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Background: This study aimed to investigate the diagnostic performance of radiomic features based on 
digital mammography (DM) in the differential diagnosis of benign and malignant round-like (round and 
oval) solid tumors with circumscribed or obscured margins but without suspicious malignant or benign 
macrocalcifications and to investigate whether quantitative radiomic features can distinguish triple-negative 
breast cancer (TNBC) from non-TNBC (NTNBC).
Methods: This retrospective study included 112 patients with round-like tumors who underwent DM 
within 20 days preoperatively. Breast masses were segmented manually on the DM images, then radiomic 
features were extracted. The predictive models were used to distinguish between benign and malignant 
tumors and to predict TNBC in invasive ductal carcinoma. The receiver operating characteristic curves 
(ROCs) for these models were obtained for initial DM characteristics, radiomic features to predict malignant 
tumors and TNBC. The decision curve was obtained to evaluate the clinical usefulness of the model for the 
prediction of benign or malignant tumors.
Results: The study cohort included 79 patients with pathologically confirmed malignant masses and 33 
patients with benign (training cohort: n=79; testing cohort: n=33). A total of 396 features were extracted 
from the DM images for each patient. The radiomics model for the prediction of malignant tumors achieved 
an area under the receiver operating characteristic curve (AUC) of 0.88 [95% confidence interval (CI), 0.76–
1.00] in the testing cohort; the radiomics model for the prediction of TNBC achieved an AUC of 0.84 (95% 
CI, 0.73–0.96). In contrast, DM characteristics alone poorly predicted malignant tumors, with the density 
achieving an AUC 0.69 (95% CI, 0.59–0.79); there was no significant difference in DM characteristics 
between TNBC and NTNBC (P>0.05, all). The decision curve showed the good clinical usefulness of the 
model for the prediction of malignant tumors.
Conclusions: This study showed that DM-based radiomics can accurately discriminate between benign 
and malignant round-like tumors with circumscribed or obscured margins but without suspicious malignant 
or benign macrocalcifications. Additionally, it can be used to predict TNBC in invasive ductal carcinoma. 
DM-based radiomics can aid radiologists in mammogram reading, clinical diagnosis and decision-making.

Keywords: Digital mammography (DM); radiomics; round-like breast tumors; molecular subtypes

2016

https://crossmark.crossref.org/dialog/?doi=10.21037/gs-20-473


2006 Wang et al. Digital mammography-based radiomics in breast tumors

© Gland Surgery. All rights reserved.   Gland Surg 2020;9(6):2005-2016 | http://dx.doi.org/10.21037/gs-20-473

Introduction

Breast cancer is the most common malignant disease 
diagnosed in women worldwide (1-3). The mortality of 
breast cancer has decreased significantly since the 1970s (4).  
The decrease is attributed to both the availability of 
screening methods, especially mammography, and improved 
therapy for more advanced cancer. Digital mammography 
(DM) is a proposed method for detecting breast tumors in 
clinical practice (5). Breast-Imaging Reporting and Data 
System (BI-RADS) (6,7) is used worldwide to describe the 
findings of the various breast-imaging techniques including 
DM. Although DM plays an important role in the detection 
of breast masses, there is still overlap in DM image features 
between benign and malignant breast tumors. Round 
and oval masses with circumscribed or obscured margins, 
without suspicious malignant and benign macrocalcifications 
are difficult to diagnose. The types of tumors include 
invasive ductal carcinoma (some are TNBCs), intraductal 
papillary lesions, mucinous adenocarcinomas, phyllodes 
tumors, intracystic papillary carcinoma, fibroadenomas, etc. 
(8,9). However, the clinical interventions and prognosis of 
these types of tumors are different (8). 

TNBC is a distinctive subtype of breast cancer that 
does not express estrogen receptors (ERs), progesterone 
receptors (PRs) or human epidermal growth factor receptor 
2 (HER2) (10). This phenotype of breast cancer displays 
poor prognosis due to aggressive tumor biology (11), and 
tends to occur in younger women (12). TNBCs commonly 
present as benign characteristics on mammogram and 
ultrasound (US) images and lack the typical representative 
suspicious mammographic characteristics of breast cancer 
(12-14). TNBC tend to be misdiagnosed or delayed 
diagnosis when lack of large positive axillary nodes (15). 
Therefore, traditional DM may not be the ideal means for 
identifying TNBC. 

