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Biliary tract cancers (BTCs) have traditionally been 
classified according to their location. Intrahepatic 
cholangiocarcinoma (IH-CCA) arises from the peripheral 
bile ducts within the liver beyond the secondary biliary 
radicals while extrahepatic cholangiocarcinoma (EH-
CCA) arises from bile ducts outside the liver and can be 
subclassified into either hilar cholangiocarcinoma or distal 
cholangiocarcinoma. Gallbladder carcinoma (GBC) arise 
from the gallbladder. While these anatomic distinctions 
continue to be highly relevant for the diagnosis, prognosis, 
and management of BTC, an increasing awareness of 
their molecular heterogeneity has paved the way for new 
therapeutic approaches in these diseases.

In China, BTC is the 24th most common cancer and the 
17th leading cause of cancer death (1). The incidence of 
BTC appears to be increasing globally, due in large part to 
a rising incidence of IH-CCA (2,3). In fact, BTCs were the 

most rapidly rising malignancy in Shanghai, China between 
1972 and 1994, with an increase of 119% in men and 124% 
in women and an incidence rate of ~5.5 per 100,000 people 
(4,5). The mortality rate of BTC is 1.8/100,000 in China 
versus 1.0/100,000 in the United States (6). Epidemiologic 
variance between Eastern and Western populations is 
thought to be due in part to a difference in risk factors. For 
example, obesity and chronic inflammation from primary 
sclerosing cholangitis (PSC) are more prevalent in Western 
countries (7), whereas the prevalence of the liver parasite 
Opisthorchis viverrini is significantly higher in Thailand, 
Laos, and Cambodia (8,9). The liver fluke Clonorchis 
sinensis has also been associated with the development 
of cholangiocarcinoma and is endemic to rural China, 
especially in the northeastern province of Heilongjiang and 
the southern provinces of Guangdong and Guangxi (10,11). 
Other risk factors for CCA include diabetes, chronic viral 
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hepatitis B or C, anatomical abnormalities in the biliary 
tract such as choledochal cysts, and Lynch syndrome. Risk 
factors for GBC include polyps, Salmonella Typhi, and 
chronic cholecystitis (12,13). 

Unresectable or advanced BTC is associated with a 
5-year survival rate of 5–10% (14). The current standard 
of care for unresectable BTCs is systemic chemotherapy. 
Gemcitabine was established as palliative therapy in  
1996 (15), and remained the standard of care until the phase 
III ABC-02 trial demonstrated a survival advantage for the 
combination of cisplatin and gemcitabine over gemcitabine 
in the front-line setting for advanced disease [median 
overall survival (OS) 11.7 vs. 8.1 months, respectively, 
hazard ratio 0.64, P<0.001] (16). The survival advantage 
of the combination over gemcitabine alone was confirmed 
in a Japanese population (17). Recently, the ABC-06 trial 
demonstrated a modest survival benefit with oxaliplatin/5-
fluoruracil (mFOLFOX) and active symptom control (ASC) 
after progression on cisplatin and gemcitabine (compared 
to ASC alone), with a median OS of 6.2 vs. 5.3 months, 
respectively (adjusted hazard ratio 0.69 (P=0.03) (18). 

While cytotoxic regimens continue to be evaluated in 
clinical trials, several genotyping efforts have identified 
specific potentially targetable molecular aberrations in 
BTC and the investigational paradigm for unresectable 
BTC now includes targeted therapy in the front-line and 
treatment-refractory settings. An understanding of these 
evolving treatment paradigms requires an understanding of 
the molecular and genomic underpinnings of the disease. In 
this review we identify the molecular aberrations identified 
in BTC and the emerging therapies which target these 
molecular mutations (Table 1). 

Molecular and genomic characteristics 

The complex molecular pathogenesis of BTC involves 
alterations in multiple pathways including protein kinases 
(FGFR2, BRAF, HER2), epigenetic modification (IDH1/
IDH2), and DNA damage repair (BRCA2, TP53) (30-33). 
The advent of genomic tumor profiling via next-generation 
sequencing (NGS) has allowed for the characterization 
of specific somatic aberrations. In addition, improved 
detection of circulating plasma cell-free DNA may aid 
in genomic profiling when inadequate tissue is obtained 
at biopsy (34). The anatomic location of the tumor—
intrahepatic, extrahepatic, or gallbladder—greatly influences 
the mutational profile likely to be found within the tumor. 
In one series, potentially targetable genetic alterations 

were identified in 39% of 239 analyzed BTC cases (35). 
FGFR2 fusions and IDH1/2 mutations were observed most 
commonly in IH-CCA, PRKACA/PRKACB fusions were 
most common in EH-CCA, and ERBB2/3, TSC1, and 
PTEN alterations were seen in gallbladder cancer. 

