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Introduction

Cancer is a major global public health problem and the 
number of newly diagnosed cases continues to increase due 
to aging and growth of worldwide populations. Although 
advancement in early detection, prevention, and treatment 
options, cancer is still the second cause of human mortality. 
To date, most cancers are clinically diagnosed at the 
advanced stages of diseases, which result in curable surgery 
not an option, while chemotherapy and radiotherapy are not 
effective in cure of most cancer patients. During the past 
decade, development of modern medicine, such as target 
therapy has still relatively short-term benefits for selected 
patients (1). 

In recent years, different studies demonstrated that 
enhancement of cytotoxicity to target the cellular immune 
system could help clinicians to fight human cancer (2). 
For instance, sipuleucel-T, the first therapeutic cancer 
vaccine approved by US FDA, is an autologous active 
cell immunotherapy to improve overall survival (OS) of 

patients with metastatic castration-resistant prostate cancer 
in phase III clinical trials (3). Ipilimumab (4), a human 
monoclonal antibody that activates the immune system by 
cytotoxic T-lymphocyte-associated protein 4 (CTLA-4),  
has increased the OS rate of patients with melanoma by 
45.6% at 12 months, 33.2% at 18 months, and 23.5% at 
24 months. Programmed cell death 1 (PD-1) is another 
negative co-stimulatory receptor expressed primarily on the 
surface of activated T cells (5,6) and anti-PD-1 antibodies 
(pembrolizumab and nivolumab) were able to not only 
increase OS of patients with metastatic melanoma (7,8), 
but also to reach better response rate and progression-free 
survival (PFS) of patients with advanced, previously treated 
squamous-cell NSCLC (9-11). Thus, immunotherapy 
shows encouraging in control of human cancers.

Adoptive cell therapy (ACT) is another potentially useful 
approach to treat human cancers (12) and previous studies 
showed that such a cancer immunotherapy can include non-
specific cell therapy [lymphokine-activated killer (LAK) 
cells, cytokine-induced killer (CIK) cells and natural killer 
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cells (NK)], specific cell therapy [cytotoxic T lymphocytes 
(CTLs), tumor-infiltrating lymphocytes (TILs), T cell 
therapy with modified T cell receptor (TCR) genes, T cell 
therapy with modified chimeric antigen receptors (CAR) 
genes] and so on. ACT is to stimulate body own immune 
system in order to trigger antitumor immune response, 
and eventually enable natural abilities to better recognize, 
target, and, finally, eliminate cancer cells from human body. 
Compared to other forms of cancer immunotherapy, ACT 
has multiple advantages, e.g., long-term benefit after short-
term treatment and slight fewer adverse events. Although 
dendritic cells (DCs) and CTLs therapy have made a great 
progress, clinical applications are still somewhat limited. 
Recently, the genetic-modified T cells expressing specific 
TCRs or CARs are just now entering the clinical trials 
and the data have shown a great potential for high avidity 
to tumor-associated antigens and long-lasting anti-tumor 
responses, which encourages researchers to continuously 
study feasibility of this therapy in human cancers (13-15). 
Thus, our current review summarized the most recent 
advances and discussed and predicted the future research 
directions in this field.

Non-specific cell therapy

Non-specific cell therapy is an immunotherapy to non-
specifically activate immune cells to induce their “non”-
specific antitumor immune response to reject and destroy 
cancer cells. Based on different types of immune cells 
involved, non-specific cell therapy can be divided into LAK 
cell, CIK cell, and NK cell-mediated antitumor therapies. 
This non-specific cell therapy was used to treat different 
human cancers clinically (16-18).

LAK cell-mediated non-specific cell therapy 

Grimm and his colleagues first reported in 1982 (19) non-
specific killer cells generated by culture of peripheral blood 
mononuclear cells (PBMC) with high dose of interleukin-2 
(IL-2), which was named as LAK cells. LAK cells contain 
a mixture of T cells and NK cells, both of which are not 
restricted by the major histocompatibility complex (MHC) 
against a broad range of tumor cells in vitro (16,20) .

Thereafter, Rosenberg and associates (16) showed effects 
of autologous LAK cells and IL-2 on patients with advanced 
cancers in whom standard therapy had failed. The objective 
tumor regression achieved in 11 out of 25 patients, i.e., a 
complete tumor regression (CR) occurred in 1 patient with 

metastatic melanoma and partial responses (PRs) occurred 
in 9 patients with pulmonary or hepatic metastases from 
melanoma, colon cancer, or renal-cell cancer and in patients 
with primarily unresectable lung adenocarcinoma. In 1988, 
another study summarized a series of clinical trials using 
high-dose of IL-2 alone or in combination with LAK (17). 
Of 221 patients, 16 had a CR in patients with metastatic 
cancer and an additional 26 had a partial tumor regression 
(PR). Based on these studies, LAK cell therapy has been 
considered to be effective against metastatic melanoma, 
renal cell carcinoma, and other advanced solid tumors.

