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Introduction

Phase I trials are studies in humans to determine the highest 
dose possible of a cytotoxic or biologically targeted agent 
that can be administered to humans before an unacceptable 
rate of side effects occur. These side effects are known as 
dose-limiting toxicities (DLTs) and vary depending upon 
the type of cancer and the specific agent under study. These 
DLTs must be explicitly defined before the study begins and 
are often a subset of the Grade 3 and 4 toxicities outlined 
in the Common Terminology Criteria for Adverse Events 
(CTCAE) developed by the Cancer Therapy Evaluation 
Program (CTEP) of the National Cancer Institute (NCI). 

The current version of the CTCAE can be found at http://
evs. nci.nih.gov/ftp1/CTCAE/About.html. Note that 
toxicities do not have to be life-threatening or irreversible 
to be considered DLTs; they simply have to be severe 
enough to cause termination of treatment with that dose of 
the agent. Another crucial aspect of defining DLTs is that, 
optimally, there is a specific way of identifying that the dose 
of the agent under study is a direct cause of the DLT. For 
example, thrombocytopenia is a possible side effect seen 
in patients receiving an allogeneic bone marrow transplant 
(BMT). As a result, defining Grade 4 thrombocytopenia as 
a DLT for a new agent under study in patients receiving an 
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allogeneic BMT will be problematic if the actual source of 
the thrombocytopenia (BMT or agent) cannot be identified.

Once the DLTs have been clearly defined, investigators 
must determine the number of doses to study, as well as 
what those doses might be. Typically the lowest dose is a 
dose that is expected to have a very low probability, in the 
range of 5-10%, of causing DLTs in patients. Higher doses 
should have increasing expected rates of DLTs, with one 
of the doses having a DLT rate of π, a value between 0 and 
1, which is the targeted rate of DLTs for the dose known 
as the maximum tolerated dose (MTD). The value of π is 
sometimes referred to as the targeted toxicity level (TTL). 
Of course, the actual DLT rates of the doses are unknown, 
and it is possible that there will be one or two doses that 
have DLT rates above the TTL. As a result, three doses is 
an absolute minimum number of doses to study in a phase I 
trial, with an upper bound on the number of doses dependent 
upon the number of patients that can be enrolled in the 
trial. Also note that the clinical values of the doses are not 
used directly in most Phase I trial designs, so that it is not 
necessarily important to have a wide range of dose values 
under study. What is more important is to have a range of 
doses whose DLT rates are expected to have a detectable 
amount of variation around the TTL. For example, 
if we have four doses of 50, 100, 200, and 500 mg/m2  
and the TTL is π =0.30, identifying the MTD among those 
four doses will be very difficult if their true DLT rates are 
0.25, 0.27, 0.30, and 0.35, and much easier if their true 
DLT rates are 0.08, 0.20, 0.30, and 0.45, due to the larger 
variation in the latter set of DLT rates.

When designing a phase I trial, it must be kept in mind 
that there are two, likely conflicting, goals for the study: (I) 
the global goal of correctly identifying the MTD at the end 
of the study and improving treatment of future patients; and 
(II) the local goal of treating as many patients as possible in 
the current trial at the MTD. Thus, phase I trial designs are 
comprised of two distinct parts: (I) a set of decision rules for 
determining the dose assignment of each patient during the 
study; and (II) a method to estimate the MTD at the end 
of the trial using the data collected during the trial. The 
ideal trial would be one that assigns every patient to the 
same dose and that dose is the MTD. However, assigning 
every patient to the same dose would supply no information 
about the other doses if the dose administered was not the 
MTD. Thus, we need to vary the dose assignments among 
patients in order to gain information about where the MTD 
may actually lie among the doses. However, by doing so, 
we naturally cannot assign every patient to the dose we 

currently believe is the MTD and we sacrifice the benefit of 
individual patients for the sake of the success of the entire 
trial. We now discuss three classes of traditional phase I trial 
designs, a summary of which can be found in Table 1.

