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Introduction

The global prevalence of obesity and its associated 
comorbidities continue to increase on a pandemic scale (1).  
Recent estimates from the World Health Organization 
(WHO) indicate that in 2016, over 1.9 billion adults were 
overweight and, of these, over 650 million were obese (2). 
Furthermore, 340 million children and adolescents aged 
5–19 years and 24 million children under the age of 5 were 
estimated to be obese or overweight in 2016 (2). Obesity 
is no longer a public health issue confined to high-income 
countries, as the developing world is now witnessing 

increased obesity rates secondary to urbanization, changes 
in diet, and the adoption of sedentary lifestyles (3). If 
current trends continue, the global prevalence of obesity is 
projected to reach 18% in men and exceed 21% in women 
by 2025 (4). A growing body of evidence supports the 
notion that obesity is a causative factor in the development 
of hypertension (5-7). This review provides an overview of 
the known pathophysiological mechanisms that link excess 
adiposity with elevated blood pressure (BP) and outlines 
therapeutic strategies for ameliorating obesity-related 
hypertension, with a focus on metabolic surgery.
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Definitions of obesity and its association with 
hypertension

Obesity is most accurately defined as the abnormal or 
excessive accumulation of adiposity to the extent that 
health may be impaired (2). However, the methods used 
to directly quantify body fat are cumbersome, expensive, 
and not routinely available in daily clinical practice (8). 
For this reason, the body mass index (BMI; body weight 
in kg divided by height in m2) is the most commonly used 
surrogate marker of adiposity (9). The WHO defines 
normal weight as BMI 18.5–24.9 kg/m2; overweight as 
BMI 25–29.9 kg/m2; and obesity as BMI ≥30 kg/m2 (10). 
However, BMI does not differentiate between lean muscle 
and fat mass and does not provide any indication of the 
distribution of body fat. This is an important consideration 
as evidence suggests that visceral or retroperitoneal fat 
(i.e., centrally located body fat) is a more important than 
peripheral or subcutaneous fat in predicting the risk of 
cardiometabolic sequalae associated with obesity (11-13).  
Therefore, alternative anthropometric measures of adiposity 
such as waist circumference (WC) and waist-to-hip ratio 
(WHR) have also been utilized (14). Central obesity is 
defined as a WC of >102 cm in males and >88 cm in females, 
or a WHR of >1.0 in males and >0.85 in females (15).  
However, the drawbacks of these indices include the lack of 
standardized measurement protocols and reference data as 
well as decreased accuracy in those with severe obesity (BMI 
>35 kg/m2) (16). Furthermore, the cut-offs for both BMI 
and WC/WHR were defined based on white European 
populations, and it is recognized that individuals of Asian 
descent may have a higher percentage of body fat than 
individuals of white European descent for a given BMI and 
WC (17). This has led to the development of ethnicity-
specific cut-offs for BMI, WC and WHR in non-white 
individuals as predictors of cardiometabolic risk (18,19). 

The deleterious consequences of obesity include 
an increased risk of death from cardiovascular disease  
(CVD) (20), type 2 diabetes mellitus (T2DM) (21),  
cancer (22), and chronic kidney disease (23). Hypertension, 
defined as systolic BP ≥140 mmHg or diastolic BP  
≥90 mmHg by the European Society of Cardiology/
European Society of Hypertension guidelines (24), or 
systolic BP ≥130 mmHg or diastolic BP ≥80 mmHg 
in the latest American College of Cardiology (ACC)/
American Heart Association (AHA) guidelines (25), is a 
comorbid condition that is frequently seen in association 
with obesity (5). Hypertension is currently the leading risk 