However, in another randomized clinical trial, the result 
suggested a trend toward improving survival when IL-2 
was given together with LAK cells to melanoma patients, 
but not occur in patients with renal cell carcinoma (21). 
Moreover, a randomized phase III trial of IL-2 with or 
without LAK cells in treatment of patients with advanced 
renal cell carcinoma demonstrated that there was no 
difference in treatment response (P=0.61) and survival (P=0.67) 
between these two treatment arms and more patients on the 
LAK arm experienced pulmonary toxicity (22). In addition, 
several other studies showed the safety and efficacy of LAK 
cell therapy in patients with malignant gliomas (23-25). In 
one study, a median OS of 31 patients with glioblastoma 
multiforme (GBM) was 17.5 months versus 13.6 months 
in control group (23). Boiardi et al. reported that the 
focal injection of LAK cells and IL-2 in 9 recurrent GBM 
patients were well-tolerated and the response rate was 33%, 
although the median OS of patients didn’t show significant 
improvement (26). 

Thus, although LAK cell therapy seemed to effectively 
kill some tumor cells, high toxicity caused by high dose 
of IL-2 (such as vascular leakage and severe hypotension) 
(26,27) limited its clinical usage. 

CIK cell-mediated non-specific cell therapy

CIK cells are obtained by isolated from PBMCs and then 
stimulated with a cocktail of interferon-gamma (IFN-γ), 
anti-CD3 monoclonal antibody, and IL-2 in a stepwise in a 
time-dependent ex vivo culturing process for approximately 
2 weeks (28). CIK cells are a mixture of cells with non-
MHC-restricted cytolytic activity, including CD3+CD56−

T cells and CD3+CD56+NK-T cells, and a relatively minor 
population of CD3−CD56+NK cells (29-31). Compared 
to standard IL-2 stimulated LAK cells, CIK cells have 
enhanced antitumor cytotoxic activity by over 70-fold (32). 
The lytic activity can be further enhanced by addition of 
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IL-1, IFN-γ, IL-7, IL-15, and other cytokines (33-36). 
To date, CIK cells have been evaluated as an adoptive cell 
immunotherapy for cancer patients in numerous clinical 
trials (summarized in Table 1). In the first phase I clinical 
study, autologous immunological effector cells were 
transfected with the IL-2 gene and to treat patients with 
metastatic renal cancer, colorectal cancer and lymphoma 
and data showed that 6 patients remained in disease 
progression, 3 showed stable disease (SD), and only 1 
lymphoma patient had a complete response (CR) (37). 
PubMed search of the international registry on CIK cells 
(IRCC) (18) for “CIK cells clinical trials” found 11 such 
clinical trials in 2011 that contained 384 patients treated 
with autologous CIK cell immunotherapy, of which 24 
patients had a CR, 27 patients had a PR, and 40 patients 
had a minor response. The total response rate (RR) was 
23.7% (91/384), while 161 patients (41.9%) had a SD and 
129 patients (33.6%) had a progressive disease (PD). Only 
3 patients had tumor volume decreased. The side effects of 
CIK cell treatment were minimal and at final data analysis, 
which indicated that adjuvant immunotherapy with CIK 
cells could prevent tumor recurrence and improve quality 
of life and progression-free survival (PFS) rate in patients. 
A latest study published in Gastroenterology (62) showed the 
efficacy and safety of a multicenter, randomized, open-label, 
phase III trial using activated CIK cells as the adjuvant 
immunotherapy that included 230 hepatocellular carcinoma 
patients after surgical resection, radiofrequency ablation, or 
percutaneous ethanol injection in South Korea. The median 
time of recurrence-free survival (RFS) was 44.0 months in 
the immunotherapy group vs. 30.0 months in the control 
group. However, patients in the immunotherapy group 
had higher proportion of adverse events than in the control 
group, although the proportion of serious adverse events 
did not differ significantly between these two groups of 
patients.

In China, there have been numbers of such clinical trials 
using CIK cell immunotherapy of human cancers. For 
example, Liu et al. (36) reported 148 patients with metastatic 
renal clear cell carcinoma randomized to autologous CIK 
cell immunotherapy (arm 1, n=74) or IL-2 treatment 
combination with IFN-α-2a (arm 2, n=74). The 3-year 
PFS and OS in arm 1 were 18% and 61%, respectively, as 
compared to 12% and 23%, respectively, in arm 2. The 
median PFS and OS in arm 1 were significantly longer 
than those in arm 2. Pan et al. (58) reported 90 patients 
with post-mastectomy triple-negative breast cancer in a 
retrospective study and 45 patients received chemotherapy 

alone or with sequential radiotherapy and 45 patients 
received chemotherapy with/without radiotherapy and 
sequential CIK infusion. The 1-, 2-, 3-, and 4-year disease-
free survival (DFS) rates in the CIK group were 97.7%, 
90.1%, 83.4%, and 75.2%, respectively, vs. 88.9%, 64.4%, 
62.1%, and 56.4%, respectively, in the control group. 
Also the 1-, 2-, 3-, and 4-year OS rates were significantly 
higher in treatment group (100.0%, 100.0%, 96.7%, and 
92.4%, respectively, vs. 95.6%, 88.6%, 76.3%, and 72.7%, 
respectively, in the control group). In subgroup analyses, 
CIK adjuvant therapy increased DFS rate of patients with 
pathologic grade III disease and significantly increased the 
OS rate of patients with N1, N2, N3, IIB, or III TNM 
disease. These data indicate that adjuvant CIK treatment 
combined with chemotherapy was an effective therapeutic 
strategy.