Exposure to specific risk factors may be associated with 
differing BTC molecular profiles. A study of 209 patients 
with CCA in Asia and Europe reported higher rates of TP53 
mutations in O. viverrini-related CCA compared to non-O. 
viverrini-related CCA (40% vs. 9%), along with higher 
rates of SMAD4 (19.4% vs. 5.8%) and GNAS (5.6% vs. 
0%) mutations (36). Conversely, there were lower rates of 
BAP1 in O. viverrini-related CCA (2.8% vs. 10.5%) along 
with lower rates of IDH1/2 (2.8% vs. 9%) mutations. In 
another study, TP53 mutations in IH-CCA were more likely 
to be associated with Hepatitis B surface antigen (HBsAg) 
seropositivity and KRAS mutations associated with HBsAg-
seronegative patients (31). Hepatitis B or C positivity may 
also be associated with an increased likelihood of FGFR 
alteration (37). Finally, genomic sequencing of over 500 CCA 
tumors demonstrated four distinct molecular clusters (33).  
The clusters with higher rates of fluke infections had 
significantly more somatic mutations, including higher rates 
of aberrations in ERBB2, TP53, and BRCA 1/2 and lower 
rates of FGFR and IDH 1/2 mutations, and were associated 
with a poorer survival compared to the clusters with lower 
rates of fluke-associated tumors (P<0.001). Further research 
is needed to further characterize the link between risk 
factors, pathogenesis and mutational drivers of the various 
BTCs. 

Multiple studies have found prognostic implications 
for specific genetic alterations in BTC (38-41). Mutations 
in TP53, KRAS, and the MAP/ERK pathway mutation 
have been associated with a poor prognosis, while FGFR 
pathway alterations, and specifically FGFR fusions, have 
been associated with a favorable prognosis and improved 
survival compared to those without fusions (41-43). Data 
on the prognostic implication of aberrations in IDH1/
IDH2, HER2/neu, c-MET, and the PI3K/AKT/mTOR 
pathway are conflicting (32,44-48). While the data are still 
maturing regarding the possible prognostic implications 
of specific genomic mutations, emerging data suggest that 
certain mutations drive cancer growth and progression, thus 
making them prime targets for therapeutic intervention. 

 

FGFR2

The complex fibroblast growth factor (FGF) pathway 



Chinese Clinical Oncology, Vol 9, No 1 February 2020

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2020;9(1):7 | http://dx.doi.org/10.21037/cco.2019.12.11

Page 3 of 15

Table 1 Prospective trials of promising targeted therapies in BTC 

Targetable pathway Study Drug
Total N (N with FGFR  
fusions/alterations)

Results* (overall population, FGFR 
fusion population, FGFR alteration** 
population)

FGFR Javle et al. 2018 (19) Infigratinib 
(BGJ398)

61 (48 FGFR2 fusions,  
11 FGFR2 alterations**)

Overall population:

•	 ORR 14.8%

•	 DCR 75.4%

•	 PFS 5.8 months

FGFR2 fusion cohort:

•	 ORR 18.8%

•	 DCR 83.3%

FGFR altered** cohort:

•	 ORR 0%

Mazzaferro et al. 2019 (20), 
Droz Dit Bussett, et al. 2019 
(21)

Derazantinib 
(ARQ 087)

44 (29 FGFR2 fusions,  
6 FGFR alterations, 9 no 
alteration)

FGFR fusion cohort: 

•	 ORR 20.7%

•	 DCR 82.8%

•	 PFS 5.7

FGFR altered cohort:

•	 ORR 0%

•	 DCR 67% 

•	 PFS 6.7 mo

No FGFR alteration** cohort:

•	 ORR 0%

•	 DCR 22%

•	 PFS 1.5 mo

Park et al. 2019 (22) Erdafitinib 
(JNJ42756493)

17 (11 FGFR 2/3 fusions, 6 
FGFR alterations)

Overall population:

•	 ORR 47%

•	 DCR 80%

•	 PFS 5.6 months

FGFR2/3 fusion cohort:

•	 ORR 67%

•	 DCR 100%

•	 PFS 12.65 months

FGFR altered** cohort:

•	 ORR 16.67%

Table 1 (continued)
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Table 1 (continued)

Targetable pathway Study Drug
Total N (N with FGFR  
fusions/alterations)

Results* (overall population, FGFR 
fusion population, FGFR alteration** 
population)

Vogel et al. 2019 (23) Pemigatinib 
(INCB054828)

