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Introduction

Triple-negative breast cancers (TNBC) is a subtype of breast 
cancer that lacks estrogen receptor (ER), progesterone 
receptor (PR), and human epidermal growth factor receptor 
2 (HER2) expression. Because TNBC lacks well-defined 
molecular targets, it is still the most challenging type of 
breast cancer for which no effective treatments exist (1,2). 
TNBC is further classified into several subtypes based on 
its gene expression profiles, suggesting TNBC is highly 
heterogeneous (2). Approximately half of TNBC is initially 
sensitive to conventional chemotherapy, but the disease 

eventually recurs 3–5 years after the initial treatment and 
develops resistance. Similar to chemotherapy, TNBC has 
been considered immunologically silent as results from 
clinical trials indicated that breast cancer, among all cancer 
types, demonstrates the worse response to inhibitor against 
immune checkpoint protein cytotoxic T lymphocyte 
associated antigen 4 (CTLA4) (3,4). Although a significant 
number of tumor infiltrating lymphocytes (TILs) exist in 
TNBC, they are frequently inhibited by secreted lactate (5) 
or expression of co-inhibitory ligands, such as programmed 
death ligand 1 (PD-L1) and B7H family, by cancer cells (6-8). 
Cancer cells hijack T cell activation by overexpressing co-
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inhibitory ligands to engage co-inhibitory receptors on the 
T cells (9). Thus, inhibition of cancer cell signaling together 
with immune checkpoint blockade can induce effective anti-
tumor immunity to eliminate cancer (10,11). 

Post-translational modifications control critical 
biological activity of proteins, e.g., glycosylation, and 
occur on approximately two third of all proteins (12). 
N-linked glycosylation represents a type of oligosaccharide 
attached to the asparagine residue (Asn, N) in the NXT/
S motif (13). Compared with non-TNBC cells, PD-L1 
in TNBC cells is more substantially glycosylated (14). 
Indeed, TNBC demonstrated stronger T cell inhibition 
than non-TNBC. Glycosylation has been shown to 
prevent PD-L1 from undergoing 26S proteasome-
mediated degradation and enhanced association with 
programmed death protein 1 (PD-1), all of which lead 
to the suppression of the T cell immune response (14). 
A recent study also suggested that chronic inflammation 
induces PD-L1 stabilization through CSN5-mediated 
de-ubiquitination in TNBC (15). Macrophage-secreted 
TNFα also induces TNBC immunosuppression via NF-κB 
signaling. These findings suggested that targeting PD-L1 
glycosylation, phosphorylation, or ubiquitination is a novel 
strategy to enhance anti-tumor immunity against TNBC. 
In this review, we summarize the current understanding 
of PD-L1 regulation in TNBC, e.g., the EGF/GSK3β/
PD-L1 (14) or TNFα/p65/CSN5/PD-L1 (15) signaling 
axis, with the goal of assisting clinicians design effective 
combinatorial strategies to combat TNBC. In principle, 
drugs that downregulate PD-L1 expression are suitable for 
combining with other types of monoclonal antibody (mAb) 
immunotherapy, such as anti-CTLA-4, anti-TIM-3, or anti-
PD-L1/PD1. Likewise, drugs that induce PD-L1 expression 
may be appropriate for combination with anti-PD1 or anti-
PD-L1. In this regard, the proposed combinations may lead 
to maximal therapeutic efficacy with minimal toxicity. 

Reducing PD-L1 expression by anti-EGFR agents

The epidermal growth factor receptor (EGFR) belongs 
to the HER2 family of receptor tyrosine kinases (RTKs). 
Overexpression or mutations of EGFR, which associate 
with aggressive tumor behavior, including cell proliferation, 
metastasis, and therapeutic resistance, are found in lung, 
colon, head and neck, brain, pancreatic, and breast cancers 
(16-19). Thus, EGFR inhibitors, such as TKI and mAbs, 
have been developed as anti-cancer therapy.

