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Introduction

Colorectal cancer (CRC) is the second leading cause 
of cancer-related death and the third most frequently 
diagnosed cancer in the United States (1). While the 
prognosis for CRC varies widely, approximately 20% 
of patients with CRC have metastases at the time of 

diagnosis. For patients who develop colorectal liver 
metastases (CRLM), multimodality therapy consisting of 
contemporary chemotherapy and metastasectomy can lead 
to 5-year overall survival (OS) rates that exceed 50% (2,3). 
Nevertheless, more than half of these patients will develop 
recurrent disease within 2 years from surgery (4). Therefore, 

Review Article

The impact of somatic SMAD4 mutations in colorectal liver 
metastases

Dimitrios Xourafas1,2, Takashi Mizuno3, Jordan M. Cloyd2

1Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA; 2Department of Surgery, The Ohio State 

University Wexner Medical Center, Columbus, OH, USA; 3Department of Surgery, Division of Surgical Oncology, Nagoya Graduate School of 

Medicine, Showa-ku, Nagoya, Aichi, Japan

Contributions: (I) Conception and design: T Mizuno, JM Cloyd; (II) Administrative support: JM Cloyd; (III) Provision of study materials or patients: 

None; (IV) Collection and assembly of data: D Xourafas, JM Cloyd; (V) Data analysis and interpretation: D Xourafas, JM Cloyd; (VI) Manuscript 

writing: All authors; (VII) Final approval of manuscript: All authors.

Correspondence to: Jordan M. Cloyd, MD. Assistant Professor of Surgery, Division of Surgical Oncology, The Ohio State University Wexner Medical 

Center, 410 W 10th Ave, N-907 Doan Hall, Columbus, OH 43210, USA. Email: jordan.cloyd@osumc.edu.

Abstract: Recent advances in cancer genomics have led to the identification of many molecular pathways 
involved in colorectal cancer (CRC) carcinogenesis. Pre-clinical and clinical data have shown that gene 
mutations involved in several of these pathways have an important prognostic impact, particularly on the 
outcomes of patients with metastatic CRC. Therefore, specific information on such gene mutational status 
can be potentially used as biomarkers to guide genome-oriented personalized treatment and ultimately 
improve patient outcomes. Drosophila protein, mothers against decapentaplegic homolog 4 (SMAD4) has 
a critical intermediate role in the TGFβ signaling pathway. Loss of SMAD4 expression is associated with 
both metastatic development and worse response to chemotherapy for patients with CRC. Additionally, it 
has been reported that the loss of SMAD4 function is independently associated with decreased recurrence-
free (RFS) and overall survival (OS) for patients with CRC, especially for patients with advanced stages of 
disease. Furthermore, among patients who undergo hepatectomy for colorectal liver metastases (CRLM), 
SMAD4 mutations are associated with a high likelihood of simultaneously carrying RAS mutations, which 
independently predict worse OS. Although recent evidence highlights the prognostic importance of somatic 
SMAD4 mutations in CRLM, ongoing research is necessary to untangle the specific molecular mechanisms 
involved in the complex SMAD4 regulatory network as well as the synergism with other mutations 
implicated in the pathogenesis of CRC. The detailed elucidation of such mechanisms may potentially aid 
the development of future trials in establishing novel, targeted therapeutic advances to further guide clinical 
decision-making for patients with CRC.

Keywords: Colorectal cancer (CRC); hepatectomy; liver resection; personalized medicine; biomarker; Drosophila 

protein mothers against decapentaplegic homolog 4

Submitted Jun 30, 2019. Accepted for publication Aug 01, 2019.

doi: 10.21037/cco.2019.08.04

View this article at: http://dx.doi.org/10.21037/cco.2019.08.04

https://crossmark.crossref.org/dialog/?doi=10.21037/cco.2019.08.04


Xourafas et al. SMAD4 mutations in CRLM

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2019;8(5):52 | http://dx.doi.org/10.21037/cco.2019.08.04

Page 2 of 6

the accurate risk stratification of patients for recurrence, via 
the identification of relevant prognostic factors, may lead 
to improved outcomes through individualized treatment or 
specific surveillance strategies.

In recent years, significant advances have led to the 
discovery and characterization of specific genes and 
molecular pathways involved in carcinogenesis, disease 
progression, and mechanisms of treatment resistance 
in CRC biology. While these advances have led to the 
ability to provide improved prognostic information, novel 
biomarkers based on genomic profiling are required to 
further differentiate among the various subgroups of 
patients with CRC. More importantly, these genome-
oriented biomarkers for CRC would facilitate the 
implementation of more personalized treatment, potentially 
leading to better prognosis and improved survival.