146 (107 FGFR2 fusions, 
20 FGFR alterations, 18 no 
alteration)

FGFR2 fusion cohort:

•	 ORR 35.5%

•	 DCR 82%

•	 PFS 6.9 months

•	 OS 21 months

FGFR altered** cohort:

•	 ORR 0%

•	 PFS 2.1 months

No FGF/FGFR alteration cohort:

•	 ORR 0%

•	 DCR 22%

•	 PFS 1.7 mo

Tran et al. 2018 (24) TAS-120 45 (28 FGFR2 fusions, 17 
FGF/FGFR alterations**)

FGFR2 fusion cohort:

•	 ORR 25%

•	 DCR 78.6%

•	 PFS 7.4 months

FGFR altered** cohort:

•	 ORR 17.6%

•	 DCR 76.4%

•	 PFS 6.8 months

IDH 1/2 Lowery et al. 2019 (25) Ivosidenib  
(AG-120)

73 •	 ORR 5% 

•	 DCR 61%

•	 PFS 3.8 months

•	 OS 13.8 months

Abou-Alfa et al. 2019 (26) Ivosidenib  
(AG-120)

185 •	 ORR 2.4%

•	 DCR 53%

•	 PFS 2.7 months 

•	 OS 10.8 months

BRAFV600E Wainberg et al. 2019 (27) Dabrafenib/ 
Trametinib

33 •	 ORR 41%

•	 PFS 7.2 months

•	 OS 11.3 months

Table 1 (continued)
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Table 1 (continued)

Targetable pathway Study Drug
Total N (N with FGFR  
fusions/alterations)

Results* (overall population, FGFR 
fusion population, FGFR alteration** 
population)

PI3K/AKT/mTOR Lau et al. 2018 (28) Everolimus 27 •	 ORR 12%

•	 DCR 48%

•	 PFS 5.5 months 

•	 OS 9.5 months

VEGF Sun et al. 2019 (29) Regorafenib 43 •	 ORR 11%

•	 DCR 56%

•	 PFS 15.6 weeks

•	 OS 31.8 weeks

*, as reported per study population and publication; **, other alterations include mutations and amplifications in FGFR. N, number of  
enrolled subjects; ORR, overall response rate; DCR, disease control rate; PFS, median progression-free survival; OS, median overall  
survival; FGFR, fibroblast growth factor receptor; IDH, isocitrate dehydrogenase; BRAF, v-Raf murine sarcoma viral oncogene homolog B; 
MEK, mitogen-activated protein kinase; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B; mTOR, mammalian target of rapamycin; 
VEGF, vascular endothelial growth factor. 

is involved in a wide array of biological processes from 
embryonal development to angiogenesis and wound  
repair (49). It consists of four transmembrane tyrosine kinase 
receptors (FGFR 1-4) and 22 FGFs, with downstream 
activation of RAS/RAF/MEK, JAK/STAT, PI3K/AKT 
pathways (40). Dysregulated FGF signaling has been 
associated with tumor proliferation, migration, and 
angiogenesis in a variety of malignancies (42,50). In BTC, 
the most common FGFR pathway aberrations are gene 
fusions involving FGFR2, which are seen at a frequency 
of 10–16% in IH-CCA, although point mutations and 
gene amplifications are also observed (46,51,52). FGFR2-
BICC1 was the first fusion reported in cholangiocarcinoma 
in 2013 (53), and several subsequent studies have uncovered 
more than 50 additional fusion partners. FGFR pathway 
abnormalities are rarely seen in EH-CCA or GBC (46,51). 
In addition, studies in North American cohorts have shown 
a significantly higher proportion of FGFR2 aberrations 
among women (39,40), a trend not seen in Asian cohorts (54). 

FGFR inhibitors have demonstrated efficacy in patients 
with FGFR-altered advanced refractory cholangiocarcinoma 
in multiple phase I and II studies. Infigratinib (BGJ398), 
an oral selective pan-FGFR kinase inhibitor, showed an 
overall response rate (ORR) of 14.8%, disease control rate 
(DCR) of 75.4%, and a median PFS of 5.8 months in a 
phase II single arm trial (19). This was driven by patients 
with FGFR2 fusions where the ORR was 18.8% and the 

DCR was 83.3%. No responses were seen in patients 
with FGFR amplifications or mutations. Adverse events 
included hyperphosphatemia (72.1%), fatigue (36.1%), 
stomatitis (29.5%), and alopecia (26.2%). Derazantinib 
demonstrated an ORR of 21% and DCR of 83%, with a 
median progression-free survival of 5.7 months, in patients 
with FGFR fusions (20,21). While no responses were seen 
in the FGFR mutated or amplified group, 67% achieved 
disease control with a median progression-free survival of 
6.7 months and OS has not been reached in either arm (20). 

