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Glioblastoma (GBM) is  the most  aggress ive  and 
unfortunately most common, malignant primary brain 
tumor, with a median survival of 10–31 months depending 
on age at diagnosis, extent of resection, treatment and 
molecular prognostic factors (1-4). Angiogenesis is a 
central feature of GBM, with microvascular glomeruloid 
proliferation requisite for histological diagnosis (5,6). 
Endothelial cells comprise the tumor blood vessels, 
facilitating delivery of nutrients and oxygen. In addition, 
endothelial cells directly support glioma progenitor cell 
proliferation through intercellular signaling pathways, 
contributing to tumor growth and resilience (7).

Mechanisms of angiogenesis

Angiogenesis in gliomas involves various mechanisms: 
co-option of preexisting vessels (8); de novo angiogenesis 
through extension of nearby vessels (9); differentiation 
of bone marrow-derived endothelial progenitors (10); 
multiplication of vessels through splitting of existing vessels 

(also known as intussusception) (11); and vascular mimicry 
by glioma stem cells that form luminal cylinders resembling 
vessels (12-15).

Angiogenesis is regulated by intricate and overlapping 
signaling pathways, which involve both hypoxia-dependent 
and -independent processes. In hypoxic environments, 
hypoxia inducible factor 1 subunit alpha (HIF-1α) is 
upregulated, driving expression of pro-angiogenic genes 
such as vascular endothelial growth factor (VEGF). 
VEGF protein binds to its receptor VEGFR and activates 
additional growth factors that mediate endothelial 
sprouting, migration, and endovascular permeability. 
Hypoxia also induces matrix metalloproteinase (MMP) 
production that mediates stromal disintegration and 
endothelial migration (16,17). Angiopoietin 1 (ANG1) and 
ANG2 have a complicated interplay, but work together 
to help formalize these primitive vessels. ANG1 protein 
stabilizes vessels by facilitating cell interactions that support 
vasculature integrity (18). The role of ANG2 depends on 
the presence or absence of VEGF. When VEGF is present, 
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ANG2 acts via tyrosine kinase with immunoglobulin-like 
and EGF-like 1 (TIE1) receptors to promote angiogenesis 
and stimulate the migration and differentiation of 
endothelial cells, through Notch and ephrin-A2 signaling, 
respectively (19-22). When VEGF is absent, ANG2 acts 
via TIE2 receptors to destabilize blood vessels, causing 
endothelial apoptosis and vessel regression (19). In low 
nutrient environments, VEGF can be upregulated through 
peroxisome-proliferator-activated receptor-γ coactivator-
1α (PGC-1-α) independently of hypoxia (23). In addition, 
several different gene mutations that are common in 
gliomas, including platelet-derived growth factor (PDGF), 
epithelial growth factor receptor (EGFR), p53 (TP53), 
RB transcriptional corepressor 1 (RB1), von Hippel-
Lindau tumor suppressor (VHL) and phosphate and tensin 
homolog (PTEN), all stabilize HIF-1α causing subsequent 
upregulation of VEGF (24,25).

In addition to VEGF-related actions on angiogenesis, 
stromal cell-derived factor 1 protein (SDF-1, also known as 
C-X-C motif chemokine ligand 2, CXCL2), and its receptor 
CXCR4 (C-X-C motif chemokine receptor 4), also recruit 
bone marrow-derived progenitors from the circulation into 
the tumor that subsequently differentiate into endothelial 
cells and pericytes (26-28). Other growth factor pathways 
including fibroblast growth factor (FGF), phosphoinositide 
3-kinase (PIK3), PDGF, and transforming growth factor 
β1 (TGFβ1), mediate angiogenesis through a combination 
of mechanisms that regulate VEGF expression, stimulate 
endothelial cell proliferation, and regulate expression of 
proteases implicated in vessel dissolution and migration 
(29-32). As these processes unfold, the tumor vasculature 
manifests as irregular, poorly constructed, and poorly 
connected vessels (33). This disorganized and leaky system 
creates spatiotemporal heterogeneity in tumor oxygenation 
that may impact the development and expansion of the 
tumor’s genetic subclone populations.

