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Introduction

The use of radiotherapy (RT) is standard in the management 
of newly diagnosed glioblastoma multiforme (GBM), 
whether in the postoperative or primary treatment setting, 
with temozolomide (TMZ) typically given during and 
after RT. Unfortunately, the large majority of patients 
develop intracranial recurrence, most often within or just 
outside the high-dose radiation field (1,2). Treatment 
options in the setting of local recurrence include supportive 
care, re-resection, re-irradiation, systemic therapies, or a 
combination approach. 

Diagnosis of recurrence

Radionecrosis (RN) and recurrent tumor are often 
indistinguishable by magnetic resonance imaging (MRI) and 
present with similar neurological symptoms, making the 
diagnosis of local recurrence in GBM difficult. A combination 
of diffusion- and perfusion-weighted MRI can improve 
diagnostic accuracy by exploiting differences in tissue 
cellularity and microvasculature respectively (3). For example, 
a low apparent diffusion coefficient in a hyperintense 

lesion is characteristic of tumor recurrence whereas low 
cerebral blood flow and volume are characteristic of RN. 
Additional functional imaging including magnetic resonance 
spectroscopy (MRS), single photon emission computed 
tomography (SPECT) or positron emission tomography 
(PET) can help better characterize the biology of the lesions, 
though each of these modalities has their limitations. 

MRS characterizes tissues using ratios of choline (Ch), 
creatinine (Cr) and N-acetylaspartate (NAA); high Ch/NAA 
(>1.11) and Ch/Cr (>1.17) ratios and a low NAA/Cr ratio 
are typically seen in tumor recurrence. Results for MRS are 
wide ranging, with reported sensitivities and specificities of 
61–94% and 82–100%, respectively (4-7). These inconsistent 
results are largely due to differences in spectroscopy, a factor 
that should be considered during clinical decision making. 
For instance, single-voxel MRS only samples at one location, 
possibly mischaracterizing a heterogeneous entity such as 
recurrent GBM, whereas multivoxel MRS obtains samples 
throughout a lesion, better defining spatial heterogeneity (7).

Tracer dependent studies (SPECT, PET) are mostly 
limited by poor spatial resolution, steroid use, and significant 
normal tissue tracer uptake (8). Fluorodeoxyglucose (FDG)-
PET in particular displays this issue given the elevated 

Review Article

Re-irradiation for recurrent glioblastoma multiforme

Christian Barney1, Gaurav Shukla2, Deepak Bhamidipati2, Joshua D. Palmer1

1Department of Radiation Oncology, The James Cancer Hospital and Solove Research Institute, The Ohio State Wexner Medical Center, Columbus, 

OH, USA; 2Department of Radiation Oncology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pa, USA

Contributions: (I) Conception and design: C Barney, JD Palmer; (II) Administrative support: None; (III) Provision of study materials or patients: 

None; (IV) Collection and assembly of data: C Barney, JD Palmer; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; 

(VII) Final approval of manuscript: All authors.

Correspondence to: Joshua D. Palmer, MD. Department of Radiation Oncology, the James Cancer Hospital and Solove Research Institute, The Ohio 

State Wexner Medical Center, 460 West 10th Avenue, Room C227, Columbus, OH 43215, USA. Email: joshdpalmermd@gmail.com.

Abstract: As our understanding of normal brain tissue tolerance and radiation technology have improved, 
central nervous system (CNS) re-irradiation has garnered more attention; whereas, in the past there had been 
hesitancy due to late toxicity concerns, particularly radionecrosis (RN). There is minimal prospective data 
evaluating repeat radiation in recurrent gliomas. In this review, the rationale for and different approaches to 
re-irradiation will be discussed, and the biology and clinical impact of late CNS toxicity will be reviewed.

Keywords: Re-irradiation; glioblastoma; radionecrosis (RN); imaging

Submitted May 01, 2017. Accepted for publication Jun 01, 2017.

doi: 10.21037/cco.2017.06.18

View this article at: http://dx.doi.org/10.21037/cco.2017.06.18



Barney et al. Re-irradiation for recurrent GBM

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2017;6(4):36cco.amegroups.com

Page 2 of 8

glucose metabolism in normal brain tissues. A search 
continues for highly sensitive and specific alternatives 
to FDG that do not accumulate within the normal 
brain parenchyma. Some promising candidates remain 
under investigation such as fluoroethyltyrosine (FET), 
fluorothymidine (FLT), fluoro-dihydroxyphenylalanine 
(FDOPA) and other amino acid analogues; however, none 
are widely available to date.