factor for morbidity and mortality worldwide, resulting in 
182 million disability-adjusted life years and 10.4 million 
deaths annually (26). The relationship between obesity and 
hypertension is well described in children and adults and 
across both sexes (5,27). For instance, in the Framingham 
Offspring Study, 78% of new cases of essential hypertension 
in men and 65% in women were attributable to excess 
body fat (28). Furthermore, an increase in weight by 5% 
was associated with a 20–30% increase in the incidence of 
hypertension (29). In the second Nurses’ Health Study, in 
which 82,882 adult women were prospectively followed 
up for 14 years, BMI was the strongest risk factor for 
developing hypertension, with obese women having almost 
five times the incidence of hypertension compared to those 
with BMI <23.0 kg/m2 (30). In concordance with these 
observations, it has been shown that even modest reductions 
in weight can decrease BP in hypertensive patients. 
For example, in the TOHP II (Trials of Hypertension 
Prevention, phase II) study, in which overweight and obese 
adults were randomized to a weight loss intervention group 
versus usual care, participants who maintained a weight 
reduction of 4.5 kg for 30 months reduced their risk of 
developing hypertension by 65% (31). The relationship 
between central obesity measures such as WC/WHR and 
BP appears to be independent of BMI, and it has been 
suggested that using these indices in combination, rather 
than individually, may be a superior predictor of obesity-
related cardiometabolic risk in certain populations (32,33). 

Mechanisms of obesity-related hypertension

The putative mechanisms underlying obesity-related 
hypertension are complex and entail interactions between 
renal, metabolic, and neuroendocrine pathways (Figure 1). 
These mechanisms include: sympathetic nervous system 
(SNS) overactivation, stimulation of the renin-angiotensin-
aldosterone system (RAAS), alterations in adipose-derived 
cytokines such as leptin, insulin resistance, and structural as 
well as functional renal changes.

SNS overactivation

Increased activity of the SNS is believed to play an 
important role in the development of obesity-related 
hypertension (34). Physiological manifestations of SNS 
overactivity include elevations in heart rate, cardiac output, 
and renal tubular sodium reabsorption; these occur as a 
direct result of α-adrenergic and β-adrenergic receptor 
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Figure 1 Mechanisms involved in the pathogenesis of obesity-related hypertension. RAAS, Renin-angiotensin-aldosterone system; SNS, 
sympathetic nervous system.
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stimulation and indirectly through activation of other 
systems, such as the RAAS, which is described below. Muscle 
SNS activity, as measured by microneurography, increases 
with even modest weight gain (35) and appears to be highest 
in patients with both obesity and hypertension (36). Renal 
SNS activity, as measured by the norepinephrine spillover 
method, is also elevated in obese individuals (37). Notably, 
the increased SNS activity associated with obesity is not 
uniformly distributed across all organs, and predominantly 
affects the kidneys and skeletal muscle (6). On the other 
hand, the chronic elevation in resting heart rate observed 
in obese individuals is thought to be mediated by reduced 
parasympathetic tone rather than increased SNS activity (7). 
Furthermore, SNS overactivity is not ubiquitously observed 
in all obese patients, and appears to be influenced by factors 
such as visceral (rather than subcutaneous) adiposity, 
ethnicity, and sex (38). For instance, Native American Pima 
Indians have a high prevalence of obesity, but relatively 
low rates of hypertension (39,40). One explanation for this 
may lie in the finding that basal muscle SNS activity is 
20–30% lower in Pima Indians compared weight weight-
matched white individuals (40). This suggests that SNS 
activity is a key determinant of obesity-related hypertension 
and that sympathetic tone in the presence of excess 
adiposity is influenced by factors such as ethnicity. Further 
evidence of the association between SNS activity obesity-
related hypertension is the finding that pharmacological 
α/β-adrenergic blockade results in a significantly greater 
reduction in systolic BP in obese, compared to lean, 
hypertensive patients (41).

Causative mechanisms of SNS activation in obesity 
include abnormal adipokine secretion from adipose 
tissue; stimulation via the RAAS; insulin resistance; and 
baroreceptor dysfunction (6,7,42). Furthermore, obesity 
frequently coexists with obstructive sleep apnea (OSA), 
which results in chronic intermittent hypoxia and leads 
to the activation of carotid body chemoreceptors that 
reflexively upregulate SNS activity (43). Some of these 
mechanisms may also contribute towards the development 
of hypertension in an SNS-independent manner, which will 
be discussed below.