Preliminary data on pemigatinib, an FGFR-selective 
inhibitor of FGFR 1-3, demonstrated an ORR of 35.5%, 
including a partial response rate of 32.7% in patients with 
FGFR2 fusions, in the recently reported FIGHT-202 
study (23). DCR in the fusion population was 82%, 
with a duration of response of 7.5 months, and a median 
progression-free survival and preliminary OS of 6.9 and 
21.1 months, respectively. Similar to infigratinib, no 
objective responses were seen with pemigatinib in patients 
with FGFR amplified or mutated patients (DCR was 40%, 
consisting of stable disease only), and median progression-
free survival was 2.1 months. The adverse event profiles 
of pemigatinib and derazantinib were similar to that 
of infigratinib (20,23). Additional studies of futibatinib 
(TAS120) (55), Debio 1347 (56), and Erdafitinib (57) 
are ongoing. Phase III studies comparing single agent 
FGFR inhibitor to standard cisplatin/gemcitabine in the 
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first line metastatic setting are underway with infigratinib 
(NCT03773302) and pemigatinib (NCT03656536).

A limitation of the ATP-competitive FGFR inhibitors 
is the development of resistance after exposure. In-vitro, 
resistance develops via FGFR2 kinase domain mutations (58).  
Goyal et al. reported that three patients with IH-CCA 
harboring an FGFR2 translocation who initially responded 
to treatment with infigratinib subsequently acquired 
resistance via polyclonal recurrent mutations in the FGFR2 
kinase domain (50). Of note, FGFR2 V564F mutation, 
a gatekeeper mutation that leads to steric clash between 
the FGFR2 binding domain and infigratinib, emerged in 
all three patients. The irreversible pan-FGFR inhibitor, 
TAS120, covalently binds to the P-loop cysteine residue of 
FGFR and has shown potency in preclinical models against 
acquired FGFR2 kinase domain mutations (59). Goyal et al. 
recently showed proof of concept of TAS120 overcoming 
acquired resistance to the ATP-competitive inhibitors 
infigratinib and Debio1347 in four patients with FGFR2-
fusion positive IH-CCA (60). Functional assessment and 
modeling of the acquired FGFR2 kinase domain mutations 
showed that each of the three inhibitors has different 
spectrums of activity, with strategically sequencing of FGFR 
inhibitors potentially prolonging duration of benefit from 
an FGFR inhibition strategy in these patients. 

IDH 1/2

Isocitrate dehydrogenase 1 and 2 (IDH1/2) are enzymes 
which regulate metabolism, DNA repair, and epigenetic 
modulation (61). IDH1/2 normally catalyze the conversion 
of isocitrate to α-ketoglutarate. However, mutations 
result in neomorphic activity of IDH, leading to increased 
production of 2-hydroxyglutarate (2HG), a suspected 
oncometabolite that can lead to aberrant DNA and 
histone methylation and epigenetic changes (51,62,63). 
2-hydroxygluatarate can be measured in serum and may 
have a role as a possible biomarker as significantly higher 
levels of 2HG have been found in patients with IDH1/2 
mutations than patients with wildtype IDH1/2 (64,65). 
Initially discovered in hematologic malignancies, mutations 
in IDH1/2 occur in approximately 20–25% of IH-CCA 
without significant frequency in EH-CCA or gallbladder 
cancer. Unlike FGFR2 fusions, there appears to be no 
consistent report of difference in age, sex, or OS between 
patients with IDH mutant and IDH wild-type tumors (48). 

Ivos idenib,  an IDH1  inhibi tor,  was  s tudied in 
a phase I trial of multiple solid tumors including 

cholangiocarcinoma, chondrosarcoma, and glioma (66). In 
the cholangiocarcinoma cohort (25), 6% of patients had a 
confirmed PR while 56% experienced stable disease; the 
PFS at 6 months was 40% with no dose-limiting toxicities. 
Adverse events included fatigue (21%), nausea (18%), 
vomiting (12%), diarrhea (10%). The subsequent ClarIDHy 
study is a randomized phase III trial of 185 patients with 
IDH-1 mutated, treatment-refractory cholangiocarcinoma 
who received either ivosidenib or placebo with crossover 
allowed for the placebo arm at disease progression. 
Preliminary data show a DCR of 53% vs. 28% for placebo 
and a median PFS of 2.7 vs. 1.4 months (P<0.001); no 
patients on the placebo arm were progression-free at 6 or 
12 months. Median OS showed a trend towards benefit with 
ivosidenib (10.8 vs. 9.7 months, P=0.06) and all subgroups 
favored ivosidenib (26).