First steps: algorithmic designs

Because phase I trials occur at the earliest stage of 
developing new cytotoxic  agents ,  the number of 
patients enrolled in a phase I trial is traditionally quite 
low and is driven more by the amount of resources, 
such as time, money, and availability of patients, than 
a statistical goal, such as power or confidence interval 
width. As a result, although an estimate of the MTD is 
determined at the end of the trial, the variability of this 
estimate is relatively large. The 3+3 cohort method (1)  
is the most common design used in phase I trials, and is a 
member of a more general set of designs known as A + B  
cohort designs, whose statistical properties have been 
examined in detail (2). In the 3+3 algorithm, patients are 
enrolled in cohorts of three patients, with each patient in 
the cohort receiving the same dose. Patients of the first 
cohort are assigned to a dose (Dose 1, i.e., the lowest dose) 
and followed for pre-defined period of time (e.g., first cycle 
of the treatment) for the occurrence of a DLT. If no patients 
experience DLTs, a new cohort of three patients is enrolled 
and assigned to Dose 2. If one patient experiences a DLT, 
a new cohort of three patients is enrolled and assigned to 
Dose 1. If one or more additional patients experience DLTs 
(two or more among all six patients receiving Dose 1),  
accrual is terminated. And if two or more patients in the 
first cohort of three patients experience DLT, accrual is 
also terminated. The MTD is then defined as one dose 
lower than the dose last assigned in the study when accrual 
was terminated. Figure 1 contains a diagram of the 3+3 
algorithm.

Although the simplicity of the 3+3 algorithm continues 
to motivate its use in contemporary phase I trials, there are 
several failings of the 3+3 cohort method that give powerful 
evidence against its use in practice (3). First, the 3+3 cohort 
method has no explicit objective in mind, other than to find 
a dose that gives an observed DLT rate of no more than 
33%. At its conclusion, the 3+3 cohort method produces 
data that give no confidence in what the actual DLT rate of 
any of the dose levels might be, and thus little confidence in 
the selected MTD. For example, the first three columns of 
Table 2 contain information on the number of patients and 
the number of DLTs observed in a hypothetical trial of three 
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doses. Given these results, Dose 2 would be selected as the 
MTD. However, the final column contains the exact 95% 
confidence intervals for the true DLT rates of the three 
doses. These confidence intervals demonstrate several facts. 
First, the DLT rate of Dose 3 could be as low as 0.09, which 
would be seen as an acceptable DLT rate in most clinical 
settings. Second the DLT rate of Dose 2 (the MTD) could 
be as high as 0.64, which is a DLT rate that would be seen 

as unacceptable in most clinical settings. Third, there is a 
vast amount of overlap among all three confidence intervals, 
suggesting there is no evidence that any difference exists 
among the DLT rates of the three doses. In other words, 
strong conclusions are made during the trial using very 
weak evidence. Finally, it is mistakenly believed that the 
3+3 algorithm is associated with a TTL of 0.33. However, 
the DLT rate targeted is actually closer to 0.22 (12).  
Thus, not only is the 3+3 algorithm inflexible, it can only 
be used for one specific TTL, and that TTL is rather 
conservative for most cytotoxic agents. Since it is commonly 
accepted that lower toxicity also indicates lower efficacy, the 
3+3 algorithm will often produce an MTD that will fail to 
demonstrate suitable efficacy when studied in phase II trials.

Table 2 Summary of data collected during hypothetical phase I 
trial of three doses using the 3+3 algorithm

Dose
Number of 

subjects

Number 

of DLTs

95% confidence interval for 

true DLT rate

1 3 0 (0.00, 0.71)

2 6 1 (0.00, 0.64)

3 3 2 (0.09, 0.99)

DLT, dose-limiting toxicity.

Figure 1 Schematic representation of dose assignments of each 
dose in the 3+3 algorithm. DLTs, dose-limiting toxicities.

Table 1 Summary of classes of phase I trial designs and key references

Class Specific designs Key features Limitations Key references

Algorithmic designs 3+3 cohort Easy to use Tends to underestimate MTD (1-3)

A + B cohort No statistical input needed Fails to incorporate explicit 

targeted DLT rate

Insufficient data collected due 

to small sample size

Not easily extended to more 

complex settings

Nonparametric designs Biased-coin (BCD) Computationally simple No known published software (4-6)

k-in-a-row Better able to identify MTD 

than algorithmic designs

Not easily extended to more 

complex settings

Cumulative cohort (CCD)

Parametric designs Continual reassessment 

method (CRM)

Have published software Requires knowledge of  

statistical modeling

(7-11)

Escalation with overdose 

control (EWOC)

Better able to identify MTD 

than algorithmic designs

Computationally intensive

Modified toxicity  

probability interval (mTPI)

Easily extended to more  

complex settings

MTD, maximum tolerated dose; DLT, dose-limiting toxicity.