Activation of the RAAS 

Despite the state of volume expansion and sodium retention 
associated with obesity, which would normally suppress the 
RAAS, several reports indicate that obese individuals have 
higher levels of plasma renin activity, angiotensinogen, 

angiotensin-converting enzyme (ACE), and aldosterone 
compared to lean individuals (44,45). Activation of the 
RAAS leads to increased formation of angiotensin II, 
which induces systemic vasoconstriction and simulates 
the production of aldosterone from the adrenal cortex. 
Both angiotensin II and aldosterone increase renal tubular 
sodium reabsorption and water retention, resulting in 
intravascular volume expansion and hypertension. 

Several mechanisms are responsible for RAAS activation 
in obesity. It has been recognized that a bidirectional 
interaction exists between the SNS and the RAAS, 
such that the RAAS increases sympathetic tone and, 
reciprocally, the SNS activates the RAAS (46). This drives 
the release of renin from the juxtaglomerular cells of the 
kidney. Renin secretion is also upregulated secondary 
to physical compression of the kidney by excess visceral 
and retroperitoneal fat (7). This leads to decreased 
renal tubular blood flow and sodium delivery, which is 
sensed by the macula densa, which in turn stimulates 
renin secretion through tubuloglomerular feedback (47). 
Adipocytes also possess their own intrinsic RAAS and 
appear to be major producers of angiotensinogen and 
angiotensin II (48). Interestingly, mice with adipocyte-
specific deficiency of angiotensin are protected from 
the development of hypertension, despite being fed an 
obesogenic diet (49). Additionally, adipocytes have been 
shown to secrete mineralocorticoid-secreting factors that 
stimulate aldosterone production from the adrenal gland 
independently of angiotensin II (50,51). The role of RAAS 
activity in the pathogenesis of obesity-related hypertension 
in humans is supported by the finding that pharmacologic 
blockade with ACE inhibitors (ACEIs), angiotensin II 
receptor blockers (ARBs), and mineralocorticoid receptor 
antagonists (MRAs) significantly lowers BP in obese 
patients (52-54).

Functional and structural renal changes

Increased renal sodium reabsorption and volume expansion 
play an important role in initiating hypertension associated 
with obesity. As mentioned above, excess visceral 
and retroperitoneal adiposity can lead to mechanical 
compression of the kidneys. In addition, the accumulation 
of peri-renal fat may induce inflammation and expansion 
of the renal medullary extracellular matrix, which leads 
to compression of the renal medulla (55). This results in 
diminished renal tubular blood flow, which prolongs the 
duration of time in which fractional sodium reabsorption 
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can occur. Consequently, decreased sodium delivery 
distally to the macula densa stimulates a feedback-mediated 
reduction in renal afferent arteriolar resistance, an increase 
in renal blood flow, and stimulation of renin secretion from 
juxtaglomerular cells (7). These compensatory increases in 
BP and glomerular filtration rate (GFR) attempt to restore 
macula densa sodium delivery towards normal levels. 
Ultimately, however, the elevated glomerular hydrostatic 
pressure leads to progressive glomerular sclerosis and 
impaired renal function (56), and a deleterious cycle 
ensues in which nephrons are injured, sodium retention is 
exacerbated, and arterial pressures rise to maintain sodium 
delivery to the macula densa (57). As described earlier, renal 
SNS activity is upregulated in obesity, and this stimulates 
sodium reabsorption both directly (58) and indirectly, 
through activation of the RAAS.

Leptin resistance and hyperleptinemia

Leptin is an adipokine (adipose-derived cytokine) that 
has a variety of physiological functions, including the 
regulation of food intake and energy homeostasis (59). In 
addition, leptin has been shown to simulate SNS activity 
in the central nervous system and exerts a pressor effect 
on the cardiovascular system (60). In the normal state, 
leptin suppresses appetite and increase energy expenditure. 
However, the observation that obese individuals have 
high leptin levels in the absence of weight loss, indicates 
that a state of leptin-resistance exists in obesity (61). 
This resistance appears to be “selective”, affecting only 
the appetite-suppressing and metabolic effects of leptin, 
without attenuating its stimulatory effects on the SNS (62). 
This has led to the notion that hyperleptinemia, largely 
through activation of the SNS, may contribute to obesity-
related hypertension (63). Although leptin infusions in 
animal models have been shown to stimulate SNS activity 
and lead to an increase in BP (64,65), the administration 
of recombinant leptin for 12 weeks in overweight or obese 
humans had no effect on BP (66). This illustrates the 
complexity of the effects of leptin on BP and the need for a 
better understanding of its role in mediating obesity-related 
hypertension.