Compared with other subtypes of breast cancer, 

EGFR is more frequently overexpressed in TNBC (20). 
Depending on the method of evaluation, TNBC generally 
harbors higher EGFR expression, ranging from 13% to 
76% increase over non-TNBC (21-28). TNBC patients 
with high EGFR activity also have poorer survival rates 
compared with those with no or low levels (29). However, 
clinical results evaluating drugs targeting EGFR for TNBC 
treatment have been disappointing. For instance, clinical 
trials that investigated the toxicity and efficacy of anti-
EGFR agents in TNBC indicated no significant benefits 
from monotherapy or in combination with chemotherapy 
(30-36). It is likely that the survival of TNBC is not EGFR 
dependent (37) or that the heterogeneity of TNBC may 
switch to other survival pathway(s) to compensate for the 
loss of EGFR activity. 

Two single-arm studies recently reported only modest 
activities of EGFR mAbs in TNBC (38,39); interestingly, 
however, the expression of CD8+ TILs inside the tumor 
was shown to predict the response. Moreover, the higher 
the expression of TILs, the better the prognosis was for 
TNBC patients (8). It is therefore reasonable to combine 
anti-EGFR agents with immune checkpoint inhibitors. 
In agreement with these findings, gefitinib, erlotinib, 
lapatinib, and AG1478 all attenuated EGF-induced PD-
L1 expression and thereby abolished PD-L1 and PD-1 
interaction in TNBC cells (14). Inhibition of EGFR 
by gefitinib enhanced IL-2 expression in T cells and 
elevated the cytolytic activity of T cells. Consistent 
with the in vitro observations, gefitinib enhanced PD-1 
antibody efficacy with no significant changes in mice 
body weight and minimal cytotoxicity in the liver and 
kidney (14). These results suggested that targeting EGFR 
may be effective strategy to combat TNBC-mediated 
immunosuppression and boost the efficacy of immune 
checkpoint blockade. 

Reducing PD-L1 expression by PI3K/AKT 
signaling 

Activation of phosphatidylinositol 3-kinase (PI3K) induces 
AKT and many other downstream signals activation. 
Aberrant mutations in the p85 and p110 subunits of the 
PI3K can alter signaling to induce cancer cell progression. 
PI3K is highly mutated in breast cancer, particularly in 
TNBC, suggesting that PI3K is an excellent target for 
TNBC treatment. Tumor suppressor PTEN-deficient cells 
with high AKT activation have been shown to upregulate 
PD-L1 protein level post-transcriptionally (40), suggesting 
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that agents targeting the PI3K pathway may increase the 
efficacy in immune checkpoint blockade when combined 
with PD-L1 antibody. 

To identify potential regulatory mechanisms for PD-1/
PD-L1 glycosylation, we noted that an evolutionary 
conserved GSK3β phosphorylation region exists in PD-
L1. In depth analysis suggested that inhibition of EGFR 
relieves AKT-mediated GSK3β inhibition and thereby 
activates GSK3β for PD-L1 degradation (14). Since AKT 
suppresses GSK3β activity through Ser 9 phosphorylation, 
the expression of PD-L1 is positively correlated with 
p-GSK3β (14). In this regard, inhibition of AKT activity by 
MK2206 may induce GSK3β-mediated PD-L1 degradation, 
resulting in PD-L1 downregulation. Moreover, GSK3β 
activity is also inhibited by the Ras-Raf-Mek-Erk-Rsk or 
mammalian target of rapamycin (mTOR)-S6K pathway 
through Ser 9 phosphorylation (41), suggesting that 
different agents, such as those against the Ras-Raf-Mek-
Erk-Rsk pathway (sorafenib and AZD6244) or the mTOR-
S6K pathway (rapamycin, RAD001 and WYE354) may be 
used in combination with anti-PD-L1 antibody based on 
how is GSK3β inactivated (Figure 1). 