The Response Assessment in Neuro-Oncology criteria 
are the current standard for treatment response assessment 
and definition of tumor recurrence used for the majority of 
clinical trials. The application of these criteria have been 
previously described (9).

Summary of non-RT options for recurrent 
glioblastoma

There is minimal data from randomised controlled in the 
treatment of recurrent GBM. As mentioned, treatment 
options for recurrence have typically included further 
surgery, systemic therapy, and more recently re-irradiation, 
but currently, there is no established standard of care. 

Further neurosurgical intervention may be limited by the 
infiltrative nature of these tumors, and is usually avoided 
in the presence of multifocal disease or when eloquent 
tissues are involved. Novel resection techniques are also 
being explored to improve the rate of complete resection. 
For example, protoporphyrin IX (PpIX) is a fluorescent 
compound that preferentially concentrates in malignant 
glioma cells, allowing for successful intra-operative tumor 
visualization to guide surgical resection (10,11). Despite 
such advances, the principle of maximum safe resection 
is not always optimal in the setting of recurrent GBM, as 
the benefit of reoperation remains in question (12-14). In 
general, surgery seems to be most beneficial when there is 
a discrete, well-defined lesion in a non-eloquent location 
and resection is expected to relieve symptomatic mass effect. 
Placement of resection cavity carmustine wafers can afford a 
modest improvement in survival as well (15). Repeat resection 
should be offered in the setting of discrete, resectable disease. 

A comprehensive review of all trials investigating different 
systemic therapies for the treatment of recurrent GBM is 
beyond the scope of this review, however, a brief history and 
important recent results will be discussed to give context 
to re-irradiation decision making. In 1998 Huncharek and 
Muscat authored a systematic review of 40 trials evaluating 
earlier outcomes in recurrent high-grade gliomas; seven 
were RT trials and the remainder addressed cytotoxic 

chemotherapy outcomes (16). In their review, nitrosoureas 
were associated with significantly improved time to 
progression (26.9 weeks), with the use of nitrosoureas or 
platinum agents found to improve overall survival (OS) 
as well (32 weeks). Average median survival for patients 
receiving re-irradiation was 44.7 weeks. Comparisons were 
not made between chemotherapy and RT studies given the 
inherent selection bias. Since then, more systemic agents 
have emerged, the most studied of which are TMZ and 
bevacizumab. No single or combination drug therapy has 
shown obvious survival superiority, thus, there is no standard 
regimen for GBM in the recurrent setting. Although, 
bevacizumab is most often utilized due to improvement in 
progression free survival (PFS) and its anti-steroidal effects 
improve symptoms in many patients. 

The biology of late neurotoxicity

When considering treatment options for recurrent 
glioblastoma, one must balance the efficacy with the toxicity 
of each option, especially in view of the relatively poor 
prognosis. Three phases of toxicity are normally considered 
following central nervous system (CNS) irradiation—early 
(days to weeks), early delayed (1 to 6 months) and late (>6 
months). Early toxicity is often self-limited or managed 
conservatively, but late toxicity is typically progressive and 
irreversible. 

Demyelination, microvascular changes, and necrosis 
are the pathologic hallmarks of late injury. This injury is 
considered a multifaceted process, involving various cell 
types and interactions. Given this complexity, efforts to 
devise effective preventive or treatment strategies have 
been unsuccessful to date (17,18). However, conservative 
estimates based on animal and other preclinical data suggest 
that the spinal cord and perhaps other CNS normal tissues 
may recover up to 60% from sub-tolerance doses over 
1–3 years (19). Normal tissue complication models in 
rats have also suggested that the CNS behaves as a serial 
structure (20). As such, the toxicity of re-irradiation is likely 
also dependent on volume irradiated, in addition to dose 
and time interval to re-treatment. Modern re-irradiation 
techniques are capable of optimizing these parameters so as 
to reduce the risk of clinically apparent late toxicity.

Patient selection for re-irradiation

Individual patient and tumor characteristics should be used 
to estimate prognosis and tailor management in the recurrent 
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setting. In 2007 Carson et al. (21) defined seven prognostic 
groups in patients with recurrent high-grade glioma by 
performing recursive partitioning analysis (RPA) of data from 
ten phase I and II trials. Significant prognostic factors for 
recurrent GBM were age (>50), Karnofsky performance status 
(KPS >90 vs. 60–80), and baseline steroid requirement. A 
similar study reviewing data from 300 patients with recurrent 
GBM recruited in eight phase I or II trials conducted by 
the European Organization for Research and Treatment of 
Cancer (EORTC) showed poor performance status (PS) and 
>1 target lesion were prognostic for decreased PFS and OS. 
Lesions ≥4.2 cm and baseline steroid requirement were also 
associated with shorter OS whereas frontal tumor locations 
conferred a survival advantage (12). In patients undergoing 
fractionated stereotactic radiation (FSRT) for re-irradiation 
of high-grade gliomas, Combs et al. showed that a time to re-
irradiation <12 months negatively impacted survival (22). A 
combination of these data can help individualize the potential 
benefits of re-irradiation and guide patient counselling. 