0/3 DLTs ≥2/3 DLTs

1/3 DLTs

1/6 DLTs ≥2/6 DLTs

Enroll 3 
patients

Enroll 3 
additional 
patients

Terminate 
trial; previous 
dose is MTD

Escalate 
to next 
dose

Escalate 
to next 
dose

Terminate 
trial; previous 
dose is MTD
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Second steps: statistically-based improvements

Nonparametric designs

The 3+3 algorithm is a distant relative of up-and-down 
designs (13-15). By the name of the designs, the dose 
assigned to a future cohort of patients can go up or down 
from the dose assigned to the current cohort of patients, 
based upon the observed DLT rate in the current cohort. 
This property also demonstrates a major flaw of the 3+3 
algorithm: it never allows for a new cohort of patients to be 
assigned to a lower dose once excessive DLTs are observed 
in the current cohort. Instead, the trial is stopped altogether. 
Although de-escalation could be implemented in the 3+3 
algorithm, such a feature is rarely, if ever, used in practice.

One example of a feasible up-and-down design for 
oncology phase I trials is the biased- coin design (BCD) (16).  
This design enrolls patients individually (in cohorts of 
size one). If the current patient is assigned to a dose and 
experiences a DLT, the next patient is assigned to the next 
lowest dose. If instead the current patient does not experience 
a DLT, the next patient can be assigned to either (I) the current 
dose or (II) the next highest dose. This decision is decided by 
the flip of a biased coin, which is a coin with probability ph of 
heads and (1-ph) of tails. If the coin comes up heads, the next 
patient is assigned to the next highest dose, and if the coin 
comes up tails, the next patient is assigned to the current dose. 
This process is continued until a pre-determined number of 
patients have been enrolled. Figure 2 contains a diagram of the 
BCD. Another competing design is the k-in-a-row design (4), 
in which the design does not allow for dose escalation until 

k consecutive patients, all of whom are assigned to the same 
dose, do not experience DLT. The abilities of the BCD and the 
k-in-a-row designs to identify the MTD have been formally 
examined and compared via simulation (5,17).

Since all  up-and-down designs produce what is 
known statistically as a Markov Chain, statistical theory 
demonstrates that there is a limiting distribution to the dose 
assignments of the BCD, i.e., if we know the true DLT rates 
of the doses and the TTL, we can compute the percentage 
of patients that will be assigned on average to each dose. 
More importantly, it can be shown that using the BCD 
leads to the largest percentages of patients assigned to doses 
with DLT rates close to the value ph/(1+ph). In other words, 
given a TTL of π, the BCD should use a biased coin with 
probability of heads ph = π/(1 − π), for π ≤0.5. For example, 
if the TTL is 0.30, then ph =3/7≈0.43. In general, as the 
TTL gets closer to zero, the value of ph also gets closer to 
zero in order to limit escalation and assignment of overly 
toxic doses. One specific form of the BCD was suggested 
by Dixon and Mood over sixty years ago (18) in which 
the biased coin has probability ph =1, i.e., two consecutive 
patients will never be assigned to the same dose since 
escalation must occur in the absence of a DLT.

If investigators wish to enroll patients in cohorts rather 
than individually, then the exact decision rules for up-
and-down designs become less obvious. For example, one 
might consider enrolling three patients to a dose with the 
following decisions for the next cohort: (I) if two or three 
DLTs, assign to next lowest dose; (II) if zero or one DLT, 
flip a biased coin and assign to next highest dose if heads 
or current dose if tails. However, this decision rule is not 
unique and others are possible. To help provide a more 
systematic set of decision rules with up-and-down designs 
with any size cohorts, Ivanova, Flournoy, and Chung 
proposed the cumulative cohort design (6), which essentially 
removes the use of a biased coin and creates decision rules 
for dose assignments (escalate, remain, or deescalate) based 
upon the accumulated proportion of DLTs observed among 
all enrolled patients, rather than only the current cohort.

