculations on transcriptomic 
datasets, including prediction algorithms, and produces 
results of analyses in a variety of ways, including (I) 
canonical pathways, which displays the molecules of interest 
within well-established signaling or metabolic pathways; 
and (II) upstream analysis, which predicts the upstream 
regulators (any molecule that can influence the transcription 
or expression of another molecule) that might be activated 
or inhibited to explain the expression changes in test 
datasets.

The interpretation of gene expression data was facilitated 
by consideration of prior biologic knowledge. IPA software 
relies on the Ingenuity Knowledge Base, a large gathering 
of observations with more than 5 million findings manually 
curated from the biomedical literature or integrated from 
third-party databases. The network contains 40,000 nodes 
that represent mammalian genes, molecules, and biologic 
functions. Nodes are linked by 1,480,000 edges representing 
experimentally observed cause-effect relationships that 
relate to gene expression, transcription, activation, 
molecular metabolism, and binding. Network edges are also 
associated with a direction (either activating or inhibiting) 
of the causal effect (72).

To obtain information about the impact of test samples 
on cellular signaling pathways and networks, for biologic 
functions and diseases downstream of the genes, whose 
expression has been altered in a dataset, we used the 
IPA Core Analysis tool for all tested datasets. Analysis 

of transcriptomics enabled us to predict regulators that 
are activated or inhibited based on the distinct up- and 
downregulation patterns of the expressed genes, and to 
determine which causal relationships previously reported 
in the literature are likely to be relevant for the biologic 
mechanisms underlying the data.

Statistical analysis

Two statistical methods of analysis of gene expression 
data were used in IPA: (I) gene-set-enrichment method, 
where differentially expressed genes are intersected 
with sets of genes that are associated with a particular 
biological function or pathway providing an ‘enrichment’ 
score (Fisher’s exact test P value) that measures overlap of 
observed and predicted regulated gene sets (73,74); (II) 
The method that based on previously observed cause-effect 
relationships related to the direction of effects reported in 
the literature (75,76) providing so called Z-scores assessing 
the match of observed and predicted up/down regulation 
patterns (72). The predicted [Z-score >2; or –log (FET P 
value) >1.3] effects are based on changes of gene expression 
in the experimental samples relative to the control.

Results

Microarray-based, transcriptome-wide mRNA expression 
analyses were performed to identify possible targets of the 
FEC, herbal extracts, and their fixed combination in T98G 
cells.

FEC significantly (>two-fold) deregulated 23 genes of 
Nrf2 signaling pathways (Figure 1). Co-incubation with 
adaptogens induces the upregulation of HMOX1 expression 
and genes encoding cytoplasmatic transcription factor 
Kelch-like ECH-associated protein (KEAP1), a key protein 
involved in the activation of KEAP1-Nrf2-mediated 
signaling and nuclear transcription factors MAF bZIP 
transcription factor F and MAF bZIP transcription factor 
G (Table 2). Moreover, adaptogens prevent FEC-induced 
downregulation of genes PIK3R2 and RALA encoding 
Nrf2 upstream signaling proteins PI3K and/Ras, as well as 
genes NQO1, GSR, and GCLC, encoding the expression 
of cytoplasmatic antioxidant enzymes glutathione-
disulfide reductase, NAD(P)H quinone dehydrogenase 1, 
and glutamate-cysteine ligase catalytic subunit (Table 2). 
The effects on other gene expressions of Nrf2-mediated 
signaling are shown in Figure 1 and Table 2.
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Discussion

Nrf2 is a principal regulator of redox homeostasis, normally 
retained in the cytoplasm by KEAP1 (42,77-79). Upon 
exposure of cells to oxidative stress, Nrf2 is phosphorylated 
in response to protein kinase C, phosphatidylinositol 
3-kinase, and the mitogen-activated protein kinase 
pathways. After phosphorylation, this complex dissociates, 
and Nrf2 translocates to the nucleus where it binds with 
the antioxidant response element (ARE) and triggers the 
expression of antioxidant and detoxifying genes, including 

