Living donor liver transplantation for colorectal liver metastasis: a narrative review

Silvio Nadalin¹, Lara Genedy¹, Alfred Königsrainer¹, Utz Settmacher², Falk Rauchfuß², Giuliano Testa³

¹Department of General, Visceral and Transplant Surgery, Tübingen University Hospital, Tübingen, Germany; ²Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany; ³Annette C. and Harold C. Simmons Transplant Institute, Baylor University Medical Center, Dallas, TX, USA

Contributions: (I) Conception and design: S Nadalin, L Genedy, G Testa; (II) Administrative support: None; (III) Provision of study materials or patients: S Nadalin, L Genedy, F Rauchfuß; (IV) Collection and assembly of data: S Nadalin, G Lara; (V) Data analysis and interpretation: S Nadalin, L Genedy, G Testa, F Rauchfuß; (VI) Manuscript writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Silvio Nadalin, MD. Department of General, Visceral and Transplant Surgery, University Hospital Tuebingen, Hoppe-Seyler-Strasse 3, 72076 Tuebingen, Germany. Email: silvio.nadalin@med.uni-tuebingen.de.

Abstract: Colorectal cancer (CRC) is a spread disease worldwide. Most of the patients with CRC will develop liver metastases along the time and more than 75% of them are unresectable (uCRLM). In this case, despite the actual modern chemotherapy, the 5-year overall survival (OS) is lower than 10%. In the recent ten years liver transplantation (LT) for uCRLM experienced a "comeback" with excellent results in terms of OS at 5 years ranging from 60% to 100% according to different selection criteria, notwithstanding high recurrence rates (mainly extrahepatic). These promising results are based on a global population of almost 50 patients who underwent a DDLT. In times of organ paucity and still critical indication, standard DDLT will not find any place outside of studies. Additionally, the use of extended criteria donors (ECD) showed recently poor results in this context. Therefore, one way out of this dilemma may be represented by the use of Living-Donor liver transplantation (LDLT). In this review, we report about LDLT for uCRLM. In addition to a report of initial experience (i.e., global amount of 25 cases), we mainly focused on ethical, technical and oncological aspects of the procedure and proposed future applications as well. In summary, in times of scarcity of organs, LDLT for uCRLM may represent a valid alternative to DDLT with minimal donor risk and maximal recipient benefit in selected cases.

Keywords: Colorectal cancer (CRC), Colorectal Liver Metastases, liver transplantation (LT); Living Donor

Received: 17 June 2020. Accepted: 06 August 2020; Published: 30 September 2020. doi: 10.21037/dmr-20-91 View this article at: http://dx.doi.org/10.21037/dmr-20-91

Introduction

Colorectal cancer (CRC) is a worldwide spread disease (third most commonly diagnosed cancer) (1,2). More than 75% of CRC will develop colorectal liver metastases (CRLM of which 15–25% are synchronous and 25–50% metachronous) (3).

Unfortunately, more than 75% of CRLM are unresectable (uCRLM) and the respective overall survival rate (OS) at 5 years is about 10% despite the actual modern drugs and therapeutic strategies like antibodies and ablative procedures (4,5). Longer median OS has been obtained in selected patients with (I) good performance status (i.e., Eastern Cooperative Oncology Group 0–1), (II) no (K) RAS or BRAF mutations, and (III) left-sided primary tumors (6,7). In this context, liver transplantation (LT) has been proposed as the only treatment to achieve long term survival for uCRLM. In the recent 10 years LT for uCRLM experienced a "comeback" with excellent results in terms of OS at 5 years ranging from 60% to 100% according to different selection criteria (*Table 1*) (8).

These data are mainly based on the results of SECA

Page 2 of 9

I (n=21), SECA II study (n=15) and Compagnons Hepatobiliares experience (n=12) (a total amount of 48 patients) (6,11,12). In spite of high rates of tumor recurrence (>80% and mainly extrahepatic, i.e., pulmonary), the Oslo

 Table 1 Prognostic scores actually used for selection of recipients for LT for uCRLM (6)

Oslo Score	[0-4]	(8)
------------	-------	-----

- Tumor Diameter >5.5 cm
- CEA >80 µg/L
- <2-year interval between primary resection and LT
- Progressive disease at time of LT

Fong Clinical Risk Score [0-5] (9)

- Largest Tumor >5 cm
- CEA >200 µg/L
- Synchronous disease (primary to liver recurrence <12 months)
- Node-positive primary
- >1 liver metastasis

Metabolic tumor volume (MTV) (10)

• Cut-off: 70 cm³

CEA, carcinoembryonic antigen; LT, liver transplantation.

group showed that excellent OS rates could be reached provided that maximal treatment of recurrent disease has been performed (surgery and aggressive chemotherapy) (6,10,13-15). In this context, it is important to keep in mind that after LT in case of extrahepatic recurrence the prognosis in terms of long-term OS is good (because of natural history and possibility to treat it surgically or systemically). On the opposite, in case of intrahepatic tumor recurrence the prognosis is very poor (16,17).