Thus, overall, these trials certainly demonstrated that 
CIK cells therapy was feasible and safe in patients with 
hepatocellular carcinoma, renal cell carcinoma, non-
small cell lung cancer, gastric cancer, and other solid 
tumors. In most cancer patients, adjuvant CIK cell therapy 
combination with conventional treatment had better clinical 
outcomes than standard therapy alone. 

NK cell-mediated non-specific cell therapy

NK cells were first identified and characterized by 
Herberman et al. (63) and Kiessling et al. (64) in 1975 
as a unique subset of lymphocytes that are larger in size 
than regular T and B lymphocytes and contain distinctive 
cytoplasmic granules. In human beings, NK cells are 
defined by expression of the surface marker CD56 and 
lack of the T cell markers, such as CD3 or TCR (65) and 
account for approximately 5% to 15% of human peripheral 
blood lymphocytes (66). NK cells are innate lymphocytes 
with the capacity to target foreign, damaged, malignant, 
and virally infected cells without prior immunization or 
MHC restriction. The cytotoxic granules released by NK 
cells up on targeting cells are largely composed of perforin 
and granzyme. Beyond their cytotoxicity, NK activation 
also leads to release of cytokines IFN-γ, TNF-α, G-CSF, 
granulocyte-macrophage colony-stimulating factor (GM-
CSF), IL-3 and others (67,68). 

As NK cells are found primarily in blood, NK cell 
therapy has been most successful in hematopoietic 
malignancies (69-73). Currently, NK cells can be used to 
treat patients with refractory leukemia before conventional 
hematopoietic cell transplantation (HCT) for induction 
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Table 1 Published clinical studies using CIK cell immunotherapy 

Year Cancer type # of patients Therapy Clinical response

1999 (37) Metastatic renal cancer, 
colorectal cancer and lymphoma

10 Autologous CIK cells 
transfected with IL-2 gene

CR [1]; SD [3]

2002 (38) Patients with advanced 
malignant tumor

63 Autologous CIK PR + MR: 44.46%

2005 (39) Hodgkin disease and non-
Hodgkin lymphoma

9 Autologous CIK cells PR: 2; SD: 2

2006 (40) Advanced gastric cancer 57 Autologous CIK cells with 
chemotherapy

2-year life-span was prolonged

2007 (41) Acute and chronic myelogenous 
leukemia and Hodgkin disease

11 Autologous CIK CR: 1; PR: 2; PD: 6

2008 (42) Hepatocellular carcinomas 85 Autologous CIK 1-year and 18-month recurrence rates: 
8.9% and 15.6% vs. 30.0% and 40.0%

2008 (43) Hepatocellular carcinoma 127 Autologous CIK Disease-free survival rates were 
significantly higher than in the control 
group

2008 (44) Non-small cell lung cancer 59 Chemotherapy plus CIK 
cells vs. chemotherapy 
alone

ORR: 44.8% vs. 43.3%; DCR: 89.7% vs. 
65.5%; time to progression: 6.65 vs. 4.67 
mos; median survival time: 15 vs. 11 mos; 
PFS and OS were significantly longer

2009 (45) Advanced lymphomas; 
metastatic kidney carcinoma; 
hepatocellular carcinoma

12 Autologous CIK CR:3; PR:1; SD:1

2010 (46) Hepatocellular carcinoma 146 TACE combination with 
autologous CIK vs. TACE

6-month, 1-year, and 2-year PFS rates: 
72.2%, 40.4%, 25.3% vs. 34.8%, 7.7%, 
2.6%; 6-month, 1-year, and 2-year OS 
rates: 90.3%, 71.9%, 62.4% vs. 74.6%, 
42.8%, 18.8%

2010 (47) B-cell malignant lymphoma 9 Autologous CIK + IL-2 CR:8; PR:1

2011 (48) Advanced solid malignancies 40 CIK combined with second-
line chemotherapy vs. 
second-line chemotherapy

ORR: 30% vs. 15%; DCR: 80% vs. 70%; 
PFS and OS were significantly longer

2012 (49) Large B-cell lymphoma 9 Autologous CIK CR: 9

2012 (36) Metastatic renal carcinoma 148 Autologous CIK vs. IL-2 
combination with IFN-α-2a

3-year PFS and OS: 18% and 61%; 
vs. 12% and 23%; mPFS and OS were 
significantly longer

2012 (50) Metastatic nasopharyngeal 
carcinoma

60 GC + CIK vs. CIK CR: 3 vs. 0; PR: 18 vs. 14; SD: 2 vs. 3; 
PD: 7 vs. 13; ORR: 70% vs. 46.7%

2012 (51) Lung cancer 87 Chemotherapy combination 
with autologous CIK vs. 
chemotherapy alone

PFS and OS were significantly longer

2012 (52) Locally advanced gastric cancer 151 Autologous CIK vs. no PFS and OS were significantly longer

2012 (53) Hematological malignancies 20 Autologous CIK CR: 11; PR: 7; SD: 2

Table 1 (continued)



