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Introduction

In thyroid surgery, meticulous hemostasis is essential 
for preventing postoperative bleeding, which may cause 
life-threatening complications (1). Hemostatic methods 

developed so far include clamp-and-tie technique, suture 

ligation, and monopolar or bipolar electrocautery (2,3). 

In recent years, newly developed energy-based devices 

(EBDs) have been widely discussed in the literature because 
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of their superior performance in terms of pain, operative 
time, hospital stay, blood loss, postoperative drainage, and 
incidence of hypocalcemia (4-10). Thermal injury is the 
second most common mechanism of recurrent laryngeal 
nerve (RLN) injury during thyroid surgery after traction 
injury (11,12). In comparison with electrocautery, the 
advantage of EBDs is that they do not pass electrical 
energy through the body. However, the high temperatures 
generated by EBDs put nerves at risk for thermal injury. 
Although EBDs have proven effective in hemostasis, a clear 
understanding of their safety is mandatory.

The LigasureTM exact dissector (LED) (LF2019; 
Medtronic) provides thermal sealing with a tissue 
divider and is suitable for dissection and hemostasis 
in thyroidectomy, similar to the LigasureTM Small Jaw 
(LSJ, LF1212 Europe, LF1212A USA; Medtronic). By 
denaturizing collagen and elastin within vessels, it can seal 
vessels up to 7 mm in diameter with their surrounding 
connective tissue (11). Measured at the tip, the LED has 
a jaw width of 2 mm [smaller than the jaw width of the 
Ligasure Small Jaw (LSJ)], and a seal length of 20.6 mm 
(longer than the 16.5 mm seal length of LSJ). The thinner 
jaw width and the longer seal length of the LED enable 
more precise dissection compared to LSJ.

The aim of this study was to use a porcine model to 
investigate safety parameters for using LED for dissection 
in thyroidectomy. For this purpose, we monitored the time 
of electromyography (EMG) change under continuous 
intraoperative neuromonitoring (CIONM) with the LED 
used at various distances from the RLN (activation study). 
The effects of various cooling durations and cooling 
maneuvers were also compared during application of LED 
near the RLN after activation (cooling study).

Methods

Subject preparation and anesthesia

The porcine model used in this prospective study was 
developed by our research team (13) and is well established 
in CIONM research. The animal-use protocol was 
consistent with national/international regulations and 
guidelines for animal experiments, including replacement, 
reduction, and refinement principles, and was approved 
by the Institutional Animal Care and Use Committee of 
Kaohsiung Medical University, Taiwan (IACUC protocol 
No. 108084).

In the LED experiments, endotracheal surface electrodes 

were used to record EMG signals evoked by electrical 
stimulation of vocalis muscles near the RLN. 

Anesthesia was initiated by administrating 2 mg/kg of 
tiletamine/zolazepam intramuscularly 30 minutes before the 
experiment. Muscle relaxants were not used during anesthesia 
to avoid neuromuscular blockade that could have interfered 
with EMG signals during neural monitoring. After the 
piglets were intubated, tidal volume was set to 8–12 mL/kg, 
and respiratory rate was set to 15 to 20 breaths per minute. 
General anesthesia was maintained with sevoflurane 1%  
to 2%.

Equipment setting and operation

All neural monitoring procedures were performed in 
accordance with the guidelines of the International Neural 
Monitoring Study Groups (14). A nerve integrity monitor 
size #6 EMG endotracheal tube (NIM Standard Tube, 
Medtronic, Jacksonville, FL, USA) was used in the manner 
routinely used in humans (15). The CIONM was performed 
using the Nerve Integrity Monitor system (NIM3.0, 
Medtronic). Automated periodic stimulation (APS) of the 
vagus nerve (VN) was set for accurate and efficient real-time  
recording of EMG signals during RLN injury (Figure 1).

A long transverse cervical incision was made, and 
subcutaneous tissue and muscles were divided and 
retracted away from midline. The lateral border of the 
sternocleidomastoid (SCM) muscle was dissected and 
retracted medially. The thyroid glands, VNs and the 
RLNs were exposed adequately (Figure 1). The VN was 
approached laterally, dissected free of fascia, and kept dry 
for proper stimulation. The APS electrode was placed on 
the VN at the fifth tracheal ring level with optimal stability. 
Baseline data for VNs, including amplitude and latency 
of the evoked response, were calibrated automatically. An 
adverse EMG change was defined as a 50% decrease in 
amplitude or 10% increase in latency.