According to the previous study (7), breast masses should 
be examined with US or magnetic resonance imaging 
(MRI) to decide their ultimate BI-RADS category, except 
for fatty or completely calcified masses. Breast dynamic 
contrast-enhanced MRI has high accuracy in identifying 
benign and malignant breast tumors (16), but it requires 
contrast medium injection and is more expensive. US is an 

indispensable tool in breast imaging (17). To some extent, 
US examination for breast cancer diagnosis is neither 
adequately sensitive nor sufficiently specific (18) and is 
operator dependent. 

Radiomics can convert medical images into high-
dimensional, mineable data via high-throughput extraction 
of quantitative features and allows for quantitative 
evaluation of tumor heterogeneity (19). DM-based 
radiomics has been studied for predicting the classification 
of microcalcification (20) and molecular subtypes of breast 
cancer (21,22). Applications of DM image texture analysis 
in the differential diagnosis of benign and malignant breast 
tumors have also been reported (23). DM is the most 
common examination for breast cancer screening and 
diagnosis, while no quantitative parameter may be gained 
by the analysis of DM images (23). Therefore, finding 
a quantitative biomarker from DM is greatly needed to 
increase the diagnostic power in breast tumors. In this 
study, we aimed to evaluate the diagnostic performance of 
DM-based radiomics in the differential diagnosis between 
benign and malignant round-like tumors. Furthermore, 
we investigated whether DM-based radiomics can well 
distinguish TNBC from NTNBC. DM-based radiomics 
may be helpful for radiologists in mammogram reading 
and clinical diagnosis of round-like tumors. We present the 
following article in accordance with the STARD reporting 
checklist (available at http://dx.doi.org/10.21037/gs-20-
473).

Methods

Patients

The study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013). This 
retrospective study was approved by the institutional 
review board of Minhang Branch, Zhongshan Hospital 
(approval number: 2020-012-01K), and informed consent 
was waived. All patients who underwent DM examination 
with pathological ly  confirmed benign (excluding 
fibroadenoma) and malignant tumor were continuously 
retrospectively collected from January 2017 to December 
2019. The patients who underwent DM examination with 
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pathologically confirmed fibroadenoma were continuously 
retrospectively collected from June to December 2019 
because of the large number of patients with fibroadenoma. 
Data from above all patients were retrieved from the 
Picture Archiving and Communication System (PACS) at 
the Affiliated Minhang Hospital of Fudan University. The 
clinical characteristics included age, sex and pathologic 
results. The inclusion criteria were as follows: (I) the shape 
of the tumor was oval or round; (II) DM examination was 
performed within 20 days preoperatively, and imaging 
quality met the requirements for postprocessing; (III) 
benign or malignant breast tumors were confirmed by 
histopathologic examination. The exclusion criteria were as 
follows: (I) before DM examination, patients underwent any 
treatment including chemotherapy, surgery, radiotherapy, 
and anti-HER2 therapy; (II) tumors that are not fully 
displayed in the cranial caudal (CC) or/and mediolateral 
oblique (MLO) views; (III) tumors with architectural 
distortion (excluding scarring associated with a previous 
injury or surgery); (IV) tumors with calcifications of BI-
RADS category 2/4b/4c/5; (V) tumors with spiculated 
margins; (VI) tumors that could not be displayed because 
the breasts were extremely dense. Finally, 112 patients were 
included in this study. Figure 1 shows the selection of the 
study group.

Digital mammography and tumor segmentation

All data were acquired on a GE Senographe Essential DM 
system (GE Healthcare, Milwaukee, WI). For each patient, 
images of one optimal MLO and one optimal CC view 
were exported as Digital Imaging and Communications 
in Medicine (DICOM) data. No further processing or 
normalization was performed on the images.

ITK-SNAP software (http://www.itk-snap.org) was 
used for the segmentation of breast tumors. The regions of 
interest (ROIs) were manually segmented on both MLO 
and CC views by two radiologists (WJY, LYW) with 10 and 
14 years of experience in DM imaging, respectively. If the 
margins of some lesions were obscured, the two radiologists 
will reach consensuses by reading the images additionally to 
determine the ROIs.

DM characteristics

All DM images were reviewed by two radiologists with 14 
and 10 years of experience in interpretation of DM images. 
Decisions on DM images findings were made by consensus. 

They recorded the following: (I) margin (circumscribed, 
obscured); (II) density (low-density, equal-density, high-
density); (III) location (depth) (anterior, middle, posterior). 
All these DM Characteristics were selected for comparison 
based on past study guidelines (6).