Chinese Clinical Oncology, Vol 6, No 2 April 2017

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2017;6(2):18cco.amegroups.com

Page 5 of 18

Table 1 (continued)

Year Cancer type # of patients Therapy Clinical response

2014 (54) Hepatocellular carcinoma 132 Autologous CIK plus 
standard treatment vs. 
standard treatment only

1-year OS: 74.2% vs. 50.0%; 2-year OS: 
53.0% vs. 30.3%; 1-year OS: 42.4% vs. 
24.2%

2013 (55) Renal cell carcinoma 20 Autologous CIK vs. no PFS: 32.2 vs. 21.6 mos

2014 (56) Pancreatic cancer 20 Autologous CIK Disease control rate: 25%; PFS: 11 
weeks; OS: 26.6 weeks

2014 (57) Colorectal cancer 60 Chemotherapy combination 
with autologous CIK vs. 
chemotherapy alone

mPFS: 25.8 vs. 12.0 mos; mOS: 41.3 vs. 
30.8 mos

2014 (58) Triple-negative breast cancer 90 Chemotherapy with/
without radiotherapy and 
sequential CIK infusion vs. 
chemotherapy alone or with 
sequential radiotherapy

1-, 2-, 3-, and 4-year DFS:97.7%, 90.1%, 
83.4%, and 75.2% vs. 88.9%, 64.4%, 
62.1%, and 56.4%; 1-, 2-, 3-, and 4-year 
OS: 100.0%, 100.0%, 96.7%, and 92.4% 
vs. 95.6%, 88.6%, 76.3%, and 72.7%

2015 (59) Lung cancer 120 Chemotherapy with 
autologous CIK vs. 
chemotherapy alone

3-, 5-year PFS: 74% and 62% vs. 44.7% 
and 26.8%; mPFS and mOS: 24 and 72 
mos vs. 14 and 44 mos

2015 (60) Hepatocellular carcinoma 1,031 Hepatectomy with CIK vs. 
hepatectomy alone

mPFS and mOS: 16 and 41 mos vs. 12 
and 28 mos

2015 (61) Metastatic nasopharyngeal 
carcinoma

222 GC + CIK vs. GC 
(gemcitabine + cisplatin)

1-, 2-, and 3-year PFS: 76.0%, 32.1% 
and 23.8% vs. 70.0%, 24.5% and 17.0%; 
1-, 2-, and 3-year OS: 90.2%, 65.2% and 
25.9% vs. 85.5%, 47.3% and 19.1%

2015 (62) Hepatocellular carcinoma 230 CIK vs. no Median time of recurrence-free survival: 
44.0 vs. 30.0 mos

CIK, cytokine-induced killer; IL-2, interleukin-2.

of remission, after HCT as consolidation, or replace of 
HCT. A number of studies have shown encouraging results 
of NK adoptive infusion in patients with acute myeloid 
leukemia (AML) (74-77). At the same time, NK cells have 
also been assessed in many non-hematopoietic forms of 
cancer. Clinical trials showed transfusion of autologous 
NK cells was safe with no negative side effects on patients 
with metastatic colorectal cancer, non-small cell lung cancer, 
metastatic melanoma or renal cell carcinoma, although there 
was no significant clinical response observed (78). Thus, due 
to the limited clinical response associated with autologous 
NK cell therapy, adoptive transfusion of allogeneic NK 
cells was explored as an alternative.

Furthermore, allogeneic NK cells are thought to be of 
non-cross-resistant mechanisms and minimal overlapping 
toxicities for cancer therapy. Safety and efficacy of 
allogeneic NK cell transfusions were established in patients 

with metastatic melanoma, renal cell carcinoma, refractory 
Hodgkin’s disease, and refractory AML (74,79-81). In 
a study of allogeneic NK cell therapy of AML patients, 
complete remissions were observed in 26% of patients and 
nearly all patients showed an expansion in NK cells after 
IL-2 therapy (74). In a NKAML pilot study (82), children 
with high risk of AML who achieved first complete remission 
after conventional chemotherapy received infusion of 
haploidentical NK cells. Non-hematologic toxicity was 
limited with no graft-versus-host disease (GVHD). The 
2-year event-free survival was 100%. In another study, 
5 of 19 adults with advanced AML achieved a complete 
hematological response.

NK-92 cells, a pure allogeneic activated NK cell line (83),  
have been successfully used as effector cells for cancer 
therapy. Arai’s group (83) first used NK-92 cells in patients 
with advanced renal cell carcinoma or melanoma and 
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showed the safety and efficacy of a large-scale NK-92  
expansion and 2 patients’ experienced transient minor 
decreases in tumor size. Although NK-92 therapy was 
reported to be safe, limited data were accumulated to date 
on the efficacy of this approach. In summary, NK cells 
could be promising cancer therapy approach, especially 
allogeneic NK cell infusion, which may become a new area 
of novel cell-based immunotherapy against human cancer.

Specific immunotherapy

Compared to  non-speci f ic  ce l l  therapy,  spec i f ic 
immunotherapy is to specifically activate or modulate 
lymphocytes for target particular genes that are activated 
tumor cells (12); therefore, to destroy these tumor cells. 