Lastly, it has been recently reported that immunosuppressive therapy seems not to negatively influence the posttransplant tumor progression. On the opposite, in case of low immunosuppression the risk of rejection may even increase up to 40% (15).

The above-mentioned results (SECA I, SECA II and Les Compagnons) support the recently proposed recommendations of the ILTS consensus conference on 'Transplant Oncology' recently held in Amsterdam 2019: LT for uCRLM does represent a viable option in highly selected patients with only liver involvement with very good survival outcomes comparable to those for conventional indications (6,8,18-21).

In this regard, different studies are presently under way. The aim is to confirm the outstanding results of LT for CRLM, results that are better than the ones of LT for standard indications (oncologic and non-oncologic ones) (*Table 2*).

Table 2 Clinical trials in patients undergoing LT for uCRLM: DDLT and LDLT studies (updated June 2020)

Trial Protocol	Clinical trial Identifier	Country	Protocol timeline	Study design	
Deceased donor live	r transplantation (DDLT)				
SECA II	NCT01479608	Norway	2011–2027	LT vs. Surgical Resection	
SECA III	NCT03494946	Norway	2016–2027	LT vs. CTx or ablation	
TRANSMET	NCT02597348	France	2015–2027	CTx + LT vs. CTx	
COLT	NCT03803436	Italy	2019–2024	CTx + LT vs. CTx	
SOULMATE	NCT04161092	Sweden	2020–2029	CTx + LT with ECD vs. CTx	
RAPID	NCT02215889	Norway	2014–2028	Liver resection and partial section 2-3 transplantation with two-stage hepatectomy	
Living donor liver transplantation (LDLT)					
Toronto Protocol	NCT02864485	Canada	2016-2023	CTx + LDLT vs. CTx	
LIVER-T(W) O-HEAL	NCT03488953	Germany	2018–2023	LDLT with two-stage hepatectomy	

LT, liver transplantation; uCRLM, unresectable colorectal liver metastasis; DDLT, Deceased donor liver transplantation; LDLT, Living donor liver transplantation; CTx, chemotherapy; ECD, extended donor criteria.

In spite of the excellent and promising results, the actual situation shows following limitations:

- (I) All these data are coming from small and selected populations with a grand total of almost 50 cases (6,11,12).
- (II) According to different grades of selection, only 1-2% of all uCRLM seem to be eligible for LT (13).
- (III) Although no mortality has been reported, relevant perioperative complications have been described in SECA I and SECA II Study (6,11,15).
- (IV) The major limitation is represented by the fact that the source of liver grafts in all the above-mentioned studies is exclusively represented by deceased donors (DD) (standard or extended criteria). LT for uCRLM is at the present time still considered an experimental procedure. Most importantly it is not considered a curative intervention in view of the high recurrence rate. Consequently, because of the scarcity of organs, Deceased-Donor Liver Transplantation (DDLT) for uCRLM has been considered ethically unfair since it takes away a life-saving opportunity for a patient fulfilling the standard indications (22). Additional limitation for such an intervention is due to the nature of LT and the fact that the DD cannot be available at exactly the right time, for example during a chemotherapy free window. This fact might have an impact on the uniform application of the protocol and ultimately on the outcome of the patients.

Therefore, it might be impossible to offer LT as standard therapy for patients with uCRLM in countries with limited DD organ supply and large waiting lists. Possible alternatives to standard whole DDLT are represented by: DDLT by using extended criteria donors' livers (ECD), DD-RAPID procedure and Living-Donor Liver Transplantation (LDLT) (classic right/left or LD-RAPID).

We present the following article in accordance with the NARRATIVE REVIEW reporting checklist (available at http://dx.doi.org/10.21037/dmr-20-91).

LT with ECD

Although it would be possible to use extended criteria livers (up to which DRI and kind of ECD criteria including DCD should be defined), one should consider the fact that the SECA I and SECA II study showed relevant perioperative complications even by not using ECD organs (15). Therefore, using marginal grafts for such "extended indications" may furtherly increase the risk of postoperative complications (15). At this regard, Smedman *et al.* recently reported the results of SECA II arm D group using DDLT with ECD grafts: the authors showed very poor results, with very short OS opening a discussion regarding the feasibility of this strategy (23).