Unlike AKT2, which is primarily involved in metastatic 
dissemination, AKT1 is known to inhibit breast cancer cell 
migration, invasion, and EMT in both transgenic mouse 
models and cell-based studies (42-45). In light of several 
observations, which indicated the negative role of AKT1 
during metastatic spread, isoform-dependent regulation 

should be considered for its application in immune 
therapy. In particular, AKT1, but not AKT2, preferentially 
interacts with and phosphorylates Twist1 at three sites, 
subsequently altering its stability (46). Ablation of three 
AKT1 phosphorylation sites on Twist1 induces a stronger 
EMT phenotype, which resembles AKT1-mediated EMT 
repression. Consistent with the results from mechanistic 
studies, blockage of AKT1 using a clinically approved anti-
AKT inhibitor, MK-2206, induces Twist1 stabilization and 
cell aggressiveness. Destabilization of Twist1 by resveratrol 
counteracts anti-AKT-mediated adverse effects (46). Given 
the majority of anti-AKT inhibitors lack target specificity, 
anti-AKT therapy may potentially lead to EMT or other 
off-target effects in breast cancer treatment. Therefore, the 
risk of off-target effects of anti-AKT should be taken into 
account when combining anti-AKT with immunotherapy.

Anti-GSK3β therapy

A number of extracellular stimuli, including insulin, EGF, 
fibroblast growth factor (47-50), and hepatitis B virus (51), 
abrogate GSK3β activity through phosphorylation of 
the Ser 9 residue. Overexpression and/or activation of 
GSK3β often lead to tumor suppression (52,53), whereas 
catalytic inactivation of GSK3β protects the cells against 
environmental stress-induced apoptosis (54-56). To date, 
PI3K/AKT, mitogen-activated protein kinase (MAPK)/
p90RSK, and mTOR/S6K have been shown to cross 
talk with GSK3β through Ser 9 phosphorylation (57). 
Modulation of GSK3β-dependent activation via Ser 9 
phosphorylation may offer new insights into the therapeutic 
strategies for breast cancer therapy (57). 

TNBC cells carrying PD-L1 with GSK3β phosphodeficient 
mutant (PD-L1 3SA) were more resistant to human T cell-
mediated cytolysis than did cells expressing PD-L1 WT. 
Similarly, 4T1 tumors with mouse PD-L1 3SA were more 
malignant than those expressing mouse PD-L1 WT. In 
addition, the population of activated cytotoxic T cells [CD8 
and interferon gamma (IFNγ) positive] in 4T1 3SA tumors 
was lower than that in 4T1 WT tumors. These results 
supported the notion that inactivation of GSK3β enhances 
tumor-immunosuppressive function and provides a tumor 
cell survival advantage. 

Chemotherapeutic drugs, on the other hand, also can be 
combined with immunotherapy as some, including paclitaxel 
and doxorubicin, are known to activate GSK3β. It is likely 
that these drugs may reduce PD-L1 and thereby sensitize 

P-Ser9

Figure 1 Proposed strategy for targeting the GSK3β/PD-L1 axis. 
Several applicable approaches to improve immune checkpoint 
blockade to downregulate PD-L1 expression. Activation of GSK3β 
by inhibiting (I) mTOR (rapamycin, RAD001 or WYE354); (II) 
RSK (sorafenib or AZD6244); or (III) AKT (MK2206). 
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cancer cells to anti-CTLA-4 therapy. Because patients 
undergoing chemotherapy have weakened immune response 
against foreign antigens, the addition of immunotherapy may 
not be effective. In this regard, the toxicity of chemotherapy 
agents to T cells requires careful evaluation.