TIL-mediating specific immunotherapy

More than 100 years ago, it was noted that malignant 
tumors contain variable numbers of lymphocytes (84), which 
have come to be known as tumor infiltrating lymphocytes 
(TILs), which represent the local immune response directed 
against tumor growth and metastasis. TILs are composed 
of a mixture of lymphocytes with multiple phenotypic and 
functional properties, such as CD4+ and CD8+ lymphocytes. 
Several previous studies demonstrated that CD8+ TILs are 
generally associated with tumor regression, whereas the 
role of CD4+ TILs in cancer is controversial. Generally, 
both CD4+ and CD8+ TILs are necessary for effective 
tumor elimination (85,86). TILs grade was an independent 
predictor of sentinel lymph node status and survival of 
patients with cutaneous melanoma (87). Recently, TILs 
were also recognized to be associated with pathologic 
response to neoadjuvant therapy and DFS and OS after 
adjuvant chemotherapy of triple-negative and human 
epidermal growth factor receptor 2 (HER2)-positive breast 
cancers (88).

Rosenberg’s group first described the expansion of 
human TILs as immunotherapy in 1987 (89). TILs 
were successfully expanded from 24 of 25 consecutive 
human tumors, including 6 melanomas, 10 sarcomas, 
and 8 adenocarcinomas and used for immunotherapy of 
human cancers. In 1988, they further showed the adoptive 
transfusion of autologous TILs in treatment of patients with 
metastatic melanoma (90) and objective regression of tumor 
occurred in 9 of 15 patients (60%) who had not previously 
been treated with IL-2 and in 2 of 5 patients (40%) in 
whom previous failed with IL-2 therapy. In 1994 (91),  

this group increased number of the patients to 86, and 
showed that treatment with TILs and IL-2 with or without 
cyclophosphamide could result in objective responses 
in approximately one third of patients with metastatic 
melanoma. These data illustrated the potential value of 
lymphocytes in treatment of melanoma.

In the past few years, an increasing number of TILs 
infusion in combination with high-dose IL-2 and non-
myeloablative (NMA) lymphodepletion chemotherapy 
has been reported and metastatic melanoma patients after 
such therapy had clinical responses up to 50% (92-94). For 
instance, a clinical trial (94) of 93 refractory melanoma 
with NMA and with or without 2 to 12 Gy of total-body 
irradiation (TBI) showed 48%, 52%, and 72% of the overall 
response rates (ORR) and 13%, 20%, and 40% of the CR, 
respectively. Data from Besser et al. (95) showed 29% and 
9.8 months of the ORR and median survival in control 
patients vs. 40% and 15.2 months, respectively, in stage IV 
melanoma patients after treated with TILs and a high-dose 
of IL-2 following NMA. Five patients achieved CR and 
18 PR and the 3-year survival of responding patients was 
78%. Thus, ACT using autologous TILs is considered to 
be the most effective approach to induce ORR in metastatic 
melanoma patients.

However, TIL therapy may not be effective on other 
cancer types and the major limitation is the difficulty to 
identify antigen-specific T cells in those cancers, although 
it is now being increase in developing modifications 
for treatment of other solid tumors, such as cervical, 
pancreatic, lung, and head and neck cancers (http://www.
clinicaltrials.gov/). For example, in a phase I trial of patients 
with locoregionally advanced nasopharyngeal carcinoma 
using adoptively transferred TILs following concurrent 
chemoradiotherapy (96), 19 of 20 patients exhibited an 
objective antitumor response, while 18 patients displayed 
DFS longer than 12 months after TILs infusion. There 
were only mild adverse events (AEs) observed and 1 patient 
had Grade 3 neutropenia (1/23, 5%).

Although TIL therapy of different human cancers 
developed slowly, a continuing progress has been made 
during the past several decades. The main advantage of 
TILs is the ability to specifically recognize tumor antigens, 
which is unfortunately also the disadvantage since most 
solid tumors don’t display such tumor antigens and those 
naturally occurring TILs fail to eliminate malignant cells. 
Thus, the main objectives of TIL-ACT are enhancing the 
immunogenicity and enlarging the numbers of activated 
tumor-specific T cells in tumor lesions.
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Genetically engineered T cells-mediating specific 
immunotherapy

As described in the above, TILs have been shown to induce 
a durable tumor regression in melanoma patients. However, 
TILs therapy may not be effective in other types of cancers. 
Moreover, TILs therapy requires a surgical resection of 
tumor lesions from each patient to isolate and generate 
T cells with antitumor activity. Advances in genetically 
engineered T cells have overcome such obstacles by 
introducing tumor-antigen-targeting receptors into human 
peripheral blood T cells. During the past two decades, 
genetically engineered T cells expressed highly active 
T-cell receptors (TCRs) or CARs have translated from a 
laboratory technology to clinical evaluation.