DM characteristics presented as categorical variables 
were analyzed by Chi-square test or Fisher exact test. 
Univariate analysis was applied to select DM risk factors for 
malignant tumors and TNBC (P<0.05) respectively. Then, 
backward stepwise multivariate logistic regression selection 
and the likelihood ratio test were performed, and the MG 
models for the prediction of malignant tumors and TNBC 
were constructed, respectively. The performance of the 
models was assessed by ROC curve, respectively.

Radiomics for the prediction of benign and malignant 
tumors

Feature extraction, selection and model construction
Radiomic features were automatically extracted using AK 
software version 3.2.2 (GE healthcare). A total of 396 
features were extracted, including histogram, shape, gray-
level cooccurrence matrix (GLCM), gray-level run-length 
matrix (GLRLM), and gray-level size zone matrix (GLSZM) 
features. To evaluate the interobserver agreement of the 
extracted features, we randomly selected CC views from 30 
patients and calculated the intraclass correlation coefficient 
(ICC) of the features. According to the 95% confidence 
interval of the ICC estimate (24), values greater than 0.90, 
between 0.75 and 0.9, between 0.5 and 0.75, and less than 
0.5 were classified as excellent, good, moderate and poor 
reliability, respectively. Each feature was utilized for further 
analysis merely if the ICC value reached 0.75.

Participants were randomly separated into a training 
cohort (n=79) and testing cohort (n=33) at a ratio of 
7:3. First, we applied the mRMR (maximum correlation 
minimum redundancy) algorithm to eliminate redundant 
and irrelevant features based on the training cohort and 
retained 15 features without redundancy and with high 
correlation with labels. Then, the least absolute shrinkage 
and selection operator (LASSO) with ten-fold cross 
validation was applied to further select the feature subsets 
through regularization by optimizing the hyperparameter 
λ. Coefficients of some candidate features were compressed 
to zero at the optimum λ, and features with nonzero 
coefficients were retained. A radiomics signature was 
constructed through a linear combination of the nonzero 
coefficient features. The radiomics score (rad-score) of each 
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Patients with breast tumors undergoing surgery were 
continuously retrospectively collected from Jan 1, 2017 to Dec 

31, 2019 (n=639)

Patients (n=339) with pathologically confirmed benign and 
malignant tumors

Round-like breast tumors (n=112)

Patients who did not undergo DM examination within 20 days 
preoperatively (n=300)

Excluded tumors (n=315)
1. Underwent treatment (biopsy) before DM examination (n=3)
2. Not be fully displayed in the cranial caudal (CC) or/and mediolateral 

oblique (MLO) views (n=11)
3. Calcifications of BI-RADS category 2/4b/4c/5 (n=124)
4. Architectural distortion (n=16)
5. Spiculated margins (n=130)
6. Not be displayed because of dense mammary gland (n=31)

Benign tumors (n=33) Malignant tumors (n=79)

Invasive ductal carcinomas (n=54)

TNBC (n=23) NTNBC (n=31)

Figure 1 Flow chart of study group selection. DM, digital mammography; CC cranial caudal; MLO, mediolateral oblique; TNBC, triple-
negative breast cancer; NTNBC, non-triple-negative breast cancer.

patient was calculated.

Model validation
The performance of the model for differentiating benign 
from malignant masses was assessed by receiver operating 
characteristic (ROC) curve analysis in the training 
cohort and validated in the testing cohort. The area 
under the curve (AUC), accuracy, sensitivity, specificity, 
positive predictive value and negative predictive value 
were calculated. The radiomic framework is shown in  
Figure 2.

In addition, we performed 100-folds leave-group-out 
cross-validation (LGOCV) to verify the reliability of our 
model and illustrate that the results given in our model are 
not contingent.

Radiomics for the prediction of TNBC and NTNBC

Furthermore, we investigated invasive ductal carcinoma, 
including TNBC and NTNBC, in the malignant patient 
group. First, for 396 radiomic features, independent t-test 
or Wilcoxon test was used to compare the difference 
between TNBC and NTNBC. Second, univariate logistic 
analysis was applied to assess whether the features were 
independent predictive risk factors (P<0.05). Third, mRMR 
was applied to select the relevant and nonredundant 
features, and 10 features were retained. Then, backward 
stepwise multivariate logistic regression selection and 
the likelihood ratio test were performed, and the final 
prediction model was constructed. The performance of the 
model was assessed by ROC curve. Cross-validation was 
also performed to verify the reliability of our results.
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Figure 2 Flow chart of radiomics analysis of breast round-like masses on mammography.