Therapeutic strategies targeting angiogenesis

Targeting angiogenesis through VEGF blockade and 
other mechanisms has been efficacious in other cancers. 
In addition to triggering tumor cell death via deprivation 
of oxygen and nutrients, targeting angiogenesis may lead 
to the transient normalization of the tumor vasculature 
and improved uptake of cytotoxic chemotherapy (34). In 
addition to observations that GBM is a highly vascularized 
tumor, several studies correlated VEGF expression with 
glioma grade and prognosis (16,35,36). Thus, angiogenesis 

became a prime target of therapy in GBM as well.
While there are many inhibitors targeting different parts 

of the angiogenesis cascade, the only approved treatment 
in the United States (US) is bevacizumab, a recombinant 
human monoclonal antibody that binds to and sequesters 
VEGF, preventing activation of its receptors. In 2004, it was 
first FDA-approved for treatment of advanced colorectal 
cancer, where it reduced microvascular density and blood 
perfusion (37). The first clinical trials of bevacizumab 
in GBM were in recurrent disease in the “AVF3708g/
BRAIN” and “NCI 06-C-0064E” phase II trials. In these 
trials, bevacizumab monotherapy or combination therapy 
with irinotecan, demonstrated objective response rates (28–
40%) and progression-free survival at 6 months (PFS6) of 
40–50% that were markedly improved compared to higher 
historical controls, but no improvement in overall survival 
(OS) (38-40). These studies led to conditional accelerated 
FDA approval of bevacizumab in recurrent GBM in 
2009, approved as monotherapy given the added toxicity 
in the combination arm (38,39). The phase III European 
Organization of Research and Treatment of Cancer 
(EORTC) 26101 trial in recurrent GBM investigated 
lomustine with or without bevacizumab, and combination 
therapy also demonstrated improvement in PFS (1.5 to  
4.2 months) but no change in OS (41). Both the AVF3708g 
and EORTC 26101 trials demonstrated reduced reliance on 
steroids. In EORTC 26101, more patients on bevacizumab 
were able to completely stop steroids than patients in the 
control arm (23% vs. 12%). Based on the results of this 
trial, bevacizumab received full approval for treatment of 
recurrent GBM in 2017.

Bevacizumab was also investigated in newly diagnosed 
GBM in two large randomized, double-blinded, phase III 
trials—Radiation Therapy Oncology Group (RTOG) 0825 
and AVAglio. Both trials demonstrated an improvement in 
PFS by 3.4–4.4 months with addition of bevacizumab to 
standard temozolomide and radiation, but no improvement 
in OS (42,43).

Aflibercept, also known as VEGF trap, is a recombinant 
fusion protein that binds to circulating VEGF-A and 
VEGF-B, as well as placenta growth factor (PGF), and 
inhibits binding to VEGF receptors and downstream 
signaling. A phase II trial in recurrent malignant glioma 
demonstrated PFS6 of 7.7% in GBM, however the study 
was notable for high dropout attributed to significant 
toxicities (44).

Tyrosine kinase inhibitors (TKIs) are small molecules 
that target one or many tyrosine kinase receptors, including 
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VEGFR, EGFR, PDGFR, and FGFR. Sunitinib and 
sorafenib both target VEGFR in addition to c-Kit and 
PDGFR, and are shown to improve survival in other 
cancers including metastatic renal and hepatic cell 
carcinoma (45,46). However, a phase II trial looking at 
sunitinib monotherapy in bevacizumab-naïve and -resistant 
recurrent GBM demonstrated no improvement in PFS or 
OS (47). Sorafenib was tested in a phase I trial of recurrent 
GBM with modest effect on outcomes (median PFS  
7.9 months and OS 17.8 months), but several dose-limiting 
toxicities (48). Phase III trial of cediranib, another inhibitor 
of VEGFR, c-Kit and PDGFR, versus lomustine versus 
combination failed to meet its primary endpoint of PFS in 
recurrent GBM (49). Enzastaurin, which targets the protein 
kinase C and PI3K/AKT serine/threonine 1 pathways, also 
failed to meet its primary endpoint of improvement in PFS 
or OS in a phase III trial in recurrent GBM comparing 
enzastaurin versus lomustine (50).