Figure 1 shows the LED and the ValleylabTM LS10 
energy platform (Medtronic, Minneapolis, MN, USA) used 
as the generator in this study.

Study design

The activation study determined the distance from the 
RLN at which the LED can be safely used. The cooling 
study determined the cooling time (after prior activation) 
needed for safe use of the LED near the RLN. When a 
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substantial adverse EMG change occurred, the LED was 
deactivated, and the continuously monitored EMG was 
recorded for at least 20 minutes to observe recovery of the 
electrophysiological response.

Activation study
Figure 2 shows the design of the activation study. The LED 
was applied to soft tissue in a single activation of 2–4 seconds  
and at a distance of 5 mm from the RLN. If no adverse 
EMG event (e.g., significant adverse amplitude decrease or 
latency increase) occurred, the distance was progressively 
decreased to 2, 1, and 0 mm. Tests proceeded from the 
proximal to the distal part of the RLN. Real-time EMG 
CIONM information during each LED activation was 
continuously recorded.

Cooling study
Figure 3 shows the design of the cooling study. First, the 
LED was applied to the SCM muscle in a single activation 
of 2 to 4 seconds then allowed to cool for 5 seconds at 

room temperature. The blade of the LED was then applied 
to the RLN. If no adverse EMG event occurred, cooling 
time was shortened to 2 seconds and then 0 seconds. To 
test the cooling effect of the “muscle touch maneuver”, the 
operator activated the LED on the SCM muscle and then 
touched another part of the SCM muscle. The blade was 
then allowed to cool for varying time intervals before the 
operator touched the RLN. In the pre-test, the duration 
of the muscle touch maneuver was progressively decreased 
from 5 seconds, to 3 seconds, and to 1 second. No EMG 
changes occurred. After a single activation of the LED on 
the SCM muscle, we immediately performed muscle touch 
maneuver. With the blade in full contact with the SCM at 
another position, the LED immediately detached from the 
muscle and touched the RLN. The cooling effect of double 
activation was also tested; after two consecutive LED 
activations, the operator immediately touched the RLN 
with the LED blade without a cooling time. The muscle 
touch maneuver was also tested after double activation. 
Real-time EMG information for each stimulation was 
recorded and analyzed.

Results 

Anesthesia, surgery, and CIONM were successfully 
performed in all animals. Tables 1,2 summarize the results of 
the LED activation and cooling experiments.

Activation study

The activation study was performed in eight RLNs of four 
piglets (Table 1). In tests of activation at distances of 5, 2 and 
1 mm, no adverse effects, including amplitude decreases 
and prolonged latency, occurred. With the blade in direct 
contact, the left RLN of piglet 3 showed a 60.0% loss of 
signal (LOS) after a 20-minute observation, and three other 
nerves in piglets 3 and 4 (Figure 4A) showed LOS without 
recovery. 

Cooling study

Table 2 shows the details of the cooling study performed in 
eight RLNs of four piglets. After an LED activation time of 
5 seconds and a cooling time of 5 or 2 seconds, no piglets 
showed adverse effects when the RLN was touched with 
the LED. When the RLN was touched immediately after 
muscle touch maneuver, no piglets showed adverse effects 
in the RLN.

Figure 1 Steps of surgical approach and equipment settings. 
Step 1: for neck exposure, ensure adequate exposure of thyroid 
glands, vagus nerves, and recurrent laryngeal nerves. Step 2: set up 
continuous intraoperative neuromonitoring (CIONM) system with 
Nerve Integrity Monitor (NIM 3.0) system, and apply automated 
periodic stimulation (APS) to the vagus nerve. Step 3: set up the 
LigasureTM exact dissector (LED) with ValleylabTM LS10 
energy generation platform. 

3. LED/
Valleylab

2. CIONM 
(NIM3/APS)

1. Neck Exposure
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When the cooling study was performed in four nerves 
in piglets 5 and 6 with single activation and cooling time of 
0 seconds, none of the four nerves showed adverse effects. 
When double activation was performed with a cooling time 
of 0 seconds, the left RLNs in piglets 7 and 8 showed 66.2% 
(Figure 4B) and 54.8% LOS, respectively; the right RLN 
in piglet 7 showed no adverse neural effect; the right RLN 
in piglet 8 showed LOS without recovery over a 20-minute 
observation time. When the muscle touch maneuver was 
performed after double activation (piglets 5 and 6), no 
neural side effect occurred.