The decision for retreatment should only be made when 
the risks are outweighed by potential benefits of treatment. 
High-dose brain irradiation can have a number of side 
effects that can substantially impact quality of life (QOL) 
including focal neurologic deficits, seizure, memory and/or 
cognitive impairment, and personality change. In the event 
of RN, reoperation is often necessary. Due to a paucity of 
data addressing QOL in GBM retreatment, extrapolations 
from primary treatment of GBM can be made. Prospective 
trials in primary treatment of GBM have correlated poor 
post-treatment QOL and symptom burden with decreased 
rates of survival (23,24). This data further underscores the 
importance of patient selection for re-irradiation.

Evidence for re-irradiation

Numerous institutions have reported their re-irradiation 
disease control and toxicity outcomes (Table 1). Almost all 
reports are retrospective in nature and as such there is little 
consistency in treatment technique, total dose, and volume 
treated. These differences make it difficult to establish 
a standard approach to re-irradiation. Regardless of the 
methods used, prognosis remains poor with median survival 
ranging from 7–15 months (Table 1). 

Conventionally fractionated radiotherapy

In multifocal, diffuse, or unusually large recurrent 
tumors, a more generous treatment volume may be 

required. In contrast to stereotactic radiosurgery (SRS) or 
hypofractionated stereotactic RT (HFSRT), the smaller 
fraction sizes associated with conventional fraction may allow 
for treating larger target volumes while still maintaining 
acceptable rates of toxicity. For example, with a median time 
between primary RT (median 60 Gy) of 10 months, Combs 
et al. retreated 172 high-grade gliomas (GBM =59) to a 
median dose of 36 Gy in 2 Gy daily fractions using 0.5–1 cm 
margin. Median survival after re-irradiation for the GBM 
group was 8 months and only one patient developed RN. 

SRS and HFSRT 

When recurrences are discrete and retreatment volumes 
small, HFSRT and SRS can be considered. These methods 
offer certain technical and dosimetric advantages compared to 
conventional fractionation, while also affording the patient-
friendly benefit of consolidating re-irradiation into fewer days.

The high accuracy and conformality associated with 
SRS allows for delivering a high dose of radiation to a brain 
lesion in a single outpatient treatment. The steep SRS dose 
gradient is best suited for discrete recurrences or when 
there are nearby critical CNS structures. In FSRT, the dose 
is divided into several semi high–dose fractions; this offers 
the radiobiologic advantage of allowing normal tissues 
to heal between fractions, thus reducing the potential 
for normal tissue toxicity compared to single fraction 
treatment. As such, this technique is often useful when the 
target volume is felt to be too large for SRS, or when single 
fraction normal tissue constraints cannot be met because 
the target is located too close to a critical structure.

Both SRS and FSRT have been shown to be effective 
with similar rates of toxicity (Table 1), as such there is 
currently no standardized preference for one over the other 
in the recurrent GBM setting. In a more recent study, 
Patel et al. treated 38 GBM patients with either SRS (single 
18 Gy fraction) or FSRT (36 Gy in 6 Gy fractions) with 
reported median survivals of 8.5 and 7.4 months respectively 
and a radiological response rate of 40%. Pathologically 
confirmed RN was found in 2 SRS and 1 FSRT patients (34). 
The National Cancer Institute has an ongoing HFSRT 
dose escalation trial (NCT02709226) which should provide 
much needed re-irradiation dosimetric and toxicity data 
that can serve as a framework for future clinical trial design.

Treatment fields

Gadolinium enhanced, thin-sliced MRI remains the standard 
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Table 1 Summary of the largest re-irradiation studies for patients with recurrent glioblastoma multiforme (GBM)

Author
Number 

treated (GBM)
Technique and regimen MS Toxicity

Brachytherapy

Scharfen 1992 (25) 66 LDR, I-125, 64.4Gy 11.3 7.9% grade ≥3 

Patel 2000 (26) 40 LDR, I-125, 120–160 Gy to 5 mm 10.8 No RN, 1 infarct

Gabayan 2006 (27) 81 LDR, GliaSite, 60 Gy at 10 mm 8.4 2 patients with RN 

Tselis 2007 (28) 84 HDR, Ir-192 40 Gy 8.6 6% grade ≥3: RN (n=2), hemorrhage (n=3, 1 death)