Unfortunately,  target ing other components  of 
angiogenesis has also demonstrated limited efficacy. 
Trebananib (AMG386),  a peptide fused to the Fc 
immunoglobulin protein, inhibits ANG1 and ANG2 
ligands from interacting with the TIE2 receptor. Phase II 
study of trebananib versus combination with bevacizumab 
in recurrent GBM showed no improvement compared 
to historical OS of bevacizumab monotherapy (51). 
Cilengitide, an antagonist of integrins αvβ3 and αvβ5 that 
mediate vascular stability, did not improve PFS or OS in 
combination with standard therapy for newly diagnosed 
GBM (52). In addition to the treatments discussed above, 
there are many additional clinical trials using medications 
targeted toward angiogenesis, in different phases of 
development (Table 1).

Pathways of resistance

Despite the biologic rationale and early promise of anti-
angiogenic therapies, no agent in isolation or in combination 
has yet demonstrated an improvement in survival in GBM. 
Mechanisms of resistance are multifactorial and involve 
(I) upregulation of VEGF-independent angiogenesis; 
alternative methods of vasculogenesis including (II) 
recruitment of bone marrow-derived progenitors, (III) 
vascular mimicry and (IV) vessel co-option; (V) tumor cell 
autophagy; and (VI) tumor cell migration away from the 
tumor center and invasion into surrounding brain tissue 
(Figure 1). In addition to these pathways, there is some data 
that tumors treated with TKIs may acquire mutations in 

tyrosine kinase domain that dampen the response to TKIs, 
as seen with EGFR inhibitors gefitinib and erlotinib (90).

Downregulation of VEGF  leads to upregulation 
of other proangiogenic pathways, including PDGF, 
FGF, phosphatidylinositol glycan anchor biosynthesis 
class F (PlGF), hepatic growth factor (HGF)/c-MET 
protooncogene, ANG1, ANG2, delta4-notch (DLL4-
Notch), and interleukins (12,91,92). Hypoxia resulting from 
treatment with VEGF inhibitors upregulates HIF-1α, which 
in turn increases expression of ANG2 (93). FGF, which is 
involved in developmental and oncologic angiogenesis, may 
mediate resistance to VEGF inhibitors such as cediranib 
(94,95). In addition to regulation of FGF and ephrin 
signaling pathways, the DLL4-Notch pathway may also 
mediate resistance to VEGF inhibition by stabilization of 
larger vessels (96).

B l o c k a d e  o f  V E G F / V E G F R  s i g n a l i n g  d r i v e s 
compensatory mechanisms of tumor vasculogenesis. 
Increased vascular co-option was seen in HIF-1α transgenic 
knockout mice, as well as GBM mouse xenograft models 
treated with a neutralizing VEGF antibody (10,97). In 
humans, co-option was observed in resected tumor samples 
after pre-surgery exposure to bevacizumab or cediranib 
(98,99). VEGF/VEGFR blockade also leads to de novo 
blood vessel formation and stabilization via the VEGF-
independent pathways described above (10,99-106).