Parametric designs

In contrast to the nonparametric approach of up-and-
down designs, the continual reassessment method (CRM) 
was the first parametric, model-based approach proposed 
specifically for use in oncology phase I trials (7), and was 
later given practical improvements that have been adopted 
in practice (19,20). In the CRM, the probabilities of DLT 

Enroll 1 
patient

Enroll new 
patient on next 

lowest dose

Enroll new 
patient on next 

lowest dose

Enroll new 
patient on 
same dose

DLT

Coin shows 
heads

No DLT

Coin shows 
tails

Flip biased 
coin with 

probability ph 
of heads

Figure 2 Schematic representation of dose assignments of each 
dose in the biased-coin design. DLT, dose-limiting toxicity.
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for each of the doses are assumed to be fully explained by 
a one-parameter model that is a function of the value of 
each dose. If there are J doses in the study and we let dj 

denote the value of dose j= 1, 2, …, J, then two of the most 
commonly-used functions in the CRM are: (I) the logistic 
model f(dj;β) = exp[3 + exp(β)dj]/[1 + exp(3 + exp(β)dj)] and; 
(II) the so-called “power” model f(dj;β) = exp(β)dj, which β 
is the unknown parameter. As intimated earlier, the actual 
values given to each dose are not their actual clinical values, 
but are values chosen for computational convenience.

To operationalize, the CRM requires a prior guess as to 
what one might think the DLT rate is for each dose, which 
we denote as pj. The vector (p1, p2, …, pJ) of prior guesses is 
known more commonly as the “skeleton,” and the skeleton 
is used to determine the value to use for each dose: the dose 
values are dj = log(pj) − log(1 − pj) − 3 for the logistic model 
and dj = pj with the empiric model. For example, if we are 
studying four doses and we believe the DLT rates might be 
0.05, 0.10, 0.20, and 0.40, respectively, then the dose values 
would be –5.9 –5.2 –4.4, and –3.4, respectively, for the 
logistic model, and 0.05, 0.10, 0.20, and 0.40, respectively, 
for the empiric model.

The underlying principle of the CRM is that the dose 
assignment for each patient (or cohort of patients) should 
be determined from the model by using the data collected 

during the trial to sequentially estimate the model parameter, 
β, the value of which then produces estimates of the DLT 
rates for each of the doses. The dose whose DLT rate is 
currently closest to the TTL is then selected as the dose 
assigned to future patients until more data is collected and 
an updated estimate of β is determined. As the trial proceeds, 
the dose assignments begin to approach a neighborhood of 
the MTD so that patients near the end of the trial are likely 
to be assigned to a dose that is the MTD, or at least close to 
the MTD. And once the trial ends, β is estimated using all 
the data from the trial and the model is used to determine 
the dose with DLT rate closest to the TTL; this dose is 
the MTD. Although the CRM was initially proposed using 
Bayesian methods to estimate β, a maximum-likelihood 
approach was later published (21). An excellent tutorial on 
the CRM was published (8); a schematic representation of 
the CRM from (22) is shown in Figure 3. 

In the Bayesian formulation of the CRM, there are two 
components needed to estimate β: (I) the data, specifically 
the dose assignment and indicator of DLT or no DLT for 
each patient; and (II) the prior distribution for β, which 
gives a range of plausible values for β, and is usually a 
normal distribution centered around zero with variance σ2. 
The utility of Bayesian methods is that early in the trial, 
when little data exists, the prior plays a much greater role 
in estimation of β than the data, while later in the trial, 
sufficient data has been collected so that estimation of β is 
based primarily on the data and very little weight is given 
to the prior. The relative weights given to the data and the 
prior are largely determined by the value of σ2; too large 
a value for σ2 will lead to instability of the CRM early in 
the trial, while too small a value for σ2 will lead to the data 
playing in insufficient role for estimation of β later in the 
trial. Due to a historical lack of systematic methods to 
determine a value σ2, the only real option is to simulate 
data under a variety of settings and a variety of values for 
σ2 until one value of σ2 appears to lead to suitable ability of 
identifying the MTD across all settings. However, recent 
work has been done to provide a more systematic approach 
to calibrate σ2 at the beginning of the trial (23), as well as 
adaptively adjusting the value of σ2 during the study (24).