T cell immunotherapy with modified TCR genes
TCR is a molecule found on the surface of T lymphocytes 
and be responsible for recognizing antigens bound to 
MHC, which contains two different protein chains α and β. 
These TCR α and β chains can be isolated from T cells of 
the rare patients who responded to tumors (97-99). Using 
the expression vectors, retrovirus, or lentivirus, we can 
genetically engineer TCRs into T cells (100,101) and then 
introduce these genetically modified T cells back to cancer 
patients. Thus, this novel strategy can produce a large 
amount of antigen-specific T cells and target tumor cells 
that express the target tumor-associated antigens (TAAs) 
presented by MHC molecules and release Th1 cytokines, 
including IFN-γ, GM-CSF, and TNF-a (102); therefore, to 
eliminate tumor lesions in patients. 

The first specific gene target-transferred TCR-clinical 
trial was reported in 1999 that utilized a melanoma-
antigen specific TCR MART-1 to introduce genetically 
modif ied T cel l  immunotherapy of  patients  with 
metastatic melanoma (103). They first prepared autologous 
lymphocytes from peripheral blood of patients and then 
successfully encoded a TCR through the retrovirus carrying 
genetically modified TCR chains. The data showed that 
2 out 15 (13%) patients had responded after infusion of 
autologous TCRs, which was low than predicted 50% 
of such an approach; however, this method has potential 
for cancer patients for whom TILs are not available. 
Afterwards, the same team (104) showed the data on a 
subsequent clinical trial using newly established MART-
1 and gp100-specific TCR genes to modified T cells for 
treatment of patients with metastatic melanoma. Objective 
cancer regression rates were 30% (6 of 20) and 19% (3 

of 16) in patients who received the MART-1 and gp100-
modified TCR, respectively. Another promising TAA 
was carcinoembryonic antigen (CEA), which is frequently 
overexpressed in many human cancers, most notably in 
colorectal adenocarcinoma. One study reported (104) that 
infusion of T cells after modified to target CEA cDNA 
resulted in decrease in serum CEA levels by 74–99% in 
patients and 1 patient had an objective regression of cancer 
metastatic to the lung and liver after T cells infusion. 
Another clinical trial (105) enrolled patients with positive 
NY-ESO-1, which is expressed in 80% of patients with 
synovial cell sarcoma and in approximately 25% of patients 
with melanoma and common epithelial tumors, for 
treatment with autologous TCR-transduced T cells plus 
720,000 IU/kg of IL-2. Objective clinical responses were 
observed in 4 of 6 patients with synovial cell sarcoma and 
5 of 11 melanoma patients. Two of 11 melanoma patients 
demonstrated complete tumor regression for more than 
one year. Moreover, a synovial cell sarcoma patient showed 
a PR lasting 18 months. In 2013, Morgan et al. (106)  
reported another study of 9 patients using autologous 
anti-MAGE-A3 TCR-engineered T cells and 5 patients 
experienced clinical regression of their cancers including 2 
on-going responders. Furthermore, other cancer antigens, 
such as LAGE-1, MAGE-A4, and SSX-2, have also been 
investigated as tumor target antigens for genetically 
modified T cell immunotherapy. Some of their anti-tumor 
activities against different tumor cell lines and tumor 
models have also shown promising (107,108), although 
there is no report thus far in clinical trials.

However, although clinical response rate of infusion 
of genetically modified T cells is promising and the data 
supported more clinical usage of this approach, there 
have also been a number of reported toxicities related 
to “on target” toxicity to normal tissues but “off tissue” 
autoimmune toxicities effects on patients. The common 
side effects included exhibition of destruction in the 
skin, eye, and earod patients after infusion MART-1 and 
gp100-transduced T cells, while patients may also develop 
a severe transient inflammatory colitis after infusion of 
CEA-targeted T cells (104) and 3 of 9 patients had severe 
neurological toxicity in MAGE-A3 clinical trial (106). Thus, 
further investigation is needed to reduce side effects of 
genetically modified T cell immunotherapy but maximally 
to maintain their antitumor activities in clinic. 

T cell therapy with modified CAR genes
T cell targeting specificity can be altered after expressing a 
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single-chain CAR (109). The latter is composed of a specific 
antigen-binding motif derived from a monoclonal antibody 
that links VH with VL sequences to recognize a single chain 
fragment variable (scFv) region and signaling components 
derived from the ζ chain of the TCR/CD3 complex on co-
stimulatory molecules T lymphocytes (110,111). To date, 
CAR research reached to four generations (112), i.e., the 
first-generation CAR contains a single signaling domain 
most commonly derived from the CD3ζ chain of the CD3/
TCR complex. The second-generation CAR incorporates 
an additional intracellular co-stimulatory endodomains (such 
as CD28, OX40, or 4-1BB) to the basic first-generation 
receptor configuration in order to improve T-cell effector 
function. The third generation CAR includes a combination 
of CD28, 4-1BB, and CD3ζ signaling moieties. The fourth 
generation CAR or TRUCKS employ a vector or vectors 
to encode a CAR and also a CAR-responsive promoter 
(e.g., nuclear factor of activated T cells) to respond upon 
successful signaling of the CAR after the transgenic 
production of cytokines, such as IL-12. In preclinical 
models, T cells engrafted with the second and third 
generation CARs possessed greater effector functions and 
had potent non-cross-resistant clinical activity after infusion 
in three of three patients treated with advanced chronic 
lymphocytic leukemia (CLL) (112). Moreover, clinical 
protocols for CAR-T cells immunotherapy usually involve 
previously conditioned NMA and high dose of IL-2 therapy 
after CAR-T infusions, which facilitated the engraftment 
and persistence of CAR-T cells in tumor lesions. To date, 
previous studies demonstrated some successful pre-clinical 
models and phase I clinical trials in ovarian cancer (111), 
renal cell carcinoma (113,114), neuroblastoma (115,116), 
B-cell non-Hodgkin lymphoma (NHL), and mantle cell 
lymphoma (MCL) (117) with the first-generation CARs. 
The early phase clinical trials indicated this approach was 
feasible, but the ORR was mild and most patients did not 
have visibly or significantly clinical benefit. However, this  
CAR-modified T cell immunotherapy did show great response 
rate in NHL and MCL patients using genetically modified 
CD20 autologous T cell electroporation. Of the 7 treated 
patients, 2 had a CR, 1 achieved a PR, and 4 had SD (117).