DD-RAPID

As possible alternative to standard whole DDLT, the Oslo Group recently introduced the RAPID-procedure (i.e., resection and partial liver segment 2-3 transplantation with delayed total hepatectomy) (24), which consists in use of left lateral grafts from split-DD, which could not be allocated to patients with standard indication. The RAPID is a sort of fusion of the APOLT (auxiliary partial orthotopic liver transplantation) (25) and ALPPS (associating liver partition and portal vein ligation for staged hepatectomy) concepts (26,27). It consists mainly of a two-step procedure: in step 1 a left hepatectomy with ligature of right portal vein is performed in the recipient's liver. This is followed immediately by an auxiliary orthotopic transplantation of the left lateral lobe as a split graft from DD. As soon as the transplanted graft has reached sufficient volume and function (28), the 2nd step of the procedure will be performed, and, similarly to step 2 of ALPPS, the residual metastasized right liver lobe is removed (24,29). To date 3 patients have undergone the DD-RAPID within the DD-RAPID trial (NCT02215889) (30).

Even though the DD-RAPID seems to be an excellent alternative to standard whole DDLT, the basic problem of scarcity of organs from DD and specifically of organs that can be split, remains. Moreover, the possibility of using left lateral grafts for uCRLM will require drafting specific policies defining the characteristics of the liver donors eligibility to the split and the proper allocations of these left lateral segments, with specific attention not to deplete an already scarce supply and not to further diminish the chances of transplantation for pediatric and small adult patients. Lastly, appropriate informed consents should be given to the recipients of these otherwise perfect livers, who, by accepting a split organ, by definition might encounter an increased risk of complications.

LDLT

The LDLT may represent a possible solution to the abovementioned problems i.e., limited availability of DD grafts

Page 4 of 9

(31), but is mainly conditioned by the basic dilemma of LDLT: the risk for the donor. For the specifics of LDLT for uCRLM do the recipient's benefits justify the donor's risks

according to the concept of "double equipoise" for LDLT" (32-35).

Related to this, the LDLT community should establish a priori the primary goals in terms of OS rates according to benchmarks as well as social and ethical aspects. Clavien *et al.* established that a LT for oncological reason should guarantee at least OS rates >65% at 5 years (36). Lieber *et al.* proposed that, when extending the oncological indications, the transplant community should accept LDLT, when the risk-benefit ratio is reasonable and not when it is unreasonable (31). In this regard Lieber *et al.* suggested a 40% likelihood of 5-year OS as a cut-off for LDLT. According to the recent results reported by the Oslo group, these criteria would be completely fulfilled (i.e., 5-year OS rates 60-100% according to different selection criteria) (8,13).

Therefore, it is essential to accurately select the potential recipient (8) and avoid compassionate LT for uCRLM (which would end with poor results) (12).

Recently, the Oslo group proposed to select and stratify the prognosis of the patients through 3 different prognostic score systems [i.e., Fong Score (9), Oslo Score and Metabolic Tumor Volume (8) in addition to clinical and biological parameters (e.g., metachronous/synchronous disease, location of the primary tumor, BRAF/KRAS mutation)].

If from one side incorporating these variables may yield an even higher expected OS, on the other side it can lead to exclusion of >70% of patients who would also benefit sufficiently to justify LT (6,8,13).

Based on such strict selection, it has been calculated that 0.24 to 0.51 patients per 1 million people per year would be eligible, representing 1% to 2% of yearly liver transplants in the United States. At the moment, more than 14,000 people are waiting for a LT in the U.S., and yet only about 8,000 transplants are performed on a yearly basis (37,38). Considering this, it seems obvious that the best card one could play in this scenario is the LDLT one. Additionally, on the opposite to DDLT, LDLT offers the main advantage of plannability and consequently performing LT at the right time when the tumor is stable within a chemotherapy free-window.

The donor's risks and burdens must be perceived as the complex assortment of potential physical (fatal risk), social and psychological outcomes (non-fatal risk) (39). More precisely, the main donor's risks include the general risks associated with the organ procurement surgery and physical consequences related to loss of a part of the liver. Furthermore, psychological and emotional risks related to the recovery and aftermath of surgery as well as the effects on the relationship between donor, recipient and others should be also considered (31,40-42).

The medical risk for the donor includes the general surgical risk and additionally the risk of hepatectomy. The latter increases proportionally with the mass of the tissue removed. Altogether these risks do occur in less than 2% of procedures (31,43-45). The mortality risk for the donor is usually very low and decreased significantly with increasing experience. According to the latest reports, the total risk is 0.1% for the left-lateral segments and 0.5% for right hepatectomy (43,46,47). Psychological problems have been described before and after living donation. Predonation burdens can arise from the care of the organ recipient especially with very close emotional ties and with acutely life-threatening disease. After donation, different psychosomatic disorders have been reported (48-57).