Discussion

Thermal injury is a serious nerve injury mechanism that 

may not be easily recognized by visual inspection and can 
occur without direct contact with the heat source (16,17). A 
thermal injury resulting from a temperature exceeding 60 
degrees Celsius causes permanent functional damage to the 
endoneurium whereas traction injury is usually limited to 
the perineurium and epineurium (18). After activation, most 
EBDs reach temperatures exceeding 60 degrees Celsius. 
That is, use of EBDs for dissection near nerves during 
surgery is a potential cause of thermal injury of varying 
severity. This study investigated the thermal spread of 
LEDs and qualified and quantified their safety parameters.

Intraoperative neuromonitoring is increasingly used to 
identify the RLN during thyroid surgery. Neuromonitoring 
is helpful for detecting nerve injury mechanisms and for 
predicting postoperative vocal cord function (14,19). By 

Figure 2 Flowchart of activation study protocols for LigasureTM exact dissector (LED). (A) Single activation was discontinued 
automatically for 2 to 4 seconds. Tests were performed from the proximal to distal segments of the RLN. The distance from the tip of 
the LED to the RLN, including the coating, was measured. In this study, the first test was performed at a distance of 5 mm from the fifth 
tracheal ring. If the EMG remained stable after three tests, another test was performed at a distance of 2 mm. If the EMG remained stable 
after repeated tests at a distance of 2 mm, safety was tested at a distance of 1 mm or with the LED tip in direct contact with the RLN (asterisk). 
If a substantial EMG change was noted, the RLN experiment was complete, and EMG was continuously monitored for at least 20 minutes. (B) 
The LED was tested at a distance of 5 mm to the left RLN. RLN, recurrent laryngeal nerve; EMG, electromyographic.
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Table 1 Activation study: comparison of real-time EMG change after LED activation at varying distances to RLN

Animal No. Side 5 mm, amplitude [times] 2 mm, amplitude [times] 1 mm, amplitude [times] 0 mm, amplitude [times]

1 Left Stable [3] Stable [3] Stable [3] –

Right Stable [3] Stable [3] Stable [3] –

2 Left Stable [3] Stable [3] Stable [3] –

Right Stable [3] Stable [3] Stable [3] –

3 Left Stable [3] Stable [3] – 60.0% loss [1]

Right Stable [3] Stable [3] – LOS [1]

4 Left Stable [3] Stable [3] – LOS [1]

Right Stable [3] Stable [3] – LOS [1]

EMG, electromyographic; LED, Ligasure exact dissector; RLN, recurrent laryngeal nerve; LOS, loss of signal.

Figure 3 Flowchart of cooling study protocol. (A) The tests were performed on the RLN from the proximal to distal segment. After a 
single LED activation on the SCM muscle (white arrow), the RLN (red arrow) was touched with the tip after varying cooling times. The 
fifth tracheal ring was touched after a cooling time of 5 seconds. If EMG remained stable in three tests, a 2-second cooling time was tested. 
If the EMG remained stable after repeated tests, safety was tested immediately after touching the RLN after a single activation, with or 
without the touch maneuver (asterisk, quick touching/cooling with surrounding tissue). Lastly, safety was tested when the RLN was touched 
immediately after a double activation with or without muscle touch maneuver (asterisk). (B) The open tip of the LED was used to touch the 
left RLN at the fifth tracheal ring level with 5 seconds lag time after 5 seconds activation on the surrounding muscle (white arrow). RLN, 
recurrent laryngeal nerve; LED, Ligasure exact dissector; SCM, sternocleidomastoid; EMG, electromyographic.
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Table 2 Cooling study: comparison of real-time EMG change when varying cooling time or muscle touch maneuver was performed after LED 
activation

Animal No. Side
5 seconds, 
amplitude 
(times)

2 seconds, 
amplitude (times)

Immediately + touch 
maneuver, amplitude 
(times)

0 second, 
amplitude 
(times)

Double activation, 
amplitude (times)

Double activation 
+ touch maneuver, 
amplitude (times)

5 Left Stable [3] Stable [3] Stable [3] Stable [3] Stable [3]

Right Stable [3] Stable [3] Stable [3] Stable [3] Stable [3]

6 Left Stable [3] Stable [3] Stable [3] Stable [3] Stable [3]

Right Stable [3] Stable [3] Stable [3] Stable [3] Stable [3]

7 Left Stable [3] Stable [3] Stable [3] – 66.2% loss [1] –

Right Stable [3] Stable [3] Stable [3] – Stable [3] –

8 Left Stable [3] Stable [3] Stable [3] – 54.8% loss [1] –

Right Stable [3] Stable [3] Stable [3] – LOS [1] –

EMG, electromyographic; LED, Ligasure exact dissector; LOS, loss of signal.