An approach similar to the CRM is known as Escalation 
With Overdose Control (EWOC) (9). Like the CRM, 
EWOC adopts a parametric model for the relationship 
of dose and probability of DLT and a prior distribution is 
placed on the parameter to facilitate estimation. However, 
instead of assigning each patient to the dose whose DLT 
rate is currently estimated to be closest to the TTL, EWOC 

Figure 3 Schematic representation of process used to determine 
dose assignments in CRM and EWOC (22). CRM, continual 
reassessment method; EWOC, Escalation With Overdose Control; 
MTD, maximum tolerated dose.
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instead examines the cumulative probability that the DLT 
rate of each dose is above the TTL and assigns a dose 
whose probability of overdosing remains below a specified 
threshold. Thus, the goal of EWOC is to identify the MTD 
at the end of the study while formally limiting the number of 
patients exposed to toxic doses during the study. However, 
the CRM and EWOC have identical statistical frameworks, 
and a unified CRM-EWOC design also exists (25).

Even with the multitude of published research 
demonstrating the superiority of the CRM over the 
3+3 algorithm [see (26) for a recent example], the CRM 
continues to have limited use in actual clinical trials due to 
the perceived statistical and computational complexity of 
these methods, leading many to view the dose assignment 
decisions of the CRM as coming from a ‘black box’. As 
an attempt to connect the simplicity of an algorithmic 
approach with the statistical foundation of parametric 
methods, Ji et al. developed a design called the modified 
toxicity probability interval method (mTPI) (10). Like an 
algorithm, the dose assignment decision rules for a trial 
using the mTPI can be outlined in a spreadsheet at the 
beginning of the study, unlike the CRM, in which dose 
assignments are contingent upon the actual outcomes that 
occur during the trial. However, like the CRM, the decision 
rules in the mTPI design are founded in Bayesian statistical 
theory by assuming each DLT rate has a Beta distribution. 
A simulation-based comparison of the mTPI with the 3+3 
algorithm was recently published and demonstrates the 
superiority of the mTPI design to the 3+3 algorithm (11).

Future steps: moving beyond simple dose-finding

Time-to-event and ordinal outcomes

One limitation of the designs described thus far is that each 
enrolled patient must be completely followed for DLT 
before a dose assignment decision can be made for future 
patients. In reality, a new patient may become eligible for 
enrollment before all enrolled subjects have completed 
their follow-up. Although some solutions to this issue were 
suggested for the CRM (7), the time-to-event CRM (TITE-
CRM) (27) was the first formal attempt to incorporate the 
time-to-event nature of DLTs into the model used by the 
CRM. The TITE-CRM essentially includes the follow-
up of patients still under observation for DLT as a weight 
whose value is the completed amount of follow-up relative 
to their planned amount of follow-up. For example, in a 
trial in which patients are planned to be followed for eight 

weeks, a patient who has completed four weeks of follow-up 
without DLT would contribute half as much data as a patient 
who completed all eight weeks of follow-up without DLT. 
Although many incorrectly view these weights as ad-hoc, 
they are actually based upon the assumption that DLTs occur 
uniformly during the follow-up period and are generated 
from what is known statistically as a cure model (28). Since 
these weights can lead to over-escalation when DLTs are 
not uniform and instead occur rather late in the follow-up 
period, a generalization to the TITE-CRM exists in which 
the weights are adaptive and change depending upon when 
DLTs are actually occurring in the trial (28).

An alternative generalization to the TITE-CRM is to 
compute the predictive probability that future patients will 
be exposed to doses that are later determined to be overly 
toxic (29). If this probability is too large, accrual to the trial 
is suspended until more follow-up is obtained on enrolled 
subjects and the risk of assignment of future patients to toxic 
doses is lowered. Although such an approach will reduce the 
observed rate of DLTs in the presence of late-onset DLTs 
with the TITE-CRM, it also will prolong the length of the 
trial depending upon the frequency and duration of accrual 
suspensions. Recently another approach has been suggested 
for addressing incomplete follow-up, known as the EM-
CRM (30). This design views partially-followed patients 
as having missing data (their DLT outcome is unknown) 
and uses the expectation-maximization (EM) algorithm 
to estimate the model parameter β. It is likely that both 
the TITE-CRM and EM-CRM have similar large-sample 
properties, i.e., as more and more patients are enrolled, both 
methods lead to similar estimates of the MTD, but a head-
to-head comparison of the two approaches via simulations 
using realistic sample sizes has yet to be done.