Insulin resistance

Obesity is associated with a state of insulin resistance 
and hyperinsul inaemia,  which may contribute to 
hypertension through several mechanisms. Insulin is 

known to exert sympathoexcitatory effects, as evidenced by 
increased muscle SNS activity following systemic insulin 
infusion (67,68), and the stimulation of neurons of the 
paraventricular nucleus (a region of the hypothalamus that 
is critical to the regulation of sympathetic output) (69). 
Insulin also directly promotes renal sodium retention in the 
proximal convoluted tubule via activation of the sodium-
hydrogen exchanger 3 (NHE3) (70). Indeed, it has been 
shown that individuals with metabolic syndrome, of which 
insulin resistance is a key component, have a significantly 
higher fractional sodium reabsorption compared to those 
without metabolic syndrome (71). Insulin is known to act 
as a vasodilator; however, in obese individuals with chronic 
hyperinsulinemia this response is blunted secondary to 
endothelial dysfunction, resulting in a state of increased 
vasoconstrictor tone (72).

Treatment of obesity-related hypertension

The primary goal of treatment for obesity-related 
hypertension i s  weight  loss ,  as  this  reverses  the 
pathophysiological mechanisms that sustain hypertension. 
The BP-lowering effects of weight loss appear to be linear, 
with a decrease in BP of around 1 mmHg reported per kg 
of weight loss (73), although this effect may be attenuated 
in the longer-term, with a decrease of around 6 mmHg 
observed per 10 kg of weight loss (74). Weight reduction 
is first attempted through nonpharmacological approaches 
such as lifestyle changes. In patients who are unable to 
sustain weight loss or recommended BP targets with this 
approach, adjuvant pharmacotherapy may be required. It is 
increasingly recognized that metabolic surgery represents 
an effective strategy for BP control in obese hypertensive 
patients, and evidence in support of this will be discussed 
below.

Lifestyle modification

The mainstay of treatment for obesity is l ifestyle 
modification aimed at caloric restriction and increased 
physical activity (75). Lifestyle interventions consist of 
dietary adjustments, regular exercise, and behavioural 
modification. Details regarding specific programs are 
described elsewhere (5,75) and are beyond the scope of this 
Review. Unfortunately, rates of recidivism and drop-out are 
high and few patients succeed in achieving and maintaining 
long-term weight loss with lifestyle modifications alone (76).  
This is not solely attributable to a loss of motivation and may 
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also be a result of counter-regulatory hormonal mechanisms 
that exist to re-establish higher body weight (77). 

Pharmacological therapies for obesity

According to guidelines from the ACC/AHA (75) and the 
Endocrine Society (78), pharmacological therapies for 
obesity may be considered as useful adjuncts to lifestyle 
modification for patients with BMI ≥30 kg/m2 or in 
those with BMI ≥27 kg/m2 and concomitant obesity-
related diseases, including hypertension, type 2 diabetes, 
dyslipidemia and/or OSA. Currently, five drugs are US Food 
and Drug Administration (FDA)-approved for long-term 
weight management: orlistat, lorcaserin, phenteramine-
topiramate, naltrexone-bupropion, and liraglutide. With 
the exception of orlistat (which reduces fat absorption by 
inhibiting gastric and pancreatic lipase), these drugs promote 
weight loss by reducing food intake and inducing early 
satiety (79). The degree of weight loss achieved by anti-
obesity drugs at over 1 year ranges from approximately 3–9% 
beyond that achieved with lifestyle modification alone (80).  
Although a detailed description of each medication is 
beyond the scope of this Review, it is worth noting that 
some anti-obesity drugs may have varying effects on 
BP. For example, orlistat, has been shown to produce 
placebo-adjusted systolic and diastolic BP reductions of 
2.5 and 1.9 mmHg, respectively, in obese hypertensive 
patients (81). However, it is associated with only a mild 
degree of weight loss (<3% relative to placebo) (82)  
and frequent gastrointestinal side effects, such as fecal 
urgency, incontinence, and oily stool, which hinder its 
long-term use (79). Compared with placebo, bupropion-
naltrexone reduces weight by approximately 4–5% (83), but 
can raise BP and heart rate and is not recommended for use 
in hypertensive patients (84). Overall, there is a paucity of 
data on the efficacy and short- and long-term BP effects of 
most approved anti-obesity drugs that are specific to obese 
patients who are also hypertensive (85). 