Figure 4 RLN injury in LED activation and cooling studies. (A) Left side of piglet 4. The LED was activated at distances of 5, 2, and 0 mm. 
After activation at 0 mm, real-time EMG showed sudden LOS without recovery during 20 minutes of continuous EMG recording. (B) Left 
side of piglet 7. Single activation with cooling times of 5 and 2 seconds without muscle touch maneuver, single activation with no cooling 
time and with muscle touch maneuver, and double activation with no cooling time and muscle touch maneuver. Double activation without 
cooling time and with touch maneuver caused sudden loss of real-time EMG. After 20 minutes of continuous EMG recording, a 66.2% 
signal loss occurred (from 989 to 334 μV). RLN, recurrent laryngeal nerve; LED, Ligasure exact dissector; EMG, electromyographic; LOS, 
loss of signal.

A B
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using repetitive vagal stimulation to provide continuous 
visual and acoustic feedback for nerve function, CIONM 
enables early detection of nerve injury after high risk 
procedures (20-22). For example, using CIONM to 
identify a nerve traction injury mechanism at an early stage, 
enables corrective action when preservation of function 
is still possible. However, since thermal injuries to nerves 
often occur suddenly and unexpectedly, correcting the 
nerve injury mechanism is usually difficult, and recovery 
is rare (18,23). The LED is a newly designed device that 
increases the precision of dissection during thyroid surgery. 
Compared to LSJ, the thinner tip of the LED enables 
insertion of the tip into small spaces (e.g., ligament of 
Berry region). The generator (ValleylabTM LS10 Energy 
Platform) used in the LED also differs from that in the 
LSJ (ForceTriad™ Energy Platform). The generators for 
the LED and LSJ have peak-to-peak voltages of 500 and 
5,785 V at 1 kΩ, rated loads of 30 and 20 Ω, and maximum 
power of 270 and 350 Watts, respectively. Notably, LED 
can provide adequate vessel sealing with a shorter activation 
time compared to LSJ. In our experiments, LED also 
achieved hemostasis faster compared to LSJ (17). A single 
activation of LED required 2 to 4 seconds. According 
to the specifications listed on its official website, the jaw 
temperature after one activation is less than 60 degrees 
Celsius. After 5 activations, the jaw cools to 60 degrees 
Celsius within 10 seconds. A shorter activation time and a 
lower activation temperature may reduce thermal injury in 
LED use. Activation with immediate contact still caused 
signal loss in most nerves. The portion of the blade without 
heat insulation can still cause thermal injury to nerves 
during dissection. In our study, the temperature was much 
higher after a double activation compared to a single 
activation, and thermal injuries occurred when no cooling 
time was allowed. Muscle touch maneuver after double 
activation did not cause thermal injury in our experiments. 
Use of LED in actual surgery still requires the muscle touch 
maneuver before dissection of the nerve area after repeated 
hemostasis.

Some limitations of this study are noted. First, some 
aspects of this prospective porcine model and some data for 
the animal study may not be applicable to human surgery. 
Additionally, several factors can affect heat transfer from the 
LED to the RLN, including operating room conditions and 
the difference between human and experimental animals. 
However, this model has proven useful and reliable for 
depicting real-time changes in laryngeal EMG in surgery 
for RLN injury (12,16-18,24,25). Second, this study 

focused on real-time EMG changes during a 20-minute 
period since RLN injury, and which was lack of long-
term RLN function outcomes. Notably, the accuracy of 
CIONM data for predicting future vocal cord function is 
well established (22,26). Finally, it should be noted that 
soft tissue coagulation may require use of the LED at a 
shorter distance to the RLN. Therefore, although this 
study indicates that the minimum safe distance for LED is 
1 mm, the tip should be closely monitored during surgery, 
and activation should be stopped immediately if soft tissue 
coagulation causes the nerve to be pulled close to the tip 
during dissection near the RLN.

Conclusions

Since LED may cause iatrogenic RLN thermal injury, 
standard procedures for its use must be developed and 
applied. The RLN should be clearly visualized, and the 
LED must be kept at a minimum distance of 1 mm from 
the nerve for safe use. When using the LED for dissection 
near the RLN, an adequate cooling time after activation 
and muscle touch maneuver are helpful for preventing RLN 
injury. 
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