Darakchiev 2008 (29) 34 LDR, I-125, 120 Gy to 5mm 15.9 8 patients with RN

SRS

Shrieve 1995 (30) 86 SRS, 13 Gy 10.2 22% required reoperation for refractory RN

Cho 1999 (31) 46 SRS, 17 Gy 11.0 30% RN in SRS group

Combs 2005 (32) 32 SRS, median 15 Gy (10–20 Gy) 10.0 No grade ≥3 toxicities

Kong 2008 (33) 65 SRS, 16 Gy 13.0 24.4% radiographic RN

Patel 2009 (34) 36 SRS, 18 Gy
FSRT, 36 Gy in 6 fractions

8.5
7.4

Pathologically confirmed RN in 2 SRS and 1 FSRT 
patients

Cuneo 2012 (35) 49 SRS, 15 Gy 10 6 patients with RN

HFSRT

Lederman 2000 (36) 88 HFSRT, 24 Gy in 4 fractions 7.0 11 patients required reoperation for refractory RN

Grosu 2005 (37) 44 HFSRT, 30 Gy in 6 fractions − No grade ≥3 toxicities

36 PET/SPECT 9.0 −

8 CT/MRI 5.0 −

Fokas 2009 (38) 53 HFSRT, 30 Gy in 10 fractions 9.0 No grade ≥3 toxicities

Fogh 2010 (39) 105 HFSRT, 35 Gy in 10 fractions 11.0 No reoperations, 1 late grade 3 toxicity (headache)

CFSRT

Arcicasa 1999 (40) 31 CFSRT, 34.5 Gy in 23 fractions 13.7 No late CNS toxicities

Cho 1999 (31) 25 CFSRT, 37.5 Gy in 15 fractions 12.0 8% RN in CFSRT group

Combs 2005 (41) 59 CFSRT, 36 Gy in 18 fractions 8.0 No grade ≥3 toxicities

Kohshi 2007 (42) 11 CFSRT, 22Gy in 8 fractions  
(+ hyperbaric oxygen)

11.0 2 patients required reoperation for refractory RN

Abbreviations: HSFRT, hypofractionated stereotactic radiotherapy; SRS, stereotactic radiosurgery; MS, median survival; GBM, 
glioblastoma multiforme; LDR, low-dose rate; HDR, high-dose rate; RN, radionecrosis; CFSRT, conventionally fractionated stereotactic 
radiotherapy; CNS, central nervous system.

imaging modality for target definition. New or progressive 
contrast-enhancing lesions should be delineated as gross 
tumor volume. The use of a rigid head frame and same-
day imaging for target delineation can minimize geometric 
and image fusion error, thereby reducing the need for PTV 
expansion. When applying these principles for SRS or 
HFSRT, elimination of PTV expansion can be considered; 

however, a small 1–2 mm margin may be added based on 
physician preferences. Ideally, adequate head immobilization 
should be used to where PTV expansion is at most 5 mm.

Brachytherapy

Similar to SRS or FSRT, brachytherapy allows for a 
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sharp dose gradient with placement of a radiation source 
within the treatment volume. This is typically done in the 
postoperative setting, and, as such, patients selected for 
brachytherapy are usually those with good PS who have 
small-volume, resectable tumors. Different approaches 
include placement of permanent iodine 125 (I-125) seeds 
or a temporary intracranial balloon catheter filled with an 
I-125 containing solution in the resection cavity. A number 
of retrospective studies have reported favorable outcomes 
with median survival times of 8.4 to 15.9 months (Table 1). 
It should be noted, however, that comparisons to other re-
irradiation modalities should be made with caution given 
the selection biases mentioned above. One disadvantage 
of brachytherapy is that the effectiveness and toxicity of 
treatment is highly dependent on the quality of implant; 
accordingly, high re-operation rates and RN incidence have 
been reported (Table 1).

Conclusions based on clinical evidence

Considering the variety of techniques and disease/toxicity 
outcomes discussed above, it is no wonder that despite a 
large body of clinical work, no standard practice exists for 
re-irradiation of GBM. Prospective data and clinical trials 
are needed to eliminate the many confounding factors 
inherent in retrospective studies. Despite these limitations, 
the existing data suggests that with thoughtful patient 
selection, re-irradiation can be a safe and effective treatment 
for recurrent GBM. 

Re-irradiation fields should be highly conformal and 
target volumes minimized in an effort to reduce late side 
effects. A general guideline would be to keep volumes 
<4–5 cm and cumulative dose <100 Gy to prevent high 
rates of toxicity (43). Total dose and dose per fraction can 
be reduced as needed to compensate for an oversized re-
treatment volume. The most commonly employed regimens 
are 35 Gy in 10 fractions and 24–36 Gy in 4–6 fractions. 