Pharmacological therapies for hypertension in obese 
individuals 

Individuals with obesity are at increased risk of treatment-
resistant hypertension (defined as BP that remains above 
goal despite the concurrent use of three antihypertensive 
agents of different classes, or controlled BP with >3 
medications) (86,87). While most hypertension guidelines 
do not address obese patients as a distinct population, some 

recommendations for optimal choice of antihypertensive 
agent in this group have emerged (5,88). Given the 
role of the RAAS in the pathogenesis of obesity-related 
hypertension, there is a strong case for considering ACEIs 
and ARBs as first-line therapies. These drugs have the 
added advantage of improving insulin sensitivity (89) and 
being nephroprotective in patients with diabetes (90), which 
is a frequent comorbidity in obese individuals. Based on 
the observation that aldosterone levels are upregulated in 
obesity, the use of MRAs has also been advocated, although 
there is little evidence to suggest that these agents show 
superior efficacy in obese individuals compared with 
normal weight hypertensive patients (91). Because SNS 
activation is also implicated in obesity-related hypertension, 
β-blockers would appear to be a biologically-plausible 
treatment option. However, many of the drugs in this class 
are associated with weight gain and insulin resistance, 
and should be limited to obese patients with specific 
cardiovascular indications, such as heart failure or post-
myocardial infarction (92). When β-blockers are indicated, 
third generation agents, such as carvedilol and nebivolol, 
appear to have less weight gain potential and fewer adverse 
metabolic effects than older β-blockers (93). Calcium 
channel blockers of the dihydropyridine class have a neutral 
effect on glucose metabolism and weight gain and are 
usually recommended as second-line agents in combination 
with ACEIs/ARBs (88). While thiazide diuretics are useful 
in counteracting the volume overloaded state that is present 
in obesity-related hypertension, their metabolic adverse 
effects include dyslipidemia and insulin resistance, which 
obese patients treated with these drugs are especially 
vulnerable to developing (94). 

The role of metabolic surgery in the treatment of obesity-
related hypertension

Metabolic (also known as bariatric) surgery encompasses 
some of the fastest-growing gastrointestinal procedures 
worldwide. According to the latest International Federation 
for the Surgery of Obesity and Metabolic Disorders 
survey, an estimated >680,000 metabolic procedures were 
performed across the globe in 2016 (95), which was double 
the number of cases reported in 2011 (96). Metabolic 
procedures currently performed in the US (in decreasing 
order of frequency) include sleeve gastrectomy (SG, 58%); 
Roux-en-Y gastric bypass (RYGB, 19%); adjustable gastric 
banding (AGB, 3%); and biliopancreatic diversion with 
duodenal switch (BPD/DS, 0.6%) (97). 



86 Shariq and McKenzie. Obesity-related hypertension

© Gland Surgery. All rights reserved.   Gland Surg 2020;9(1):80-93 | http://dx.doi.org/10.21037/gs.2019.12.03

Metabolic surgery has emerged as the most successful 
strategy for achieving substantial and durable weight loss 
in obese individuals, as shown in the pooled analyses of 
several randomized control trials (RCTs) and observational 
studies (98-102). For example, in a meta-analysis of 11 
RCTs containing a total of 796 obese individuals, those who 
underwent metabolic surgery experienced 26 kg greater 
weight loss compared to those who were subjected to non-
surgical treatment (101). With regards to surgery type, 
BPD/DS provides the most significant weight loss out of all 
bariatric procedures, because it involves the most extensive 
degree of intestinal bypass (103). However, it is also the most 
technically challenging, and is therefore the least frequently 
performed (97). RYGB was formerly the most common 
bariatric procedure, but has now largely been supplanted by 
SG, as the latter is considered to be a more straightforward 
and quicker operation, with a lower complication rate (104).  
While some studies have shown superior weight loss 
outcomes with RYGB (105,106), which is considered by 
many to be the “gold standard” weight loss procedure, 
others have demonstrated similar efficacy between RYGB 
and SG (107,108). There is, however, consensus that both 
operations result in significantly greater and longer-lasting 
weight loss than AGB, a procedure that is now rarely 
performed in contemporary bariatric practice (109). 