Since DLTs are binary realizations of what was originally 
a graded ordinal variable, it might seem that there is a loss 
of information when using a binary outcome rather than 
an ordinal one. If a dose was associated with a measurable 
amount of Grade 1 and 2 toxicities, which would have been 
coded as no DLT in the original CRM, this information 
might be useful in determining the probability of Grade 
3 and 4 toxicities with that same dose. Therefore, ordinal 
regression models have been suggested as a way of 
generalizing the CRM to handle more than two categories 
of toxicity (31,32); a similar approach for EWOC has 
also been proposed (33). However, existing work seems 
to suggest that identification of the MTD using ordinal 
outcomes offers little improvement over the traditional 
approach with binary outcomes (34).
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Multiple outcomes

If the circumstances of a trial allow a determination of 
treatment efficacy within the same time frame required to 
assess toxicity, it seems sensible that toxicity and efficacy 
should both be considered when selecting a dose for further 
study. Such considerations are also important when the 
relationship between dose and toxicity and/or efficacy is not 
monotonic. A number of authors have proposed designs in 
which both outcomes (toxicity and efficacy) are modeled as 
a function of dose. Both models are then used to determine 
dose assignments by estimating the DLT and efficacy rates 
of each dose and selection of the dose whose rates are 
closest to the TTL and the targeted efficacy level (TEL), 
respectively. However, often one dose may be preferred in 
terms of toxicity, while another may be preferred in terms 
of efficacy. Thus, investigators must determine the relative 
importance of the outcomes to each other when deciding 
the dose assignment for each patient. Specifically, if a dose 
has a DLT rate that is above the TTL but its efficacy rate is 
also above the TEL, should this dose be assigned to patients? 
Conversely, if a dose has a DLT rate below the TTL but 
also has an efficacy rate below the TEL, should this dose 
be assigned to patients? Furthermore, there will be doses in 
which one outcome has a rate below its corresponding target 
and one above its corresponding target, further complicating 
the decision of assigning those doses.

Mathematically, one approach is to compute for each 
dose the distance of the rates of DLT and efficacy from their 
corresponding targets and compute a weighted average of 
those two distances and select the dose that has the smallest 
average (35). A weighted-outcome approach also was used in 
a recent trivariate CRM design in which the third outcome 
is a surrogate for efficacy when follow-up for efficacy may 
be quite long and a surrogate marker could be measured 
earlier (36). Both of these approaches require input from 
investigators as to what the appropriate weights each 
outcome should receive. Equal weights should be used when 
there are ambivalent opinions as to the relative importance 
each outcome and several weights have been proposed (35,36).

An alternate approach is to place a utility, which is a score 
from 0 to 100, on each of the four possible combinations 
of toxicity (yes/no) and efficacy (yes/no), with higher utility 
indicating a more desirable pair of outcomes (37). Based 
upon the data collected in the trial, Bayesian methods are 
used to determine which dose has the largest expected 
utility and that dose is assigned to the next patient. As 
with the weighted distance approach described previously, 

this method also requires input from investigators to 
determine what utility value should be assigned to each pair 
of outcomes. Specifically, although efficacy with no DLT 
would be the most desirable pair of outcomes and the one 
with greatest utility and no efficacy with DLT would be 
the least desirable pair of outcomes and the one with least 
utility, it is not clear (I) how to order the other two pairs 
of outcomes; and (II) how much variability the four utility 
values should have among each other. A related approach 
that uses odds ratios rather than utilities to order the four 
pairs of outcomes has been proposed (38).