Thus far, both second- and the third-generation CARs 
are in progress in the clinical trials and the third generation 
CAR-T cells showed to be more effective, although there 
is no study reporting the comparison to the effectiveness of 
the second generation CARs. Most clinical trials focused on 
CD19 or CD20 antigen in hematologic malignancies, such 
as NHL and lymphocytic leukemia (Table 2). 

Indeed, the CAR-T cells have been successful in treating 
hematological malignancies, but their application for solid 
tumors has been greatly hampered. Clinical studies with 
CAR-T cells targeting HER2, CEA, VEGF-R2, EGFR, 
or GD2 in solid tumors (111,115,116,131-133) have 
demonstrated the feasibility, but the clinical effectiveness 
was generally disappointed. 

In addition, different clinical trials indicated that CAR-T 
cell-based therapy was associated with noticeable side 
effects. To date, there were 2 death cases reported (CAR 
T cells targeted ERBB2 in 1 patient with widely metastatic 
colon cancer and another 1 with bulky chronic lymphocytic 
leukemia by targeting CD19). Significant toxicity such as 
hepatic toxicity (113), fatal pulmonary dysfunction (113), 
systemic inflammatory response syndrome (SIRS) or even 
“cytokine storm” (109,124) has been also reported in 
patients. These obvious toxicities were usually associated 
with the lack of discrimination between tumor and normal 
cells by CAR-T cells. However, the technology will 
continue to improve, the side effects will be overcome, and 
future directions will likely include combination therapies.

DC-based immunotherapy

DCs are antigen-presenting cells in the mammalian immune 
system and display an extraordinary capacity to stimulate 
antigen-specific cytolytic and memory T-cell responses to 
antigens by processing antigen material and presenting it on 
the cell surface to T-lymphocytes (134). Immature DCs are 
particularly efficient in uptake of tumor derived material, 
while mature DCs can activate tumor-reactive CD8+ 
CTLs and CD4+ T cells (135,136). Moreover, DCs also 
can induce NK cell cytotoxicity and the latter essentially 
contribute to eliminating tumor cells (137-139). DCs can 
also directly mediate tumor-directed cytotoxicity (140,141). 
Due to the numerous antitumor effects, DCs evolved as 
promising candidates in cancer immunotherapy (142). 
For example, DCs can be used for antitumor vaccination 
through various means, including tumor lysates, tumor 
antigen-derived peptides, synthetic MHC class I—restricted 
peptides, and whole protein. The first DC vaccine was used 
in 4 B-cell lymphoma patients using autologous antigen-
pulsed DCs and the data were published in 1996 (143).  
In this pilot study, all patients developed measurable 
antitumor cellular immune responses. Since then, several 
DC vaccine clinical trials in patients with prostate cancer 
(144,145), melanoma (146,147), renal cell carcinoma 
(148,149), glioma (150), hepatocellular carcinoma (151-153), 
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Table 2 Published clinical studies of CAR-T cell immunotherapy 

Year CARs Cancer type # of patients Therapy Clinical response

2010 (118) CD19 FL 2 FLU (post T-cell infusion) and IL-2 2 NR

2010 (119) CD19 FL 1 Lymphodepletion (CTX/FLU) and IL-2 1 PR

2011 (120) CD19 DLBCL, transformed FL 6 None 2 SD, 4 NR

2011 (120) CD19 CLL 3 Lymphodepletion (BEN or CTX/PTS) 2 CR, 1PR

2011 (121) CD19 CLL, ALL 9 None or lymphodepletion (CTX) 1 PR, 2 SD, 1 cCR, 4 NR, 1 death

2012 (122) CD19 FL, CLL, SMZL 8 Lymphodepletion (CTX/FLU) and IL-2 1 CR, 5 PR, 1 SD, 1NE