In addition to substantial effects on weight loss, there is 
now an impressive array of evidence to show that metabolic 
surgery is effective in treating T2DM (110-115). Indeed, 
many patients who undergo these procedures achieve 
complete remission of T2DM, defined by the American 
Diabetes Association (ADA) as a glycated haemoglobin 
(HBA1c) <6.0% or fasting glucose <100 mg/dL of at 
least 1 year’s duration in the absence of pharmacological 
therapies (116). For instance, in the STAMPEDE (Surgical 
Treatment and Medications Potentially Eradicate Diabetes 
Efficiently) trial, 150 patients with T2DM and BMI 27 
to 43 kg/m2 were randomized to RYGB, SG, or intensive 
medical therapy alone (117). At 1 year, 12% of patients 
in the medical therapy group achieved the trial’s primary 
outcome of HbA1c <6.0%, compared to 42% of patients 
who underwent RYGB (P=0.002) and 37% who underwent 
SG (P=0.003). Follow-up data from this trial showed that 
the beneficial effects of metabolic surgery on glycemic 
control were durable and remained significantly greater 
than medical therapy alone at 5 years (112). The widespread 
success of metabolic surgery is reflected in its inclusion 
within treatment algorithms for T2DM proposed by 
international diabetes organisations (118).

Although the majority of studies have focused on the 
beneficial effects of metabolic surgery in terms of BMI and 
glycemic control, there is growing interest in exploring the 
impact of these procedures on obesity-associated CVDs. 
Indeed, meta-analyses of mostly observational studies have 
suggested that metabolic surgery confers a beneficial effect 
in patients with hypertension (98,119-124). In an extensive 
systematic review by Vest et al. (122), which included 
73 studies and 19,543 individuals undergoing a range of 
bariatric procedures including SG, RYGB, ABG, and SG, 
postoperative resolution or improvement of hypertension 
occurred in 63% of patients, with follow-up ranging from 
3 months to ~15 years. These results were corroborated 
in a separate meta-analysis of 57 studies containing 
51,241 patients by Wilhelm et al. (124), which showed 
improvement in hypertension in 63.7% of patients who 
underwent metabolic surgery and had follow-up ranging 
from 1 week to 7 years. In a subgroup analysis of studies 
that reported resolution of hypertension, the authors noted 
that this outcome occurred in 50% of patients. However, 
a long-term (>5 years) beneficial effect on BP has not 
invariably been observed in all studies. For example, in the 
Swedish Obese Subjects (SOS) study, in which 2,010 obese 
individuals were prospectively followed up after metabolic 
surgery and compared with 2,037 contemporaneously-
matched controls (125), no significant difference in the 
incidence of hypertension was observed between the 
two groups at 2 years (34% surgery vs. 21% control) and  
10 years (19% surgery vs. 10% control). However, 
limitations of the SOS study include its nonrandomized 
design and the fact that BP was not the primary outcome. 
Furthermore, as the study was initiated over 25 years ago, 
most patients underwent vertical-banded gastroplasty (an 
obsolete procedure that is now rarely performed) and only 
34 of the patients with 10 years of follow-up data underwent 
RYGB. In a subsequent analysis of SOS data, which 
included a larger number of RYGB patients with long-term 
follow-up (126), patients in the surgery group actually had a 
significant reduction in systolic/diastolic BP by 12.1/7.3 and 
5.1/5.6 mmHg at 2 and 10 years of follow-up, respectively. 
In a separate prospective cohort study of 197 patients who 
underwent RYGB or SG, relapse of hypertension at 3 years  
was also observed in >20% of patients who achieved 
apparent hypertension remission at 12 months (127).  
The only independent predictor of relapse was the use 
of a greater number of preoperative antihypertensive 
medication. This suggests a waning effect of metabolic 
surgery on BP control over time, although further high-
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quality data regarding the mid- and long-term effects on 
hypertension remission are required. 