Figure 1 Heatmap showing the effects of test samples on 
upregulation (red) and downregulation (green) of the gene 
expression of the nuclear factor erythroid 2-related factor-2 (Nrf2) 
signaling pathway in neuroglia cells. ADAPT, fixed combination 
of Eleutherococcus senticosus, Rhodiola rosea and Schisandra chinensis; 
AND, andrographolide; AP, Andrographis paniculata;  ES, 
Eleutherococcus senticosus; FEC, fixed combination 5-fluorouracil, 
epirubicin, and cyclophosphamide; KJ, fixed combination of 
Andrographis paniculata and Eleutherococcus.
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SOD, GST, NQO1, and HMOX1 (42,77). Therefore, the 
activation of Nrf2 translocation or the upregulation of gene 
expression resulting in the activation of the Nrf2 mediated 
signaling pathway is the key mechanism of cellular defense 
response associated with the antioxidant effects of medicinal 
plants (43-45), and particularly of adaptogenic plants, which 
are useful in stress- and aging-related diseases (40,41,78).

Figures 1,2 show that FEC inhibits the Nrf2 signaling 
pathway via the deregulation of expression of 24 genes, 
whereas adaptogens prevent or mitigate FEC-induced 
deregulation of a number of genes involved in the predicted 
activation of Nrf2-mediated signaling and expression of 
antioxidant and detoxifying genes, including SOD, GST, 
NQO1, and HMOX1 (Figures 3,4).

Figure 2 Inhibitory effect of fixed combination 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) and adaptogens on the expression of 
genes involved in the regulation of the nuclear factor erythroid 2-related factor-2 (Nrf2) signaling pathway. Nrf2 is normally retained in the 
cytoplasm by association Kelch-like ECH-associated protein-1 (KEAP1). Upon exposure of cells to oxidative stress, Nrf2 is phosphorylated 
in response to protein kinase C, phosphatidylinositol 3-kinase, and mitogen-activated protein kinase pathways. After phosphorylation, 
this complex dissociates, and Nrf2 translocates to the nucleus where it binds to the ARE and triggers the expression of antioxidant and 
detoxifying genes, including superoxide dismutase (SOD), glutathione S-transferase (GST), NAD(P)H quinone oxidoreductase 1 (NQO1), 
and heme oxygenase 1 (HO-1) (42,77). The mechanism of the cellular defense response (42,43) is associated with the antioxidant effects of 
medicinal plants (44,45) and particularly of adaptogenic plants, which are useful in stress- and aging-related diseases (40,41,78). Adaptogens 
prevent or mitigate FEC-induced deregulation of the number of genes (red arrows) involved in the predicted activation of Nrf2-mediated 
signaling and the expression of antioxidant and detoxifying genes, including SOD, GST, NQO1, and HO-1.
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Figure 3 Effect of adaptogens on FEC-induced inhibition of Nrf2 signaling pathway. (A) Predicted activation (brown lines and red circles) of nuclear factor erythroid 2-related factor-2 (Nrf2) canonical pathway by Eleutherococcus senticosus (ES); (B) predicted inhibition (blue lines and green circles) of Nrf2 
canonical pathway by fixed combination 5-fluorouracil, epirubicin, and cyclophosphamide (FEC) + ES; (C) predicted activation of Nrf2-mediated signaling by FEC-ES-Schisandra chinensis (SC)-Rhodiola rosea (RR).

A B C
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Figure 4 Andrographolide (AND) Andrographis paniculata (AP), and AP–Eleutherococcus senticosus (ES) prevents the chemotherapy fixed combination 5-fluorouracil, epirubicin, and cyclophosphamide (FEC)-induced downregulation of genes and the activated production of nuclear factor erythroid 2-related 
factor-2 (Nrf2)-mediated signaling proteins and antioxidant and detoxifying proteins, and upregulates the genes involved in oxidation damage reduction. Upregulated genes are shown in red, whereas downregulated genes are shown in green. Predicted activation (brown lines) of Nrf2 canonical pathway by 
AND + FEC (A), AP + FEC.

A B C
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Conclusions

The results of the present study suggest that the 
beneficial effects of adaptogens on impaired neuronal and 
cognitive functions are due to mitigating oxidative stress-
induced cellular damage by multitarget regulation of 
redox homeostasis via the regulation of gene expression, 
activating Nrf2 signaling pathway proteins and modulating 
antioxidant, metabolizing, and detoxifying enzymes.
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