Therefore, in the ethical considerations, it is important not only to include mortality and morbidity, but also quality of life, psychological and social considerations related to the two parties (20,58). In this regard, Pomfret *et al.* described a similar critical scenario of a hypothetical case of LDLT for recipients with Hepatocellular carcinoma (HCC) beyond the standard inclusion criteria (58). Although the risk of HCC recurrence was 100% and the procedure had a clear palliative intent, the authors demonstrated that weighing the risk to the donor against the benefit to the recipient (including psychosocial benefits for the recipient and the family members) moved the case from ethically questionable to ethically acceptable provided that both donor and recipient are adequately informed about the long term of results in terms of OS and DFS.

Similarly, in context of LDLT for uCRLM, one should consider the social and psychological benefits for families even if there is a high chance of recurrence of disease (8) and consequently also respect the donor's autonomy to perform a living donation to a beloved one in the knowledge that it might not be a curative therapy at all.

One additional major point of debate is, if it is ethically correct to offer the possibility of a re-transplantation with a DDLT to a patient with early graft failure after LDLT for extended oncological indications. Clavien *et al.* reported about the international consensus conference on LT for HCC and concluded that "based on utility, justice, and equity, they did not support re-transplantation for patients

Table 3 Reported cases of LDLT for uCRLM (published and through personal communication)

vs. left-lateral)	RAPID-Concept Y/N

Center	n	Graft type (right vs. left vs. left-lateral)	RAPID-Concept Y/N
Ankara, Turkey*	n=1	Right (n=1)	Ν
Bologna, Italy (63)	n=2	Left-Lateral (n=1)	Y (n=1)
		Left (n=1)	N (n=1)
Brussels, Belgium (64,65)	n=3	Left-Lateral (n=1)	Y (n=1)
		Left (n=2)	N (n=2)
Cleveland, U.S.*	n=2	Right (n=2)	N (n=2)
Jena, Germany (66)	n=6	Left-Lateral (n=6)	Y (n=6)
Les Compagnons Hepatobiliares (12)	n=1	Not reported	N (n=1)
Padua, Italy*	n=1	Left (n=1)	Y (n=1)
Rio de Janeiro, Brazil (67)	n=1	Right (n=1)	Ν
Rochester, U.S.*	n=3	Right (n=3)	Ν
Toronto, Canada*	n=2	Right (n=2)	Ν
Tübingen, Germany (68)	n=2	Left-Lateral (n=1)	Y (n=1)
		Left (n=1)	N (n=1)
Zagreb, Croatia (69)	n=1	Right (n=1)	Ν
TOTAL	25	Right = 10; Left = 5; Left-Lateral = 9	RAPID: n=10

*, reported by personal communication.

who were beyond the standard eligibility criteria, because these patients would not have qualified for DDLT in the first place" (36). One could argue that using a deceased organ from the common pool to transplant a patient who was determined to be ineligible for that organ would be unjust. In fact, it would deny the transplant to another patient who, having been placed on the waiting list based on standard diagnosis for LT, would derive a great benefit and long term survival from that liver. Therefore, despite the emotional burden of withholding the opportunity for re-transplantation following organ failure, transplant teams should not offer a deceased organ to a living donor recipient with acute graft failure given the injustice to others on the transplant list (31). It becomes then essential to obtain an adequate informed consent focused on risk, benefits and outcome benefits for both donor and recipient (59,60). In any living donor situation, the harms and burdens to the donor are justified by the significant benefit to the recipient. This means that the organ donor needs to have a robust understanding of the risks and burdens involved and the capacity to consider them in the context of the values and priorities that the donor finds most salient (31,61,62).

At the moment, the worldwide experience with LDLT for uCRLM is very limited to 25 cases (*Table 3*) (67,69).

The Toronto group recently started a clinical trial with standard LDLT (usually right grafts) for patients with uCRLM and who have shown no disease progression on standard chemotherapy. The study aims at evaluating the 5-year outcomes in terms of OS, DFS and quality of life after CTx and LDLT (NCT02864485). At the moment two patients have been included in the study (personal communication). Few additional standard LDLT have been performed worldwide (*Table 3*).

Recently Königsrainer *et al.* introduced the concept of LD-RAPID aimed to further reduce the medical risks taken by the donor (3,30,68). Principally it consists in the same RAPID technique described originally by Line *et al.* (24) with the main difference that the source of left lateral graft is represented by a living donor (24,30).

At the moment seven LD-RAPID procedures have been performed within the Liver-Two-heal study (30,66). Other similar procedures have been performed outside of clinical trials (Brussels, Padua, Bologna) and minimal changes of the original technique have been proposed [e.g.,

Page 6 of 9

laparoscopic donor hepatectomy in Padua, laparoscopic removal of remnant right liver lobe in Brussels (64,65) or even heterotopic graft implantation in the splenic fossa by the group in Bologna (63,70)].