Image Acquisition
& ROI segmentation Feature extraction: AK software (396)

Model construction

Model validation:

Radscore =
−0.864*MLO_GLCMEnergy_AllDirection_offset7_SD+− 
1.489*CC_InverseDifferenceMoment_angle45_offset4+ 
0.468*MLO_InverseDifferenceMoment_AllDirection_offset1
_SD+0.247*MLO_Elongation+0.952*CC_Percentile80+−……

Feature selection:

• Histogram (42)
• Shape features (9)
• GLCM (154)
• GLSZM (11) 
• RLM (180)

• mRMR: maximum correlation 
minimum redundancyleast

• LASSO: absolute shrinkage and 
selection operator

Statistical analysis

SPSS (v. 23) and R statistical software v. 3.5.1 (https://www.
Rproject.org) were performed in the statistical analysis.

Results

Patient characteristics

A total of 112 patients (age: 55.87±14.25 years; age range: 
23–86 years) were included in our study. Among 112 
patients, 79 (age: 59.80±13.82 years; age range: 32–86 
years) were included in the malignant group, and 33 (age: 
46.50±10.32 years; age range: 23–65 years) were included in 
the benign group. Table 1 shows the histopathologic types 
of breast masses enrolled in the study. Fifty-four patients in 
the malignant group with invasive ductal carcinoma were 
further divided into two groups, with 23 cases of TNBC 
and 31 cases of NTNBC.

Benign and malignant tumor prediction

DM characteristics of the malignant and benign tumors are 

listed in Table 2. There was significant difference in density 
between the malignant and benign tumors (Table 2). The 
lesion density for the prediction of benign or malignant 
tumors achieved an area under the receiver operating 
characteristic curve (AUC) of 0.69 [95% confidence interval 
(CI), 0.59–0.79]. For predicting benign and malignant 
masses, 10 top-performing features, 3 from the CC 
view and 7 from the MLO view, were finally retained to 
construct the radiomics signature (Table 3). The proportion 
of features derived from the MLO view was higher (7/10). 
Table 3 shows the coefficient and P value of the selected 
features. All 10 features were significantly different between 
benign and malignant masses (P<0.05). Figure 3 shows the 
difference in radiomics score between benign and malignant 
masses. The radiomics prediction model achieved an AUC 
value of 0.94 (0.90–0.97) in the training set (Figure 4A) and 
0.88 (0.76–1.0) in the testing set (Figure 4B), significantly 
higher than the AUC value [0.69 (0.59–0.79)] of the lesion 
density (initial DM characteristic). Figure 4C shows the 
results of 100 folds LGOCV. Figure 4D shows the clinical 
decision curve of the radiomics model. Table 4 shows the 
performance of the rad-score in discriminating between 

https://www.Rproject.org
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Table 1 Histopathologic type of breast masses and description of calcifications

Histopathologic type No. of masses Proportion (%)
No. of masses with 

calcifications
BI-RADS category of  

accompanying calcifications

Benign 33 29.5 0

Fibroadenoma 29 25.9 0

Intraductal papilloma 1 0.9 0

Benign phyllode tumor 2 1.8 0

Tubular gland lymphoma 1 0.9 0

Malignant 79 70.5 5

Invasive ductal carcinoma 54 48.2 4

Triple-negative 23 20.5 2 4a

Non-triple-negative 31 27.7 2 3(1)

4a(1)

Intraductal papillary carcinoma 8 7.1 0

Ductal carcinoma in situ 1 0.9 0

Neuroendocrine carcinoma 1 0.9 0

Malignant phyllodes tumor 3 2.7 0

Mucinous carcinoma 11 9.8 1 4a

Sarcomatoid carcinoma 1 0.9 0

BI-RADS, Breast Imaging Reporting and Data System.