Two-agent combinations and multiple administrations

Another recent extension of the CRM is to generalize the 
model using a single parameter to quantify the effects of 
a single agent on the probability of DLT to a model that 
includes additional parameters to quantify the effects of (I) 
another agent; or (II) additional administrations of the same 
agent. One can view a two-agent study as a search over a 
grid, in which each row corresponds to each dose of one 
agent and each column corresponds to the dose of the other 
agent. Each square of the grid is a combination whose DLT 
rate is unknown and the goal is to extend the modeling 
framework of the CRM and apply it to the DLT rates of 
the combinations in the grid. Unfortunately, the addition of 
another agent greatly increases the mathematical complexity 
of the models that have been proposed.

Early approaches attempted to extend the one-parameter 
model of the CRM to a multi-parameter model that 
includes, at a minimum, one parameter each for the doses 
of the two agents (39-41). Additional parameters can also be 
incorporated to increase flexibility of the model and account 
for any possible synergistic or antagonistic effects the two 
agents may have with regard to DLT. However, it has been 
suggested that these additional interaction parameters do not 
appear to be necessary, mostly due to the small amount of 
data collected during a Phase I trial relative to the number of 
model parameters that need to be estimated (40,41).

Alternative models have been proposed that have a 
foundation in copulas (42,43), which are statistical models 
for the joint probability of DLT of both agents that is a 
function of the individual (marginal) probabilities of DLT 
for each agent when given alone, as well as a correlation 
parameter that expresses the synergistic or antagonistic 
relationship of the agents. Regardless of the model used, all 
the cited methods mimic the CRM in that dose assignments 
are adaptively determined from the data by updating 
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estimates of the model parameters and the probabilities of 
DLT for every dose of one of the agents in combination 
with every dose of the other agent, with each enrolled 
patient receiving the current estimate of the maximum 
tolerated combination (MTC), the combination whose 
estimated DLT probability is closest to the TTL.

Given that the mathematical complexity of existing two-
agent designs may limit their use in application, two methods 
have been recently published that attempt to directly use the 
CRM framework as a way to assess the toxicity profile of two 
agents. One approach is the generalized CRM (gCRM) (44), 
in which all doses of one agent, referred to as Agent A, are 
studied in combination with one of the doses of the other 
agent (Agent B). Essentially, the CRM is used to examine the 
doses of Agent A, with a separate CRM for the combination 
of Agent A with each dose of Agent B. These separate CRM 
models all have the same parameter (i.e., slope) quantifying 
how the different doses of Agent A relate to the probability 
of DLT. However, all the models contain an extra parameter 
(i.e., intercept) that are allowed to differ among the models 
to incorporate the differential effects of the doses of Agent 
B on the probability of DLT. Bayesian methods are used to 
“connect” all the intercepts to each other in order to use all 
the data collected in the study to estimate the intercepts and 
determine the MTC.

The other approach is the partial order CRM (POCRM) 
(45,46), in which a combination of two doses is viewed as 
single dose whose probability of DLT is modeled directly 
in the CRM. However, by doing so, the CRM must be 
constrained to reflect the natural ordering of the DLT rates 
of the combinations during the estimation of parameters 
and determination of the combination to assign to each 
patient. For example, suppose we have two doses of Agent 
A (A1 and A2) and two doses of Agent B (B1 and B2), with 
1 denoting a lower dose than 2. Although one can envision 
that the combination of A1 and B1 will have the lowest 
DLT rate, and the combination of A2 and B2 will have the 
highest DLT rate among all four combinations, it is less 
obvious how to rank the DLT rates of the combinations 
of A1 with B2 and A2 with B1. The POCRM proposes 
methods to incorporate this so-called “partial” order into 
the CRM algorithm.

The CRM in its original form was designed to address 
the probability of DLT for a single administration and 
was insufficient for assessing the cumulative effects of an 
agent on the probability of DLT. To that end, an extension 
was proposed in which DLT is viewed as a time-to-event 
outcome and the hazard of each administration is modeled 

as a parametric function of dose (47-49). The joint hazard 
for multiple administrations is assumed to be the sum 
of the hazards of each of the individual administrations 
and this sum quantifies the cumulative effect of multiple 
administrations, as well as their timing, i.e., weekly, 
bi-weekly, monthly, etc. Like the TITE-CRM, these 
approaches incorporate the time to DLT (rather than a 
binary indicator of DLT) and thus allow for new patients to 
be enrolled once they are eligible, regardless of the amount 
of follow-up collected on previously enrolled patients.