Targeting TNFα/p65/CSN5/PD-L1 signaling 

regulation

It is widely accepted that chronic inflammation is associated 
with disease aggressiveness in cancer. Pro-inflammatory 
cytokines and growth factors produced in the tumor 
microenvironment can attenuate anti-tumor immunity and 
enhance tumor cell survival. The key upstream mediators 
linking inflammation to cancer include interleukin-6, 
tumor necrosis factor α (TNFα), nuclear factor-κB (NF-
κB), inducible nitric oxide synthase, cyclo-oxygenase-2, and 
hypoxia-inducible factor 1 α (58). The pro-inflammatory 
cytokine TNFα, which is mainly secreted by macrophages, 
promotes tumor growth by inducing cell survival (59), 
proliferation (60), angiogenesis (61), and epithelial-to-
mesenchymal transition (62) via NF-κB activation. TNFα 
also activates mTOR (61), Hedgehog (59), AKT (63), and 
ERK (64), providing diverse advantages for cell growth.

In inf lammatory tumor microenvironment,  we 
identified TNFα as a major factor triggering cancer 
cell immunosuppression against T cell surveillance via 
stabilization of PD-L1 (15). NF-κB/p65 activation-induced 
COP9 signalosome 5 (CSN5) is required for TNFα-

mediated PD-L1 stabilization in cancer cells. CSN5 inhibits 
the ubiquitination and degradation of PD-L1 (15). TNFα 
induces PD-L1 stabilization through p65/CSN5 activation, 
namely TNFα/p65/CSN5/PD-L1, and PD-L1 stabilization 
on TNBC cancer cells leads to immune evasion (15). 
Unlike CTLA-4 or PD-1, which are primarily expressed 
on immune cells (65,66), PD-L1 is expressed on cancer 
cells, macrophages, and dendritic cells (DCs), and plays an 
important role in inhibiting immune surveillance (7). Aside 
from IFNγ-mediated PD-L1 mRNA transcription through 
STAT3, stabilization of PD-L1 by TNFα suppresses T cell 
activity (15). Since the regulatory mechanism is not limited 
to cancer cells as PD-L1 is also stabilized in DCs and T 
cells, those findings revealed an underlying molecular 
mechanism of PD-L1 via post-translational modification.

In study of inflammation-mediated immune response 
in cancer, the TNFα/p65/CSN5/PD-L1 signaling 
ax is  s tabi l izes  cancer  ce l l  PD-L1 express ion for 
immunosuppression. This regulatory event is critical 
for TNBC cells to escape immune surveillance via PD-
L1/PD-1 interaction. Importantly, inhibition of TNFα-
mediated PD-L1 stabilization in cancer cells promotes 
the tumor-infiltrating cytotoxic T cell immune response. 
Curcumin, which has been shown to inhibit CSN5-
associated kinase activity (67), inhibits not only CSN5 
activity in a dose-dependent manner in vitro but also 
TNFα-induced PD-L1 stabilization in TNBC cells (15). 
Preclinical data demonstrated that inhibition of CSN5 
sensitizes TNBC cells to anti-CTLA4 therapy (15). Thus, 
targeting cancer cell PD-L1 stabilization through NF-κB/

Figure 2 Proposed model of PD-L1 regulation. Regulation of PD-L1 ubiquitination by EGFR and TNFα mediated immunosuppression. 
EGFR inhibits PD-L1 stabilization by blocking GSK3β-mediated PD-L1 ubiquitination (top) whereas TNFα induces deubiquitinating 
enzyme to stabilize PD-L1 for immunosuppression (bottom). 
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CSN5 inhibition represents a new potential strategy to 
treat cancers that are associated with inflammatory diseases 
(Figure 2).

Conclusions 

Bypassing immune surveillance is one of the major features 
of TNBC malignancy. Despite high TIL density in the 
tumor microenvironment, TNBC remains one of the few 
diseases with poor response to immunotherapy. Since 
the combination of immunotherapy with chemotherapy, 
targeted therapy or radiation is being evaluated in clinical 
trials, the rationale of the combination remains preliminary. 
Based on the mechanisms underlying post-translational 
regulation of PD-L1, many combinatory strategies can be 
rationally designed. In addition, because as high as half 
of TNBC patients eventually undergo disease relapse, 
enhancing the patients’ anti-tumor immunity by reducing 
PD-L1 expression may bring promising results to TNBC 
therapy. 
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