Table 2 DM characteristics for the differential diagnosis of benign and malignant tumors 

Characteristics variables Benign tumors Malignant tumors χ2 value P value

Margin 0.382 0.536

Circumscribed 12 24

Obscured 21 55

Density 13.297 0.001*

Low-density 1 1

Equal-density 26 34

High- density 6 44

Location(depth) 5.784 0.055

Anterior 3 16

Middle 24 38

Posterior 6 25

DM, digital mammography; * means P<0.05.
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Table 3 Extracted modeling features predictive of benign and malignant tumors

Feature variable Coefficient P value

MLO_GLCMEnergy_AllDirection_offset7_SD −0.864 <1e-04*

CC_Inverse Difference Moment_angle45_offset4 −1.489 0.001*

MLO_Inverse Difference Moment_AllDirection_offset1_SD 0.468 0.001*

MLO_Elongation 0.247 0.003*

CC_Percentile80 0.952 <1e-04*

CC_Inverse Difference Moment_ All Direction_offset7_SD −0.917 0.000*

MLO_GLCMEntropy_AllDirection_offset7_SD −0.107 0.011*

MLO_ Low Intensity Large Area Emphasis −0.59 <1e-04*

MLO_Correlation_angle135_offset7 −0.105 <1e-04*

MLO_ClusterShade_angle0_offset7 −0.312 0.043*

* means P<0.05.

Figure 3 Distribution of radiomics score value of benign and malignant masses in the training and testing groups.
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benign and malignant masses, and the positive predictive 
value achieved 90% in the test group. These results 
indicated an overall good performance of the prediction 
model.

TNBC and NTNBC prediction

DM characteristics of TNBC and NTNBC are listed in 

Table 5. There was no significant difference in margin, 
density and location between TNBC and NTNBC (P>0.05, 
all) (Table 5).

For predicting TNBC and NTNBC, 3 features, 1 
from the MLO view and 2 from the CC view, were finally 
selected to construct the prediction model (Table 6). All 
features were significantly different between TNBC and 
NTNBC (P<0.05). Figure 5 show the performance of the 
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Figure 4 Receiver operating characteristic curves of the radiomics model for predicting benign and malignant masses in the training (A) 
and testing (B) sets. Boxplot shows the results of 100 folds LGOCV (C). The decision curve of the radiomics model (D) shows that in the 
threshold range from 0-1, the radiomics model gains a greater benefit than other cases. LGOCV, leave group out cross-validation.

Table 4 The performance of the radiomic score in differentiating benign from malignant tumors

Group Accuracy (95% CI) Sensitivity (95% CI) Specificity (95% CI)
Positive predictive value 

(95% CI)
Negative predictive value 

(95% CI)

Training 0.881 (0.822, 0.926) 0.912 (0.838, 0.961) 0.833 (0.723, 0.907) 0.880 (0.796, 0.934) 0.882 (0.776, 0.944)

Test 0.788 (0.611, 0.910) 0.783 (0.558, 0.917) 0.800 (0.442, 0.965) 0.900 (0.669, 0.982) 0.615 (0.323, 0.849)

CI, confidence interval.

prediction model. The AUC value, accuracy, sensitivity 
and specificity were 0.84 (0.73–0.86), 0.81 (0.68–0.91), 0.78 
(0.56–0.93), 0.83 (0.65–0.94), respectively. Table 7 showed 
the result of the 100 times cross-validation. 

Discussion

Our study showed that DM-based radiomics has better 

diagnostic ability for round-like breast tumors than original 
DM characteristics. DM-based radiomics could be used 
as a noninvasive method for the identification of round-
like benign and malignant tumors and the prediction of 
molecular subtypes.

DM has precedence for detecting calcifications in breast 
tumors. However, due to the covering of the glands, the 
edge of some lesions may be insufficiently displayed in 
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Table 5 DM characteristics for the differential diagnosis of TNBC 
and NTNBC

Characteristics variables NTNBC TNBC χ2 value P value

Margin 0.120 0.73

Circumscribed 8 5

Obscured 23 18

Density 3.548 0.17

Low-density 1 0

Equal-density 16 7

High-density 14 16

Location(depth) 5.480 0.065

Anterior 8 1

Middle 16 12

Posterior 7 10

DM, digital mammography; TNBC, triple-negative breast cancer; 
NTNBC, non-triple-negative breast cancer.

Table 6 Performance of the selected features discriminating TNBC and NTNBC

Selected feature Coefficient Odds ratio (95% CI) P value AUC value

CC_kurtosis 1.424 4.15 [1.20–14.42] 0.025* 0.674

CC_sumAverage −1.551 0.21 [0.06–0.80] 0.022* 0.703

MLO_InverseDifferenceMoment_AllDirection_offset4_SD −1.185 0.31 [0.12–0.81] 0.017* 0.694

TNBC, triple-negative breast cancer; NTNBC, non-triple-negative breast cancer; CI, confidence interval; AUC, area under the receiver 
operating characteristic curve; * means P<0.05.