The LD-RAPID procedure is technically very demanding. From pure technical/surgical point of view, the key of success of this technique is based on the possibility to use a very small graft in absence of portal hyperflow and portal hypertension. It may represent a valid alternative in terms of safety and efficacy only when applied in selected patients and performed by very experienced hepato-biliarypancreatic (performing ALPPS procedures) and LT centers with both experience in DDLT and LDLT including pediatric LT.

Following criticisms have been raised regarding the LD-RAPID procedure:

- (I) It has been argued that leaving the right lobe with the liver metastases in loco until the left graft is regenerated and under immunosuppressive therapy may influence the oncological outcome of these patients. Line *et al.* recently showed that this hypothesis may not be true since CRLM grow at a similar rate in the immunosuppressed patients compared to immunocompetent patients (13,71).
- (II) Although there is lack of strong data to support one approach over the other, the question arises whether it would be more beneficial and safer to perform a high demanding technique like LD-RAPID, that similarly to an ALPPS procedure can also be associated to a complicated postoperative course, or instead favor a straight forward left liver lobe LD, avoiding the second stage hepatectomy that might be more prone to complications.

A last topic of debate is the question if LDLT should also be offered to patients with resectable CRLM who usually undergo complex liver resections (e.g., Two-stage hepatectomy, ALPPS) without a true benefit (i.e., high complications rates and early intrahepatic tumor recurrence >70% within 1 year with a mean OS of 30 months and 5-year OS <40%) (72). Considering that, the pattern of recurrence after LT for uCRLM is 68–75% in the lung and 38% of them are resectable. Consequently, it would make sense to go for LDLT for these "extremely" resectable patients with definitively better long term results (13).

In conclusion, LT for uCRLM seems to be a promising tool and to offer excellent OS rates notwithstanding high recurrence rates. DDLT is an option in very few countries, because of organ scarcity and competition with standard indications, and should anyhow be still performed within a research protocol. In selected cases and with the proper donor and recipient preparation and approach LDLT (standard or LD-RAPID) may represent a valid alternative as long as the donor risks are kept to a minimum and the indications in the recipient are tightly set to allow for maximal benefit. Last but not least LDLT may be also considered as a good alternative to extremely aggressively marginally resectable CRLM.

Acknowledgments

Our special thanks go to all the colleagues who shared their own data on LDLT for uCRLM, i.e., (in alphabetical order): Balci Deniz, Ciccarelli Olga, Cillo Umberto, Fernandez Eduardo, Hernandez-Alejandro Roberto, Quintini Cristiano, Ravaioli Matteo and Sapisoschin Gonzalo. *Funding*: None.

Footnote

Provenance and Peer Review: This article was commissioned by the editorial office, *Digestive Medicine Research*, for the series "Living Donor Liver Transplantation". The article has undergone external peer review.

Reporting Checklist: The authors have completed the NARRATIVE REVIEW reporting checklist. Available at http://dx.doi.org/10.21037/dmr-20-91

Conflicts of Interest: All authors have completed the ICMJE uniform disclosure form (available at http://dx.doi. org/10.21037/dmr-20-91). The series "Living Donor Liver Transplantation" was commissioned by the editorial office without any funding or sponsorship. GT served as the unpaid Guest Editor of the series. The authors have no other conflicts of interest to declare.

Ethical statement: The authors are accountable for all aspects of the work in ensuring that questions related to the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Open Access Statement: This is an Open Access article distributed in accordance with the Creative Commons Attribution-NonCommercial-NoDerivs 4.0 International License (CC BY-NC-ND 4.0), which permits the non-commercial replication and distribution of the article with

the strict proviso that no changes or edits are made and the original work is properly cited (including links to both the formal publication through the relevant DOI and the license). See: https://creativecommons.org/licenses/by-nc-nd/4.0/.