Independent of increasing angiogenesis, disease 
resistance to anti-angiogenic agents may be mediated by 
other mechanisms of tumor perseverance. The hypoxia-
induced pathways above also drive tumor progression 
through expansion of a HIF-regulated tumor progenitor 
population (107). Tumor cells under hypoxic stress may 
also evade immediate cell death with autophagy-driven 
sequestering of damaged cell components, mediated by 
HIF-1α and B-cell CLL/lymphoma 2 (BCL2)-interacting 
protein 3 (BNIP3) (100). In addition to in situ resilience, 
tumor cells treated with anti-angiogenic agents migrate 
and invade away from hypoxic areas, demonstrated both in 
mouse models of GBM (108,109) and in humans (110,111). 
This invasion is often perivascular in nature along blood 
vessels remaining after anti-angiogenic treatment, with 
tumor cells co-opting pre-existing vessels in a VEGF-
independent manner (97). This invasion is seen on MRI 
as non-enhancing disease and can be multifocal and thus 
more difficult to address with focal treatments (surgery, 
radiation, etc.) at the time of recurrence (26,101,108). 
This invasive phenotype may be mediated through 
upregulation of genes that facilitate cellular motility as 
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Figure 1 Mechanisms of resistance to anti-VEGF therapy. Resistance to VEGF targeted therapy is multifactorial, involving initial non-
responsiveness of tumor cells to anti-VEGF therapy, as well as later acquired resistance via several mechanisms. [1] Upregulation of 
angiogenesis through VEGF-independent pathways, including FGF, PlGF, HGF, c-MET, ANG1, ANG2, and interleukins. [2] Increased 
recruitment of bone-marrow derived progenitors, including mesenchymal stem cells and endothelial progenitor cells, which differentiate 
into pericytes and endothelial cells, respectively, to populate new blood vessels. [3] Tumor cells under hypoxic stress sequester damaged cell 
components, in a process called “autophagy”, which delays cellular apoptosis. [4] Tumor cells treated with anti-angiogenic agents migrate 
and invade away from hypoxic areas, making treatment with surgery and radiation more difficult. [5] Tumor cells in hypoxic environments 
will migrate toward blood vessels in the nearby normal brain, and “co-opt” these vessels for their supply of oxygen and nutrients. [6] Tumor 
cells can change their shape to resemble endothelial cells, and will aggregate with normal endothelial cells to create cylindrical structures 
with lumen, which behave as blood vessels. Adapted from Chandra et al. (89). ANG1/2, angiopoietin 1/2; bFGF, basic fibroblast growth 
factor; BNIP3, B-cell CLL/lymphoma 2 (BCL2)-interacting protein 3; c-MET, c-MET proto-oncogene; HIF-1α, hypoxia inducible factor 
1 subunit alpha; HGF, hepatic growth factor; IL-8, interleukin-8; PDGF, platelet-derived growth factor; PlGF, placental growth factor; 
VEGF, vascular endothelial growth factor; MMP, matrix metalloproteinase; VE-cadherin, vascular endothelial cadherin.
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well as proteins that allow invasion of cells through the 
extracellular matrix including MMPs -2, -9, and -12; and 
secreted protein acidic and rich in cysteine (SPARC) (112).  
Among other pro-migratory mechanisms, tumor cells may 
transition to a mesenchymal phenotype mediated via PDGF 
and HGF-dependent MET signaling (105,113). This was 
demonstrated after exposure to either bevacizumab or 
cediranib (99,114), and led to interest in targeting the MET 
pathway in conjunction with VEGF manipulation, as MET 
may also contribute to tumor growth. Although a phase II 
trial evaluating bevacizumab with or without onartuzumab, 
a monovalent MET inhibitor, failed to improve PFS or 
OS (115), trials of other c-MET inhibitors are in progress 
(NCT02386826, NCT02270034).

Evolving use of anti-angiogenic therapy

Though anti-angiogenic therapies to date have failed to 
extend survival in new or recurrent GBM, their contribution 
to PFS suggests some degree of benefit, possibly through 
alleviation of peritumoral edema (116). Corticosteroids 
are first line therapy for peritumoral edema, but have a 
broad and high-frequency side effect profile particularly 
in the setting of prolonged use, including myopathy, 
hyperglycemia, weight gain, hypertension, osteoporosis, 
insomnia, anxiety, and rarely avascular necrosis among other 
toxicities (117). Bevacizumab carries a distinct range of side 
effects, including hypertension and poor wound healing, 
but also rare risks of thromboembolism, hemorrhage, 
gastrointestinal perforation and nephrotic syndrome (118).  
Several clinical trials suggested that bevacizumab can 
reduce reliance on corticosteroids in GBM patients. 
These observations emerged from the AVF3708g trial, 
EORTC26101 trial, and other observational studies 
(38,39,119). Likewise, use of cediranib and cabozantinib 
(which inhibits VEGF2, MET, AXL tyrosine kinase, and 
ret protooncogene RET) also correlated with reduced 
corticosteroid use over time (60,94). In regards to quality-
of-life and symptom control, there is conflicting evidence 
as to whether bevacizumab is beneficial. The AVAglio trial 
in newly diagnosed GBM noted delayed deterioration 
of quality-of-life metrics (including global health status, 
cognitive, emotional, and social functioning, and ability 
to communicate) with bevacizumab compared to control, 
and stable Mini Mental Status Examination (43). However, 
the RTOG0825 study reported decreased quality-of-life 
measures (symptom control and neurocognitive function) 
with bevacizumab compared to placebo (42).