The patient’s PS and effect of re-irradiation on QOL 
should be weighed, as should the impact of a drawn out 
treatment course in the setting of poor prognosis.

Combination treatments and future directions

The inclusion of TMZ to re-irradiation has been well-
studied and shown to be safe and effective with median 
survival ranging from 5.1 to 10.1 months after combination 
therapy (44-47). Darakchiev et al. placed Gliadel wafers in 
the resection cavity following surgical resection and I-125 

seed implants in 34 patients with recurrent GBM. Median 
survival was 15.9 months, however, RN was observed 
in 24 % of cases when tumor volume was >30 cm3 (29). 
Bevacizumab in combination with radiation retreatment 
has also been evaluated in a number of prospective studies. 
These studies have reported median survival ranging from 
7.4 to 18 months with acceptable rates of toxicity (35,48-51). 
Of note, there are case reports of bevacizumab reversing 
radiation-induced necrosis and (52,53) in a small (n=14) 
randomized crossover study, all bevacizumab-treated 
patients (n=13 after crossover) developed improvement in 
neurologic signs and symptoms (54). The NRG 1205 trial 
randomizes patients to bevacizumab alone vs. HFSRT 
(35 Gy in 10 fractions) with bevacizumab (NCT02671981); 
it completed accrual in 2016, and we await the results. 
Given their success in preclinical glioma models and other 
solid tumors, immune modulators such as nivolumab, 
ipilimumab, and pembrolizumab are also being evaluated 
in combination with re-irradiation. Nivolumab and 
pembrolizumab are both PD-1 inhibitors and ipilimumab 
targets CTLA-4. The results of a phase I evaluation of 
combination nivolumab and ipilimumab in recurrent 
glioblastoma (CHECKMATE-143 trial) were recently 
updated at the American Society of Clinical Oncology 
2016 annual meeting, showing that the combination is 
relatively safe with no treatment-related deaths. In addition, 
cohort 1 with nivolumab alone had no grade 3–5 toxicity, 
however the combination arms of nivolumab 1 mg/kg and 
ipilimumab 3 mg/kg had 9 (90%) of patients experienced 
grade 3–4 treatment related toxicity and 7 (70%) had serious 
treatment related toxicity. The combination of nivolumab 
3 mg/kg and ipilimumab 1 mg/kg had 5 (25%) grade 3–4 
toxicity with 2 (10%) serious treatment related toxicity. The 
12 month OS was 40% for the nivolumab 3 mg/kg alone, 
30% for the nivolumab 1 mg/kg plus ipilimumab 3 mg/kg  
and 25% for the nivolumab 3 mg/kg plus ipilimumab  
1 mg/kg (55). There are additional ongoing safety 
and efficacy immunotherapy studies, such as NRG-
BN002, which introduces ipilimumab and nivolumab 
into maintenance TMZ therapy, or another study which 
combines HSFRT re-irradiation with pembrolizumab and 
bevacizumab (NCT02313272). Promising preclinical data 
has also shown that glioma cell growth can be inhibited 
through changes in diet. These effects are amplified with 
the addition of RT and together may increase longevity 
of life. More specifically, a ketogenic low-calorie diet is 
recommended and has been shown to be safe and feasible 
during primary chemoradiation and in the recurrent 
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setting. However, poor compliance related to palatability of 
such a diet could be a major drawback to implementation 
in the clinical setting. A less strict variant, high-fat, low-
carbohydrate diet may be a more practical alternative with 
similar beneficial biological effects. Clinical trials assessing 
the integration of dietary manipulation with GBM re-
irradiation are under way (NCT02149459, ERGO2-
NCT01754350). Synergistic alternative therapies can 
only help in widening the window of application for re-
irradiation in recurrent GBM, especially if/when the 
aforementioned novel combination therapies produce 
improved clinical outcomes.

Conclusions

There are myriad treatment options available to patients 
with recurrent glioblastoma, including repeat surgery, 
systemic therapy, and re-irradiation, or some combination 
thereof. Re-irradiation appears to be beneficial in a 
subgroup of patients. The data presented in this review 
shows re-irradiation to be safe in a well-selected group 
of patients, although there are certainly limitations in 
the available literature. The impact of re-irradiation on 
QOL is not well documented and will be an important 
component of future prospective studies. The combination 
of re-irradiation with novel systemic agents is a promising 
future direction in this patient population, which warrants 
prospective study in clinical trials.
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