References

- Cronin KA, Lake AJ, Scott S, et al. Annual Report to the Nation on the Status of Cancer, part I: National cancer statistics. Cancer 2018;124:2785-800.
- Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. CA Cancer J Clin 2019;69:7-34.
- Nadalin S, Königsrainer A, Capobianco I, et al. Auxiliary living donor liver transplantation combined with two-stage hepatectomy for unresectable colorectal liver metastases. Curr Opin Organ Transplant 2019;24:651-8.
- 4. Wasan HS, Gibbs P, Sharma NK, et al. First-line selective internal radiotherapy plus chemotherapy versus chemotherapy alone in patients with liver metastases from colorectal cancer (FOXFIRE, SIRFLOX, and FOXFIRE-Global): a combined analysis of three multicentre, randomised, phase 3 trials. Lancet Oncol 2017;18:1159-71.
- Tveit KM, Guren T, Glimelius B, et al. Phase III trial of cetuximab with continuous or intermittent fluorouracil, leucovorin, and oxaliplatin (Nordic FLOX) versus FLOX alone in first-line treatment of metastatic colorectal cancer: the NORDIC-VII study. J Clin Oncol 2012;30:1755-62.
- Dueland S, Syversveen T, Solheim JM, et al. Survival Following Liver Transplantation for Patients With Nonresectable Liver-only Colorectal Metastases. Ann Surg 2020;271:212-8.
- Gorgen A, Muaddi H, Zhang W, et al. The New Era of Transplant Oncology: Liver Transplantation for Nonresectable Colorectal Cancer Liver Metastases. Can J Gastroenterol Hepatol 2018;2018:9531925.
- Dueland S, Grut H, Syversveen T, et al. Selection criteria related to long-term survival following liver transplantation for colorectal liver metastasis. Am J Transplant 2020;20:530-7.
- Fong Y, Fortner J, Sun RL, et al. Clinical score for predicting recurrence after hepatic resection for metastatic colorectal cancer: analysis of 1001 consecutive cases. Ann Surg 1999;230:309-18; discussion 318-21.
- Grut H, Dueland S, Line PD, et al. The prognostic value of (18)F-FDG PET/CT prior to liver transplantation for nonresectable colorectal liver metastases. Eur J Nucl Med Mol Imaging 2018;45:218-25.
- 11. Hagness M, Foss A, Line PD, et al. Liver transplantation

for nonresectable liver metastases from colorectal cancer. Ann Surg 2013;257:800-6.

- Toso C, Pinto Marques H, Andres A, et al. Liver transplantation for colorectal liver metastasis: Survival without recurrence can be achieved. Liver Transpl 2017;23:1073-6.
- Line PD, Ruffolo LI, Toso C, et al. Liver transplantation for colorectal liver metastases: What do we need to know? Int J Surg 2020. [Epub ahead of print].
- Smedman TM, Guren TK, Line PD, et al. Transplant oncology: assessment of response and tolerance to systemic chemotherapy for metastatic colorectal cancer after liver transplantation - a retrospective study. Transpl Int 2019;32:1144-50.
- Glinka J, Ardiles V, Pekolj J, et al. Liver transplantation for non-resectable colorectal liver metastasis: where we are and where we are going. Langenbecks Arch Surg 2020;405:255-64.
- Hagness M, Foss A, Egge TS, et al. Patterns of recurrence after liver transplantation for nonresectable liver metastases from colorectal cancer. Ann Surg Oncol 2014;21:1323-9.
- 17. Dueland S, Guren TK, Hagness M, et al. Chemotherapy or liver transplantation for nonresectable liver metastases from colorectal cancer? Ann Surg 2015;261:956-60.
- Line PD. Frontiers in liver transplantation. Br J Surg 2020;107:790-2.
- Mazzaferro V, Sposito C, Coppa J, et al. The Long-Term Benefit of Liver Transplantation for Hepatic Metastases From Neuroendocrine Tumors. Am J Transplant 2016;16:2892-902.
- Dueland S, Foss A, Solheim JM, et al. Survival following liver transplantation for liver-only colorectal metastases compared with hepatocellular carcinoma. Br J Surg 2018;105:736-42.
- 21. Hibi T, Rela M, Eason JD, et al. Liver Transplantation for Colorectal and Neuroendocrine Liver Metastases and Hepatoblastoma. Working Group Report From the ILTS Transplant Oncology Consensus Conference. Transplantation 2020;104:1131-5.
- Hibi T, Itano O, Shinoda M, et al. Liver transplantation for hepatobiliary malignancies: a new era of "Transplant Oncology" has begun. Surg Today 2017;47:403-15.
- Smedman TM, Line PD, Hagness M, et al. Liver transplantation for unresectable colorectal liver metastases in patients and donors with extended criteria (SECA-II arm D study). BJS Open 2020;4:467-77.
- 24. Line PD, Hagness M, Berstad AE, et al. A Novel Concept for Partial Liver Transplantation in Nonresectable

Page 8 of 9

Colorectal Liver Metastases: The RAPID Concept. Ann Surg 2015;262:e5-9.