SMAD4 in CRC progression

Alterations of the transforming growth factor (TGF)-β 
signaling cascade play an essential role in carcinogenesis and 
disease progression of CRC given its critical involvement 
in cell proliferation, differentiation, apoptosis, and 
extracellular matrix production (5,6). While activation of 
TGFβ may be associated with tumor suppression in early 
stages (7), it is hypothesized to promote angiogenesis, 
epithelial-to-mesenchymal transition, and tumor metastasis 
in later stages of CRC development (8,9). 

Drosophila protein, mothers against decapentaplegic 
homolog 4 (SMAD4) is an essential mediator in the TGFβ 
signaling pathway, which is located on chromosome 18q21 (5).  
Following the l inking of TGFβ  l igands to TGFβ 
transmembrane protein kinase receptors 1 and 2, SMAD2 
and SMAD3 proteins are activated via phosphorylation 
which subsequently allows them to link to SMAD4 (10,11). 
The activated SMAD4 complex then relocates to the 
nucleus where it regulates TGFβ-related gene transcription 
(6,12-15). Among the components of this protein cascade, 
SMAD4 is an essential intermediator, exhibiting a critical 
role as a common downstream regulator and tumor 
suppressor gene (16,17) (Figure 1).

SMAD4 mutations that lead to decreased SMAD4 
protein expression have been reported to occur in 
approximately 20% of patients with CRC (18-20). The 
loss of SMAD4 expression has been implicated both 
in metastasis and in poor response to chemotherapy 
for patients with CRC (21-24). In fact, recent studies 
have demonstrated that decreased SMAD4 expression 
is independently associated with worse recurrence-free 
survival (RFS) and OS among patients with CRC, especially 
among those with advanced stages of disease (22,25-27). In 
contrast, greater levels of SMAD4 expression are associated 
with improved disease-free survival (DFS) and OS (26). It 
is posited that SMAD4 inactivation leads to unregulated 
TGFβ-induced growth (23) which may contribute to worse 
prognosis in CRC (28). 

Figure 1 Schematic of TGFβ signaling pathways highlighting the role of SMAD family members’ in TGFβ expression to influence cell 
proliferation, differentiation, apoptosis, extracellular matrix production and metastasis. Used with permission from Malkoski & Wang (6).
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Recent work has also highlighted that SMAD4 
downregulation may occur in up to 60% of patients with 
metastatic CRC, which is significantly higher than the 
incidence of SMAD4 mutations (29). Interestingly, there is 
increasing evidence that SMAD4 expression is also regulated 
by several micro-RNAs (30). Specifically, previous studies 
using animal models have noted that SMAD4 is influenced 
by miR-130a, miR-20a, miR-224, miR-34a and miR-19b 
(31-35). While the exact mechanism of action and role of 
these micro-RNAs in regulating SMAD4 in metastatic CRC 
progression is not understood, there is evidence that micro-
RNAs contribute to chemotherapy-resistance. For example, 
several studies have indicated that the upregulation of miR-
20a, miR-224 and miR-19b is associated with decreased 
response to the commonly used chemotherapy agent 
5-fluorouracil (5-FU) (36-38). Similarly, these same micro-
RNAs reduce the sensitivity of CRC cells to oxaliplatin, 
another commonly employed chemotherapeutic in CRC 
(35,36,39). Therefore, ongoing research on the regulatory 
mechanisms of miRNAs to the downregulation of SMAD4 
could have important and relevant therapeutic implications 
to the management of patients with metastatic CRC.

It is equally important to note that somatic mutations, 
concurrent with SMAD4, may have an additive effect on the 
prognosis of patients with CRC. For example, concomitant 
SMAD4 and PTEN mutations have been identified in a 
subgroup of patients with CRC who have more aggressive 
disease. This gene association is believed to yield significantly 
worse outcomes compared with patients with CRC who 
have only one of these mutations (40). Interestingly, 
there is evidence that micro-RNAs miR-130a (41),  
miR-20a (42) and miR-19b (43) regulate PTEN in addition 
to SMAD4. Nevertheless, the precise role of the specific 
markers that simultaneously decrease the expression of 
SMAD4 and PTEN and contribute to the development of 
more aggressive CRC or how exactly they yield resistance 
to 5-FU and oxaliplatin treatments have not been explicitly 
elucidated (35,36,38). 

Besides the association with poor prognosis in CRC, 
SMAD4 mutations have been also found to be associated 
with colonic tumor location, female sex and mucinous 
histology type (44,45). In more recent studies, SMAD4 
mutation was found to be associated with high- versus low-
grade mucinous adenocarcinomas, advanced stage of disease 
and aggressive phenotypes of CRC (22,46-48). However, 
as previously discussed, the worse outcomes observed 
in patients with CRC may be in part confounded by the 
relative resistance to 5-FU (26,49).