2013 (123) CD19 ALL 5 Lymphodepletion (CTX) 4 CR, 1cCR

2013 (124) CD19 ALL 2 None or etoposide/CTX 2 CR

2013 (125) CD19 ALL, CLL,  
transformed CLL

8 Allo-HSCT preparative regimen; none 
immediately before T cell infusion

1 CR, 1 PR, 1 SD, 2 Ccr, 3NR

2013 (126) CD19 CLL, DLBCL, MCL 10 Allo-HSCT preparative regimen, DLI; 
none

1 CR, 1 PR, 6 SD, 2 NR

2014 (127) CD19 ALL 27 None or FLU/CTX/Etoposide 27 CR

2014 (128) CD19 ALL 16 Leukapheresis 9 CR

2015 (13) CD19 ALL 20 FLU/CTX (post T-cell infusion) 14 CR, 3 SD, 4PD 

2008 (117) CD20 Relapsed indolent  
NHL and MCL

7 Autologous CD20-specific  
T cells and IL-2

2 CR , 1 PR, 4 SD

2010 (117) CD20 DLCL 2 CD8+ CTL expressing a CD20-specific 
CAR following autologous HSCT

−

2012 (129) CD20 Relapsed indolent  
NHL and MCL

3 Lymphodepletion (CTX/FLU)  
and IL-2

2 CR, 1PR, 

2014 (130) CD20 DLBCL 7 − 1 CR

CAR, chimeric antigen receptors.

and pediatric solid tumor (154,155) have been reported. 
Although some of these trials did not reach the end point 
of primary study, others have reported positive results. In 
one notable trial, Provenge, monocyte‑derived dendritic 
cells (moDCs) pulsed with fusion antigen protein consisting 
of prostatic acid phosphatase (PAP) and GM‑CSF, the 
first therapeutic cancer vaccine to be approved by the 
U.S. Food and Drug Administration in 2010, showed to 
prolong median OS by 4.1 months for metastatic castration 
resistant prostate cancer (4). Tecemotide vaccine, DCs 
pulsed with MUC1 for inoperable stage III NSCLC as 
a maintenance therapy following either concurrent or 
sequential chemoradiotherapy (156) showed 25.6 months 
of median OS in tecemotide versus 22.3 months in placebo, 
but the OS had no significant difference in administration of 
tecemotide after chemoradiotherapy compared to placebo. 

Tecemotide might have a role in patients who initially receive 
concurrent chemoradiotherapy. NY-ESO-1 protein to 
target DCs vaccine was assessed in 45 patients with advanced 
malignancies and 13 patients experienced stabilization of 
disease, with a median duration of 6.7 months and 2 patients 
had tumor regression. There was no dose-limiting or grade 
3 toxicity observed (157).

Since 2001, numerous DC vaccine clinical trials have 
been reported. Schadendorf et al. (158) had demonstrated 
that DC vaccine could not be more effective than DTIC 
chemotherapy in stage IV melanoma patients, but the 
follow-up data confirmed that melanoma patients did get 
clinical benefits after DC vaccines. Other two phase II 
clinical studies showed a clinical benefit (PR + SD) in 55.5% 
of evaluable cases to date (159,160). Furthermore, beyond 
large sample size clinical trials with autogeneic DC vaccines, 
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numerous early phase clinical studies using autogeneic/
allogeneic DCs with allogeneic tumor cells continue to be 
progress (161-164). It has been suggested that allogeneic 
DCs are more effective in both in vitro and in vivo. For 
example, in a phase I/II trial of metastatic melanoma 
patients undergoing DCs loaded with an allogeneic tumor 
cell lysate (165), 4 out of 9 patients survived for more than 
20 months, 2 patients showed signs of clinical response, 
all of whom didn’t show any grade 3 or 4 adverse events 
related to the vaccines. In a sequential clinical trial reported 
allogeneic tumor cell vaccine with TGF-β in IV NSCLC 
patients, OS was 562 days and median survival was 660 
days. Patients didn’t have significant toxic effect (166,167). 
However, the majority of such studies still remain in the 
pre-clinical models or Phase I/II clinical trials. 

Genetic modification is another way to improve the 
effective of DC vaccines, which includes overexpression 
of positive regulators (e.g., cytokine, chemokine and co-
stimulatory molecules) and inhibition of negative regulators 
[e.g., suppressor of cytokine signaling-1 (SOCS1), 
programmed death ligand 1 (PD-L1), or A20]. For example, 
GVAX, a GM-CSF gene-transfected tumor cell vaccine 
(168) can extant the time to progression and the median 
OS and improve quality of life of patients with metastatic 
melanoma, pancreatic cancer, prostate cancer, or other 
tumors (169-172). DC vaccine would clearly enhance host 
antitumor immune responses. Nevertheless, numerous 
phase I/II studies had an overall limited clinical benefit. 
Therefore, further improvement is required, which may be 
achieved by understanding of DC biology and combination 
of DC-based vaccination with traditional therapy.

Summary and future directions

In this review, we summarized up to date advancement 
in ACT, which indeed improves PFS, OS, DFS, and/ 
or quality of life of cancer patients, especially melanoma 
patients. Compared to other standard therapies, ACT can 
trigger immune response within cancer lesion to elicit 
persistent antitumor immune response for eliminating 
tumor cells and such treatment has nearly no serious side 
effect, although improvement of the clinical efficacy is 
warranted in future studies. Most recently, antitumor 
immunotherapy is very hot and different investigators 
have evaluated artificial antigen presenting cells, enhanced 
immunogenicity or generate genetically engineered T 
cells in preclinical models and in clinical trials. Moreover, 
combination of immune therapy together with surgery, 

chemotherapy and radiotherapy could be an effective way in 
control cancer progression.
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