Other inhibitors of IDH1/2 are currently being evaluated 
in trials of IDH1 or IDH2 mutant advanced solid tumors 
including cholangiocarcinoma. The IDH1 inhibitor 
FT2012 is being studied alone and in combination with 
other drugs in a phase I/II trial in relapsed/refractory 
patients with IDH1 mutations across multiple tumor types 
(NCT03684811). The IDH1 inhibitor BAY1436032 has 
shown efficacy in AML (67) and is currently undergoing 
a phase I trial in advanced solid tumors (NCT02746081). 
Additionally, the PARP inhibitor olaparib is being studied in 
a phase II trial of relapsed/refractory advanced solid tumors 
with IDH1/2 mutations NCT03212274). 

Work to identify resistance mechanisms to ivosidenib 
and other IDH1 inhibitors is ongoing. In the phase I study 
of ivosidenib in cholangiocarcinoma, 37 (59%) of patients 
had paired pre-treatment and post-treatment sequencing of 
tumor (68). Six patients, including four with stable disease 
and one with a partial response, developed new oncogenic 
mutations. These included mutations in IDH1 and IDH2 
(IDH2-R172V, IDH1-R132F) and mutations in TP53, 
ARID1A. POLE, PIK3R1, and TBX3. Further work to define 
potential resistance mechanisms will be necessary to better 
understand optimal treatment strategies and additional 
targets in this patient population.

BRAF/MEK

The mitogen-activated protein kinase (MAPK)/extracellular 
signal-regulated kinase (ERK), or MEK pathway, is involved 
in cell proliferation and survival and is frequently mutated 
in tumorigenesis (69). One of the strongest activators of the 
MEK pathway is a mutation in v-Raf murine sarcoma viral 
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oncogene homolog B (BRAF); the most common mutation 
in BRAF is an activating mutation resulting from glutamic 
acid substituting for valine at amino acid 600 (V600E) 
(69,70). Although common in melanoma and papillary 
thyroid cancer, the incidence of this mutation is BTC is low 
at about 1–6% with a preponderance of cases seen in IH-
CCA (52,71).

The ROAR trial, a phase II basket trial of 178 patients 
with BRAF V600E mutations, evaluated the combination 
of the BRAF inhibitor dabrafenib and the MEK inhibitor 
trametinib across multiple diseases including 33 patients 
with advanced refractory BTC (27). With a median follow-
up of 8 months, the ORR was 41%, with a median PFS of 
7.2 months and a median OS of 11.3 months, suggesting 
that this may be an active regimen in this small population. 
A phase I/IIa basket trial in patients with relapsed/
refractory solid tumors including BTC using PLX8394, an 
oral inhibitor of mutant and wild-type BRAF, is ongoing 
(NCT02428712). 

MEK inhibitors have also been evaluated in patients 
with cholangiocarcinoma and have shown modest activity. 
A phase II study of the MEK inhibitor selumetinib in 28 
patients with advanced BTC, including 39% of whom had 
received prior therapy, showed a median PFS of 3.7 months 
and median OS of 9.8 months with a favorable safety  
profile (72). The phase 1b ABC-04 study of gemcitabine/
cisplatin/selumetinib showed a median PFS of 6.4 months 
and manageable toxicities at the established dose but the 
regimen had insufficient efficacy to be developed further (73).

DNA damage repair proteins

Alterations in DNA damage repair pathways have also 
been associated with BTC, providing a potential target for 
therapy. BRCA2 mutation carriers have an increased risk of 
BTC, with an incidence of ~4% (52). Olaparib is a PARP 
inhibitor approved for germline BRCA1/2 mutation carriers 
with breast or ovarian cancers and activity in BRCA-
associated unresectable or metastatic pancreatic cancer 
after front-line platinum-based chemotherapy. Olaparib has 
demonstrated clinical activity in case reports of 2 patients 
with advanced BTC and a BRCA-1 and BRCA-2 mutation, 
respectively, although further work is needed to define any 
potential benefit (74,75). Mismatch repair deficiency has 
also been noted in BTCs, potentially identifying a subset of 
patients susceptible to immune checkpoint inhibition (76). 
Studies of PARP inhibitors alone or in combination with 
immune checkpoint inhibitors in platinum-sensitive BTC 

patients are ongoing (NCT04042831, NCT03639935).