It is important to note that that the majority of 
observational studies and all of the RCTs mentioned 
above have focused on weight loss or T2DM resolution as 
primary end-points. To date, only one RCT has set out to 
evaluate the impact of metabolic surgery on hypertension 
as a primary outcome in obese patients (128). In the 
GATEWAY (Gastric Bypass to Treat Obese Patients with 
Steady Hypertension) trial, 100 patients with obesity and 
hypertension were randomized 1:1 to undergo RYGB plus 
medical therapy or medical therapy alone (128). Patients 
with known CVD or poorly controlled T2DM were 
excluded. At 1 year, the primary outcome (a reduction in the 
total number of antihypertensive medications by ≥30%) was 
6 times more likely in patients who underwent surgery (84% 
vs. 13%). Furthermore, remission of hypertension (defined 
as a BP <140/90 mmHg without medication use) was 
attained in significantly more patients in the surgery group 
(56% vs. 0%). In a subsequently-published sub-study by the 
GATEWAY trial authors (129), patients who underwent 
RYGB were found to have significantly less BP variability 
at 1 year and a lower prevalence of resistant hypertension 
compared to those who received medical therapy alone (10% 
vs. 15%). This is a noteworthy finding as BP variability has 
been shown to increase the risk of adverse cardiovascular 
events (130), and correlates with the severity of target 
end-organ damage in hypertensive individuals (131). 
An important limitation of the GATEWAY trial is the 
limited duration of follow-up, although the investigators 
intend to report 5-year outcomes in the future (132). 
Furthermore, the single-centre nature of the study and 
exclusion of patients with BMI 30–39.9 kg/m2 may limit 
the generalizability of the findings. Finally, all the patients 
in the surgery group underwent RYGB, despite the fact 
that SG is now the most-commonly performed metabolic 
procedure worldwide. Nonetheless, the GATEWAY trial 
provides the first Level I evidence that metabolic surgery is 
an effective treatment for obesity-related hypertension and 
its findings are in concordance with the majority of prior 
observational studies. 

Conclusions and future perspectives

Obesity is one of the greatest public health challenges 
in modern times, and is inextricably linked to adverse 
cardiovascular risk. Obesity-related hypertension occurs 
due to the complex interplay between multiple mechanisms 

including inappropriate activation of the SNS and RAAS, 
adipocyte dysfunction, and impaired pressure natriuresis 
that is exacerbated by physical compression of the kidneys. 
Weight loss is the cornerstone of treatment for obesity and 
its metabolic consequences. However, many patients are 
unable to achieve and sustain an adequate degree of weight 
loss through lifestyle measures alone. While a number of 
anti-obesity medications exist, concerns regarding their 
safety and efficacy in hypertensive patients remain. Patients 
with obesity are also more likely to have hypertension that 
is resistant to treatment with multiple anti-hypertensive 
agents. Metabolic surgery is currently the most effective 
treatment for achieving durable weight loss and has been 
shown to have beneficial effects in patients with T2DM. 
It is increasingly recognized that the benefits of metabolic 
surgery also extend to hypertension remission; however, 
little is known about the causal mechanisms underlying this 
success. Because a reduction in BP may occur as early as  
1 week postoperatively (133) (i.e., before the onset of 
adipose mass loss) it is plausible that neurohormonal 
mechanisms are implicated in the BP-lowering effects of 
bariatric surgery. Further studies, including research in 
pre-clinical models, are needed to better understand these 
mechanisms. While the accumulating evidence base is 
promising, further high-quality data regarding long-term 
BP outcomes following both RYGB and SG are needed 
to confirm that the beneficial effects on hypertension are 
durable. Although metabolic surgery, with its potential risks, 
should not be considered a first-line treatment for isolated 
hypertension, it warrants consideration as a viable option 
for the subset of obese patients with hypertension that is 
severe or refractory to alternative treatments. As the global 
burden and severity of obesity and hypertension continue 
to increase, research that examines the impact of metabolic 
surgery on ameliorating these conditions will remain of 
crucial importance for the years to come.
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