SMAD4 mutations in CRLM

The incidence of somatic SMAD4 mutations in patients 
with isolated CRLM is approximately 15%. Recently 
published data on surgical outcomes for patients with 
CRLM have also highlighted the clinical relevance of 
SMAD4 mutations among patients undergoing liver 
resection (50). Mizuno et al. retrospectively evaluated the 
outcomes of patients with known SMAD4 gene mutation 
status following hepatectomy for CRLM. SMAD4 
mutations were found to be independently associated with 
worse OS following liver resection, independent of RAS 
mutation status. Furthermore, the negative prognostic 
impact of SMAD4 gene mutation status was also confirmed 
in a validation cohort of patients who only received systemic 
chemotherapy for metastatic CRC (50). The results of this 
study highlight the utility of SMAD4 mutation status in the 
surgical decision-making for patients scheduled to undergo 
surgical resection for CRLM, especially patients with 
initially unresectable disease or those who are scheduled to 
undergo a two-stage hepatectomy.
While the impact of SMAD4 mutation status on recurrence 
rates or DFS in patients with CRLM undergoing 
hepatectomy has not been yet clearly established, it is 
notable that patients with SMAD4 mutations were less 
likely to undergo repeat hepatectomy for recurrent disease 
after initial metastasectomy (50). Although the survival 
differences after recurrence between patients with SMAD4 
gene mutations versus SMAD4 wild type tumor genotype 
may represent differences in ability to undergo repeat 
hepatectomy, the mechanisms driving this difference is 
unknown and warrants additional investigation (51,52). A 
plausible explanation is that SMAD4 mutant recurrences are 
more likely to occur in an unresectable fashion due to their 
more aggressive tumor biology, or alternatively, they may 
become unresectable because of tumor progression during 
neoadjuvant chemotherapy.
It is also known that patients with SMAD4-mutant CRLM 
also have a higher incidence of somatic RAS mutations. This 
is presumably related to differences in the specific signaling 
pathways that each protein mediates: while SMAD4 
regulates the TGFβ signaling pathway (5), RAS plays an 
important role in the mitogen-activated protein kinase 
signaling pathway (53). Nevertheless, the synergistic action 
between SMAD4 and RAS should be further investigated 
since both gene mutations are important independent 
predictors of poor OS (50). Additional research into the 
mechanistic and prognostic importance of other somatic 
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mutations in CRLM, such as APC, PIK3CA, BRAF and 
TP53, will only enhance our understanding regarding the 
complex molecular pathways involved in CRC development, 
progression, prognosis, and response to treatment (54,55). 
In fact, emerging evidence suggests that mutation status 
of RAS, TP53, and SMAD4 provides superior prognostic 
information following resection of CRLM compared to any 
single or double somatic mutation alone (56).

Future research

While the prognostic importance of somatic mutations 
in CRC and more specifically in CRLM continues to 
be highlighted, future research is necessary to address 
several unanswered questions. The distinct molecular 
mechanisms underlying the complex SMAD4 regulatory 
network, including the specific mechanisms by which 
micro-RNAs downregulate SMAD4 expression and leads 
to the disruption of important TGFβ signaling pathways, 
need to be better understood. A detailed elucidation of 
these mechanisms will aid the translation of foundational 
molecular concepts into the establishment of future novel, 
targeted, therapeutic advances for patients with CRC. The 
clinical significance of SMAD4 and its influence on the 
use of diverse and individualized perioperative therapies 
for CRC need to be validated by future investigations. An 
important question to answer is whether the SMAD4 gene 
can be specifically targeted as a novel therapeutic agent for 
patients with CRC. Given the evidence that concomitant 
mutations in RAS, TP53, APC and PIK3CA are associated 
with worse OS following hepatectomy for CRLM, the 
precise cooperative mechanisms of SMAD4 with other 
genes of influence requires further examination. Future 
research is also warranted regarding the gene’s impact on 
the recurrence rates for patients with CRLM undergoing 
hepatectomy. 

Conclusions

In summary, SMAD4 expression mediates an important 
role in the development and progression of CRC. Somatic 
mutations of SMAD4 are associated with more aggressive 
tumor biology, poor response to chemotherapy, metastases 
and unfavorable OS among patients with resectable 
and unresectable CRC. Additionally, there is evidence 
that SMAD4 mutations are significantly associated 
with worse OS, irrespective of RAS mutation status or 
other clinicopathological factors, in patients undergoing 

metastasectomy for CRLM. Given the relative frequency 
with which SMAD4 mutations occur among patients with 
CRC, routine SMAD4 testing may be appropriate. In the 
contemporary era of personalized treatment for CRC, 
further research on whether SMAD4 represents a targetable 
mutation could have important implications for guiding 
clinical-decision making. 
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