HER2/EGFR pathway

The HER pathway consists of four receptors (HER1/EGFR, 
HER2, HER3, HER4) that homo- or hetero-dimerize, 
resulting in downstream activation of multiple pathways 
including the MAPK and PI3K/AKT pathways (77).  
Approximately 5–15% of BTC tumors are HER2-positive 
by IHC and/or FISH, and are more commonly expressed 
in gallbladder cancers and EH-CCA with no differences in 
expression by geographic region (78,79). HER2 expression 
has not been shown to have clear prognostic significance in 
advanced BTC (78,80).

The importance of targeting the HER2 pathway in 
BTC is emerging, with some retrospective data suggesting 
efficacy of HER2-targeted therapy in HER2 amplified 
tumors (81). Preliminary activity of pertuzumab + 
trastuzumab in HER2-positive metastatic BTC has been 
reported in a study of 11 patients, with 4 PRs and 3 SDs (82).  
The pan-HER TKI neratinib was studied in a solid tumor 
basket trial involving 9 patients with HER-2 mutant BTC 
and showed a response in 2 of these patients at 8 weeks 
and a median PFS of 2.8 months (83). Surprisingly, other 
pan-HER TKIs including lapatinib and apatinib have not 
shown significant efficacy in advanced BTC (84,85). In a 
pooled analysis of three phase I studies of patients with 
refractory BTC, varlitinib, a pan-HER TKI, demonstrated 
a PR of 27%, SD of 43%, and a DCR of 70% across 37 
evaluable patients (86). Trials of varlitinib, trastuzumab 
plus pertuzumab, and trastuzumab emtansine in are 
ongoing in patients with HER2-altered BTC or in basket 
trials of HER2 altered solid tumors (NCT03093870, 
NCT03613168, NCT02693535, NCT02992340). 

While epidermal growth factor receptor (EGFR) is 
overexpressed in 11–27% of IH-CCA, 5–20% of EH-
CCA, and 1–5% of GBC (79-81,87), studies are mixed 
regarding EGFR expression and prognosis (79,80). 
However, the clinical utility of targeting this pathway has 
been disappointing (88). A phase III study of gemcitabine 
and oxaliplatin, with or without the EGFR-targeted 
TKI erlotinib, showed an improved response rate but no 
difference in PFS or OS (89). A recent meta-analysis of trials 
evaluating gemcitabine and oxaliplatin plus EGFR-targeted 
therapy showed an overall improvement in PFS with both 
TKIs and antibodies [hazard ratio (HR) of 0.8 (P=0.03)], 
although there were higher rates of adverse events and no 
difference in OS (90). While combining EGFR inhibitors 



Iyer et al. Targets for therapy in BTCs

© Chinese Clinical Oncology. All rights reserved.   Chin Clin Oncol 2020;9(1):7 | http://dx.doi.org/10.21037/cco.2019.12.11

Page 8 of 15

with cytotoxic therapy should not be considered standard of 
care, these analyses suggest that further work to define the 
optimal EGFR-targeted combination or BTC subset may 
be warranted. 

Vascular endothelial growth factor (VEGF)

VEGF signaling leads to tumorigenesis via neovascularization 
and cell proliferation. VEGF overexpression is common 
in CCA and associated with intrahepatic metastases in IH-
CCA (79). Single arm studies of the humanized anti-VEGF 
monoclonal IgG1 antibody bevacizumab combined with 
chemotherapy have demonstrated a median PFS of 6–7 
months (91,92) with variable OS, while a single arm phase II 
study combining bevacizumab with erlotinib in patients with 
no prior treatment for advanced disease demonstrated a high 
rate of disease control (12% PR, 51% SD) and a median OS 
of 9.9 months (93).

Small molecule TKIs directed against the VEGF 
pathway have also demonstrated mixed results. The 
randomized phase II ABC-03 study evaluated gemcitabine/
cisplatin with or without cediranib in advanced BTC; no 
survival benefit was shown with the addition of cediranib 
and the rates of grade 3 or 4 toxicity were higher (94). 
Studies of cabozantinib, sunitinib, vandetanib, and sorafenib 
(with or without chemotherapy) have not demonstrated 
significant activity (95-100). However, a recent single-arm 
phase II trial of regorafenib in advanced refractory BTC 
showed modest activity with an objective response of 11% 
but a DCR of 56% and a median OS of 32 weeks (29).  
In addition, the combination of VEGF inhibitors and 
immune checkpoint inhibitors are currently being tested. 
A retrospective, real-world Chinese study of lenvatinib 
and nivolumab or pembrolizumab in 60 previously treated 
patients with BTC demonstrated an objective response rate 
of 29.4% and DCR of 86.3%, signaling synergy in targeting 
these two pathways simultaneously, with promising median 
progression-free survival of 5.0 months and median OS of 
13.0 months (101). 