However, the methods just cited assume that the dose 
and number of administrations assigned to patients cannot 
change once they were enrolled in the study. Such an 
assumption conflicts with actual practice, whereby within-
patient changes to dose and/or number of administrations 
may be warranted. For example, suppose a patient has 
completed half of their assigned administrations when 
the data from other patients are analyzed and indicate 
that this patient’s number of administrations at the same 
dose is now believed to be overly toxic. Investigators 
may wish to terminate further administrations for this 
patient or continue with the planned administrations, 
but with a lower dose. These additional decision rules, 
if formally implemented into the design and dose-
assignment algorithm, would complicate the actual use of 
dose and schedule finding designs in practice, although 
a formal design that incorporates within-patient dose 
and/or schedule changes has been recently created (50). 
In addition, an extended design that incorporates both 
efficacy and toxicity for dose and schedule finding has been 
proposed recently (51).

Discussion

Since the inception of the CRM, the variety of possible 
designs for Phase I studies has grown quickly and 
investigators now have at their disposal excellent statistically-
framed designs for a variety of early-phase clinical trials. 
However, algorithmic designs like the 3+3 cohort method 
and other ad-hoc approaches continue to be the designs of 
choice in current published Phase I trials. The disappointedly 
low use of up-and-down and model-based designs in actual 
trials has been discussed in recent systematic reviews (52,53), 
although there are a handful of trials that are exceptions to 
this trend (54,55). It is believed that the statistical complexity, 
and relative dearth of user-friendly software, for statistically 
sophisticated designs is the major reason that they are not 
used more routinely. However, a number of textbooks 
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covering phase I trial designs have been published in the 
past few years (56-59), and it is hoped that with a greater 
readership and increased promotion of statistical packages for 
the model-based designs will increase their use and place the 
3+3 method in a position of disfavor.

One unresolved issue for model-based designs remains 
how to determine the sample size necessary for a Phase 
I trial. Although by design the 3+3 cohort method has a 
maximum sample size equal to six patients/dose, none of 
the up-and-down nor model-based designs have had formal 
methods developed for sample size calculation except to 
use simulations. The one exception lies with the CRM, for 
which an approach for computing suitable sample sizes has 
been proposed (60), although the core of the computations 
still requires simulations.

A current debate in phase I trial design is whether or not 
assigning each patient to the current estimate of the MTD 
is the best approach to use. There have been suggestions 
that asymptotically, i.e., in very large sample sizes, assigning 
each patient to the current estimate of the MTD, known as 
“greedy” or “myopic” dose assignments, does not provide 
100% certainly that the study will correctly identify the 
MTD at the end of the study (61,62). Although it is unclear 
how this result relates to actual phase I trials, which enroll 
a relatively small number of patients, some have begun 
to propose that each patient not be assigned the current 
estimate of the MTD, but should instead be randomized to 
receive either the current estimate of the MTD or doses in 
a neighborhood of the estimated MTD. Such a concept may 
prove to be beneficial to the end result of the trial, namely 
improving identification of the MTD, but certainly comes 
with a cost, since each patient is now given the chance to 
receive a dose that is sub-optimal, at least based upon the 
data from the trial at that point. No clear consensus yet 
exists on whether or not randomization within Phase I trials 
should be a standard part of the design.

The most recent application of existing phase I trial 
designs is with biologic and molecularly targeted agents 
(MTAs). Unlike anti-cancer agents, whose toxicity is 
assumed to increase with dose, biologic agents and MTAs 
tend to have a low probability of DLT among all doses and 
the probability of DLT does not necessarily increase with 
dose and may actually plateau after a certain dose. Thus, 
one is not interested in the maximum dose whose DLT 
rate is close to the TTL, but the lowest dose among those 
with DLT rates close to the TTL, the so-called minimum 
effective dose (MED) or biologically optimal dose (BOD). 
Existing methodology for dose-finding of biologic agents 

and MTAs is quite limited, but novel work is slowly being 
developed and it is expected that numerous designs will be 
published in the coming years.
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