DM images. Furthermore, the density of lesions cannot 
be quantified, and the blood flow cannot be displayed. 
Therefore, the differential diagnosis of benign or malignant 
lesions may be difficult based only on DM if masses have 
round-like shapes and do not have architectural distortion, 
spiculated margins, or suspicious malignant or benign 
macrocalcification. The shape of these lesions demonstrated 
on DM images is similar, but the structure and density 
are very different, while these internal differences cannot 
be shown through DM (8). In traditional methods, the 
diagnosis of these diseases cannot rely on DM alone and 
must combine US or MRI. Previous studies (20-22,25) 
showed that radiomics provided massive features extracted 
from images to quantify tumors and allowed the possibilities 
for uncovering the differences that the human eye cannot 
recognize.

In this study, we aimed to investigate the most difficult 

and suspicious mass category. Thus, we focused on round-
like lesions with circumscribed or indistinct margins, 
without suspicious malignant or benign macrocalcifications. 
Our results showed that the DM-based prediction model 
for differentiating malignant and benign masses achieved 
high AUC values both in the training (0.94) and test groups 
(0.88). It is worth mentioning that each feature in the model 
was significantly different between benign and malignant 
masses. Consistent with one previous study (23), combining 
DM with radiomics can significantly improve the diagnostic 
performance. According to the decision curve, we can see 
that patients could benefit from the entire risk threshold of 
0 to 1. The radiomics model in our study showed that the 
features derived from the MLO view were more abundant 
than those derived from the CC view, while the most highly 
weighted feature came from the CC view. One previous 
study (21) also showed that the features extracted from the 
MLO view achieved a higher prediction performance than 
those extracted from the CC view, indicating that the MLO 
view may provide more information than the CC view. The 
combination of the two views can provide more information 
than each of them individually (21). These features included 
1 shape feature, 1 histogram feature, 1 texture feature, and 
7 GLCM features. The proportion of GLCM features was 
the largest.

Furthermore, we demonstrated that the accuracy of the 
model for distinguishing round-like TNBC from NTNBC 
was 0.89 (training group) and 0.78 (in testing group), which 
is consistent with one previous study (21). While, there was 
no significant difference in DM characteristics between 
TNBC and NTNBC. The multivariable logistic regression 
model showed that the most predictive features included 1 
histogram feature and 2 GLCM features. The proportion 
of GLCM features was larger as well, but the odds ratio 
value of the histogram feature was the largest. We only 
included the round-like mass, which is the most common 
presentation of TNBC. These results were encouraging 
because TNBC demonstrated rapid proliferation and poor 
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prognosis, and the risk of delayed or error diagnosis was 
higher.

In this study, the final constructed radiomics model 
included more GLCM features. The GLCM provides 
a second-order method for generating texture features 
to calculate the relationship between the combinations 
of gray levels in the image parameters (26), which 
can reflect internal spatial heterogeneity of the tumor  
lesions.

There are several limitations in this study. First, because 
there are no obvious boundaries between some diseased 
areas and normal tissues on DM images, no automatic 
segmentation algorithm for lesions is currently available. 
Thus, the lesion ROIs were manually segmented by 2 
senior imaging physicians in consultation, but there may 
still be errors between the ROIs and the true boundary of 
the masses. Second, our study was an exploratory study, and 
the data were collected from a single institution, lacking 
validation from external cohorts. Third, we focused on only 

round-like masses, and the overall sample size of non-tri-
negative invasive ductal carcinoma was small. Therefore, no 
further molecular subtyping was performed for NTNBC. 
Last but not least, due to the small number of special 
pathological types of breast cancer in the study, it was 
impossible to present the ability of DM-based radiomics 
to distinguish among pathological types. Further research 
with more breast tumor cases and pathological subtypes is 
needed in the future.

Conclusions

In conclusion, our study demonstrates that without 
combining US and MRI examinations,  DM-based 
radiomics can offer a more accurate discrimination between 
benign and malignant round-like masses. Additionally, DM-
based radiomics for the prediction of TNBC or NTNBC 
in invasive ductal carcinoma achieved satisfactory accuracy. 
DM-based radiomics may have unique clinical value and 
provide quantitative information to aid radiologists in 
mammogram reading, clinical diagnosis and decision-
making.
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