Bevacizumab is also used to treat the clinical and 
radiographic changes associated with radiation necrosis in 
the brain. Radiation may underlie short- and long-term 
changes to the vasculature including increased vascular 
permeability, vasculopathy, ischemia, necrosis, and resultant 
edema (120). These pathological changes underlie MRI 
findings including increased contrast enhancement and 
edema that are often difficult to distinguish from tumor 
progression. Radiation necrosis can be symptomatic with 
focal deficits including weakness and aphasia, headaches, 
and seizures. Recent studies demonstrated bevacizumab 
to be a powerful tool for managing radiation-associated 
edema (121,122). There is an ongoing phase II clinical trial 
comparing corticosteroids plus bevacizumab versus placebo 
for the treatment of radiation necrosis in brain metastasis 
(NCT02490878).

In addition to symptomatic treatment, there is still hope 
that anti-VEGF agents may be helpful in combination 
with other therapies, including cytotoxic chemotherapy, 
TKIs, and immunotherapy, in improving survival in GBM. 
Many of these combinatorial strategies rely on the recent 
mechanistic understanding that anti-VEGF therapies may 
act to normalize the blood vasculature, improving spatial 
and temporal delivery of therapeutic agents across the tumor 
(34,123). Improved efficacy of combinatory treatment may 
require specific timing of anti-VEGF agents with cytotoxic/
cytostatic agents. For example, a phase II trial looking at 
cediranib demonstrated vascular normalization occurs day 1 
to 28 after drug dosage (94). Experiments looking at the time 
frame for vascular normalization after bevacizumab have 
yet to be been done in GBM, but mouse models suggest 
it starts as early as 1 day after infusion and clinical trials in 
rectal carcinoma suggest half of the tumor vasculature is 
normalized by day 12 (124). The dosing of bevacizumab may 
influence response as well, with some studies suggesting that 
a reduced dose may be more efficacious (125,126).

The interaction of VEGF signaling and the immune 
system is of particular interest given the impact of 
immunotherapies in several cancers. VEGF signaling 
inhibits differentiation of circulating hemopoietic 
progenitor cells, dendritic cells, and T cells through nuclear 
factor kappa B (NFκB) signaling (127,128). Aflibercept 
also increases the mature dendritic cell population in solid 
tumors (129). In a study of colorectal cancer, bevacizumab 
increased CD4+ and CD8+ T cells, as well as CD20+ B 
cells in peripheral blood (130). However, these studies 
suggesting that VEGF inhibition may alleviate VEGF-
mediated immunosuppression was countered by a study in 
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which VEGF inhibition was tied to impaired lymphocyte 
recruitment (131). A better understanding of the role of 
VEGF in regulating the brain immune niche and GBM 
tumor microenvironment is clearly needed.

Conclusions

Angiogenesis is a hallmark feature of GBM and the role 
of anti-angiogenic agents in GBM treatment has evolved 
over time. While initial trials were promising that these 
agents could impact prognosis, many agents including anti-
VEGF antibody failed to prolong survival in both newly 
diagnosed and recurrent GBM, either as monotherapy 
or in combination with traditional chemotherapies and 
other targeted agents. Despite these challenges, anti-
angiogenic agents still have utility for managing vasogenic 
and radiation-related edema, being used in combination to 
target multiple angiogenic pathways, and to promote the 
intratumoral uptake of other chemotherapies.
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