Further work is needed to understand the optimal 
strategy for targeting angiogenesis in BTC. A meta-analysis 
of 964 patients across 7 trials showed an improvement in 
ORR when anti-VEGF therapy was added to chemotherapy, 
but did not detect a difference in PFS or OS (102). Newer 
agents are now being explored, including an ongoing phase 
III study of a combination of ramucirumab, a monoclonal 
antibody against VEGFR2 (NCT02520141), and apatinib, 
a VEGFR2 TKI, in the second line setting for IH-CCA 

(NCT03521219). Ramucirumab has also been evaluated 
with cisplatin and gemcitabine in a randomized global phase 
II study compared to cisplatin and gemcitabine alone, and 
results are awaited (NCT02711553). The combination of 
VEGF inhibition and immune checkpoint inhibition is also 
being prospectively evaluated in BTC, including lenvatinib/
pembrolizumab (NCT03895970). Identifying susceptible 
subgroups or optimal patient populations who will benefit 
from antiangiogenic-based therapy will be necessary before 
this approach can be incorporated into routine standards of 
care. 

PI3K/AKT/mTOR pathway

The PI3K/AKT/mTOR pathway regulates cell cycle 
progression, proliferation, and angiogenesis and interacts 
with the RAS/RAF/MEK  pathway through mTOR  
signaling (103). PIK3CA mutations have been found in 
0–6% of EH-CCA and 0–8% of IH-CCA, and in 5–15% 
of GBC (31,52,104), although mutations in the PI3K/
AKT/mTOR pathway occur up to 40% in EH-CCA and 
25% in IH-CCA (42,105). Although dysregulation of 
the PI3K/AKT/mTOR pathway is thought to contribute 
to tumor progression, no clear prognostic value of these 
mutations has been demonstrated in BTC (52,106-108). 
Preclinical studies of PI3K pathway inhibitors in BTC have 
led to clinical studies of both mTOR inhibitors and PI3K 
inhibitors in patients with BTC. 

A small phase II study of everolimus monotherapy in 
previously treated BTC demonstrated a modest PFS of  
3.2 months and OS of 7.7 months (109), while a phase 
II study of the same agent in the first-line setting 
demonstrated a PFS of 5.5 months and OS of 9.5 months, 
with disease control lowest for GBC (28). A phase I 
study of copanlisib, an PI3K inhibitor, in combination 
with gemcitabine and cisplatin in advanced malignancies 
including BTC reported a response rate of 17% in patients 
with BTC, although numbers were small (110). A phase 
II study of copanlisib (BAY 80-6946) in combination with 
gemcitabine and cisplatin in advanced cholangiocarcinoma 
is ongoing (NCT02631590). 

c-MET

c-MET and its ligand hepatocyte growth factor (HGF), 
involved with cell proliferation, migration, and invasion (111).  
c-MET is overexpressed in 11–58% in IH-CCA and 0–16% 
in EH-CCA (80,112,113). The prognostic value of c-MET 
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overexpression is unclear, with some studies associating 
c-Met overexpression with a worse overall 5-year OS (112) 
while another study found no association with survival (113).  
Studies of small molecule multikinase inhibitors that 
target MET have been evaluated in early phase studies 
in advanced BTC. A phase II study of cabozantinib, 
a multi-kinase inhibitor of MET, AXL, and VEGFR, 
demonstrated a median PFS of 1.8 months and median 
OS of 5.2 months in patients with previously treated 
advanced CCA but had high rates of grade 3/4 toxicity (114).  
Tivantinib, another oral c-MET inhibitor, has shown 
activity in combination with gemcitabine; out of 56 
evaluable patients 11 (19%) patients had a PR and 26 (46%) 
had SD, and 10 of these patients with PR or SD had prior 
gemcitabine exposure (115). A phase I study of multiple 
tumor types treated with merestinib, a small molecule 
inhibitor of MET and several other kinases, showed one CR 
and three PRs in patients with cholangiocarcinoma (116).  
A randomized global phase II trial of gemcitabine and 
cisplatin with or without merestinib in the first line 

setting has completed accrual and results are awaited 
(NCT02711553).

Conclusions

Once considered to be three diseases under one umbrella, 
BTC has been shown to have heterogeneity in presentation, 
prognosis, and response to treatment beyond anatomic 
subgroups. The advent of next generation sequencing has 
allowed for the classification of BTC into molecular subsets 
with distinct genomic profiles that have influenced the 
evolving treatment paradigms. Many of the mutations have 
proven to be ripe therapeutic targets, demonstrating efficacy 
in the refractory setting. Thus, early tumor molecular 
profiling is critical for patients with newly-diagnosed 
advanced BTC. Studies are currently underway to evaluate 
the targeting of driver mutations to the front-line setting 
and also as maintenance after initial clinical benefit on 
cytotoxic therapy (Table 2); the role of these targeted 
therapies in the adjuvant setting remains to be determined. 