- Belghiti J, Sommacale D, Dondéro F, et al. Auxiliary liver transplantation for acute liver failure. HPB (Oxford) 2004;6:83-7.
- de Santibañes E, Clavien PA. Playing Play-Doh to prevent postoperative liver failure: the "ALPPS" approach. Ann Surg 2012;255:415-7.
- 27. Schnitzbauer AA, Lang SA, Goessmann H, et al. Right portal vein ligation combined with in situ splitting induces rapid left lateral liver lobe hypertrophy enabling 2-staged extended right hepatic resection in small-for-size settings. Ann Surg 2012;255:405-14.
- 28. Serenari M, Collaud C, Alvarez FA, et al. Interstage Assessment of Remnant Liver Function in ALPPS Using Hepatobiliary Scintigraphy: Prediction of Posthepatectomy Liver Failure and Introduction of the HIBA Index. Ann Surg 2018;267:1141-7.
- Herrero A, Nadalin S, Panaro F. Liver transplantation for irresectable colorectal liver metastases: still a contraindication? Hepatobiliary Surg Nutr 2018;7:475-8.
- Nadalin S, Settmacher U, Rauchfuß F, et al. RAPID procedure for colorectal cancer liver metastasis. Int J Surg 2020. [Epub ahead of print].
- Lieber SR, Schiano TD, Rhodes R. Should living donor liver transplantation be an option when deceased donation is not? J Hepatol 2018;68:1076-82.
- 32. Singer PA, Lantos JD, Whitington PF, et al. Equipoise and the ethics of segmental liver transplantation. Clin Res 1988;36:539-45.
- Cheah YL, Simpson MA, Pomposelli JJ, et al. Incidence of death and potentially life-threatening near-miss events in living donor hepatic lobectomy: a world-wide survey. Liver Transpl 2013;19:499-506.
- Nadalin S, Capobianco I, Panaro F, et al. Living donor liver transplantation in Europe. Hepatobiliary Surg Nutr 2016;5:159-75.
- Miller CM. Ethical dimensions of living donation: experience with living liver donation. Transplant Rev (Orlando) 2008;22:206-9.
- 36. Clavien PA, Lesurtel M, Bossuyt PM, et al. Recommendations for liver transplantation for hepatocellular carcinoma: an international consensus conference report. Lancet Oncol 2012;13:e11-22.
- 37. Humar A, Ganesh S, Jorgensen D, et al. Adult Living Donor Versus Deceased Donor Liver Transplant (LDLT Versus DDLT) at a Single Center: Time to Change Our Paradigm for Liver Transplant. Ann Surg 2019;270:444-51.

- 38. Organ Procurement and Transplantation Network (U.S. Department of Health & Human Service). Accessed 7th June 2020. Available online: https://optn.transplant.hrsa. gov/data/ Volk ML, Marrero JA, Lok AS, et al. Who decides? Living donor liver transplantation for advanced hepatocellular carcinoma. Transplantation 2006;82:1136-9.
- Volk ML, Marrero JA, Lok AS, et al. Who decides? Living donor liver transplantation for advanced hepatocellular carcinoma. Transplantation 2006;82:1136-9.
- Cronin DC, 2nd, Millis JM. Living donor liver transplantation: The ethics and the practice. Hepatology 2008;47:11-3.
- Knibbe ME, Maeckelberghe EL, Verkerk MA. Confounders in voluntary consent about living parental liver donation: no choice and emotions. Med Health Care Philos 2007;10:433-40.
- 42. Strong RW, Lynch SV. Ethical issues in living related donor liver transplantation. Transplant Proc 1996;28:2366-9.
- Nadalin S, Capobianco I, Königsrainer I, et al. [Living liver donor: indications and technical aspects]. Chirurg 2015;86:609-21; quiz 622.
- 44. Suh KS, Suh SW, Lee JM, et al. Recent advancements in and views on the donor operation in living donor liver transplantation: a single-center study of 886 patients over 13 years. Liver Transpl 2015;21:329-38.
- 45. Patel S, Orloff M, Tsoulfas G, et al. Living-donor liver transplantation in the United States: identifying donors at risk for perioperative complications. Am J Transplant 2007;7:2344-9.
- Middleton PF, Duffield M, Lynch SV, et al. Living donor liver transplantation--adult donor outcomes: a systematic review. Liver Transpl 2006;12:24-30.
- Lee JG, Lee KW, Kwon CHD, et al. Donor safety in living donor liver transplantation: The Korean organ transplantation registry study. Liver Transpl 2017;23:999-1006.
- Trotter JF, Talamantes M, McClure M, et al. Right hepatic lobe donation for living donor liver transplantation: impact on donor quality of life. Liver Transpl 2001;7:485-93.
- Beavers KL, Sandler RS, Shrestha R. Donor morbidity associated with right lobectomy for living donor liver transplantation to adult recipients: a systematic review. Liver Transpl 2002;8:110-7.
- Kim-Schluger L, Florman SS, Schiano T, et al. Quality of life after lobectomy for adult liver transplantation. Transplantation 2002;73:1593-7.
- 51. Fukunishi I, Sugawara Y, Takayama T, et al. Psychiatric problems in living-related transplantation (I):

incidence rate of psychiatric disorders in living-related transplantation. Transplant Proc 2002;34:2630-1.