Table 2 Currently enrolling trials of targeted therapies for biliary tract cancers, as available on clinicaltrials.gov (117)

Pathway targeted
Clinical trial  

identifier
Trial arms BTC population Phase

Line of  
treatment

FGFR NCT03773302 Infigratinib vs.  
Cisplatin/Gemcitabine

Cholangiocarcinoma with FGFR gene 
fusions/translocations 

III 1st 

FGFR NCT03656536 Pemigatinib vs.  
cisplatin/gemcitabine

Cholangiocarcinoma with FGFR2 gene 
rearrangement

III 1st 

FGFR NCT04093362 Futibatinib vs.  
cisplatin/gemcitabine

Cholangiocarcinoma with FGFR2 gene 
rearrangement 

III 1st 

FGFR NCT03230318 Derazantinib FGFR2 Gene Fusion-, Mutation- or  
Amplification- Positive Intrahepatic  
Cholangiocarcinoma

II 2nd 

FGFR NCT02699606 Erdafitinib FGFR pathway altered  
cholangiocarcinoma

II 2nd

FGFR NCT02052778 Futibatinib FGF/FGFR aberrant cancers II Multiple lines

FGFR/VEGF NCT03873532 Surufatinib vs. capecitabine All Biliary Tract Cancers II/III 2nd 

IDH1 NCT03684811 FT2012 IDH1 mutated biliary tract cancers I/II Refractory

IDH1 NCT02746081 BAY1436032 IDH1 mutated solid tumors I Refractory 

IDH 1/2 NCT03212274 Olaparib IDH1 or IDH2 mutated  
cholangiocarcinoma

Refractory

BRAF NCT02428712 PLX8394 BRAF mutated solid tumors I/II Refractory

VEGF NCT02520141 Ramucirumab All Biliary Tract Cancers II Refractory

Table 2 (continued)
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Table 2 (continued)

Pathway targeted
Clinical trial  

identifier
Trial arms BTC population Phase

Line of  
treatment

VEGF NCT03521219 Apatinib Intrahepatic Cholangiocarcinoma II Refractory

c-MET or VEGF NCT02711553 Merestinib/placebo +  
cisplatin/gemcitabine or  
ramucirumab/placebo +  
cisplatin/gemcitabine

All Biliary tract Cancers II 1st 

VEGF and immune 
checkpoint inhibition

NCT03895970 Lenvatinib + pembrolizumab All Biliary Tract Cancers II 2nd

DNA damage repair NCT04042831 Olaparib BTCs with somatic or germline  
mutations in ATM, ATR, CHEK2, BRCA 
1/2, RAD51, BRIP1, PALB2, PTEN, FANC, 
NBN, EMSY, MRE11, ARID1A without 
progression on platinum-based therapy

II 1st

DNA damage repair 
and immune  
checkpoint inhibition

NCT03639935 Rucaparib/nivolumab All Biliary Tract Cancers without  
progression on platinum-based therapy

II 1st

HER2 NCT03613168 Trastuzumab +  
cisplatin/gemcitabine

HER2+ Biliary Tract Cancers II 1st 

HER2 NCT02992340 Varlitinib +  
cisplatin/gemcitabine

HER2+ Biliary Tract Cancers I/II 1st 

HER2 NCT03093870 Varlitinib/capecitabine vs. 
Placebo/capecitabine

HER2+ Biliary Tract Cancers II/III 2nd 

mTOR NCT02631590 Copanlisib +  
cisplatin/gemcitabine

HER2+ Biliary Tract Cancers II 1st 

If targeted therapies become the preferred approach for 
subsets of BTCs, cumulative chemotherapy-related toxicity 
could be delayed or spared for many patients. 

Molecular sequencing at the time of progression is 
also identifying mechanisms of resistance and potential 
therapeutic targets, as third-generation inhibitors are 
being developed to overcome point mutations that arise 
with initial targeted therapy. As this field evolves, it may 
be necessary to sample a tumor’s genome sequentially with 
either repeat tumor biopsy or liquid biopsy platforms or 
both. As technologies advance to more comprehensively 
and more economically interrogate the tumor genome and 
transcriptome, we anticipate the identification of additional 
potential therapeutic targets and mechanisms of resistance 
ripe for investigation. For now, we await the results of 
a bevy of exciting trials in the refractory and front-line 
metastatic setting that will hopefully redefine how we 
approach BTCs in the years to come.
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