- Walter M, Bronner E, Pascher A, et al. Psychosocial outcome of living donors after living donor liver transplantation: a pilot study. Clin Transplant 2002;16:339-44.
- 53. Walter M, Dammann G, Küchenhoff J, et al. Psychosocial situation of living donors: moods, complaints, and selfimage before and after liver transplantation. Med Sci Monit 2005;11:CR503-9.
- Walter M, Pascher A, Jonas S, et al. [Living donor liver transplantation from the perspective of the donor: results of a psychosomatic investigation]. Z Psychosom Med Psychother 2005;51:331-45.
- 55. Siegler J, Siegler M, Cronin DC, 2nd. Recipient death during a live donor liver transplantation: who gets the "orphan" graft? Transplantation 2004;78:1241-4.
- Hwang S, Lee SG, Lee YJ, et al. Lessons learned from 1,000 living donor liver transplantations in a single center: how to make living donations safe. Liver Transpl 2006;12:920-7.
- Nadalin S, Malagò M, Radtke A, et al. Current trends in live liver donation. Transpl Int 2007;20:312-30.
- Pomfret EA, Lodge JP, Villamil FG, et al. Should we use living donor grafts for patients with hepatocellular carcinoma? Ethical considerations. Liver Transpl 2011;17 Suppl 2:S128-32.
- Gordon EJ, Rodde J, Skaro A, et al. Informed consent for live liver donors: A qualitative, prospective study. J Hepatol 2015;63:838-47.
- Gordon EJ. Informed consent for living donation: a review of key empirical studies, ethical challenges and future research. Am J Transplant 2012;12:2273-80.
- 61. Miller C. Preparing for the inevitable: The death of a living liver donor. Liver Transpl 2014;20 Suppl 2:S47-51.
- 62. Hays RE, LaPointe Rudow D, Dew MA, et al. The independent living donor advocate: a guidance document from the American Society of Transplantation's Living Donor Community of Practice (AST LDCOP). Am J Transplant 2015;15:518-25.
- 63. Ravaioli M, Brandi G, Siniscalchi A, et al. Heterotopic segmental liver transplantation on splenic vessels after splenectomy with delayed native hepatectomy after graft regeneration: a new technique to enhance liver transplantation. Am J Transplant 2020. [Epub ahead of print].

- Coubeau L, Iesari S, Ciccarelli O, et al. Two-Stage Recipient Hepatectomy and Left Liver Transplantation to Minimize Risks in Adult-to-Adult Living Donor Liver Transplantation: New Concepts. Liver Transpl 2020;26:450-5.
- 65. Lerut J, Iesari S, Vandeplas G, et al. Secondary nonresectable liver tumors: A single-center living-donor and deceased-donor liver transplantation case series. Hepatobiliary Pancreat Dis Int 2019;18:412-22.
- 66. Rauchfuß F, Nadalin S, Königsrainer A, et al. Living donor liver transplantation with two-stage hepatectomy for patients with isolated, irresectable colorectal liverthe LIVER-T(W)O-HEAL study. World J Surg Oncol 2019;17:11.
- 67. Fernandes ESM, Line PD, Mello FP, et al. living donor liver transplant for colorectal liver metastasis: the first case in Latin America. Arq Bras Cir Dig 2019;32:e1468.
- Königsrainer A, Templin S, Capobianco I, et al. Paradigm Shift in the Management of Irresectable Colorectal Liver Metastases: Living Donor Auxiliary Partial Orthotopic Liver Transplantation in Combination With Two-stage Hepatectomy (LD-RAPID). Ann Surg 2019;270:327-32.
- Kocman B, Mikulić D, Jadrijevic S, et al. Long-term survival after living-donor liver transplantation for unresectable colorectal metastases to the liver: case report. Transplant Proc 2011;43:4013-5.
- Ravaioli M, Fallani G, Cescon M, et al. Heterotopic auxiliary segment 2-3 liver transplantation with delayed total hepatectomy: New strategies for nonresectable colorectal liver metastases. Surgery 2018;164:601-3.
- 71. Grut H, Solberg S, Seierstad T, et al. Growth rates of pulmonary metastases after liver transplantation for unresectable colorectal liver metastases. Br J Surg 2018;105:295-301.
- 72. Hernandez-Alejandro R, Ruffolo LI, Alikhanov R, et al. Associating Liver Partition and Portal Vein Ligation for Staged Hepatectomy (ALPPS) procedure for colorectal liver metastasis. Int J Surg 2020. [Epub ahead of print].

doi: 10.21037/dmr-20-91

Cite this article as: Nadalin S, Genedy L, Königsrainer A, Settmacher U, Rauchfuß F, Testa G. Living donor liver transplantation for colorectal liver metastasis: a narrative review. Dig Med Res 2020;3:31.