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Introduction 

CNS malignancies account for an estimated 1.3% of new 
cancer cases annually and Glioblastoma Multiforme (GBM) 
is the most common (1). GBM accounts for 15.4% of all 
primary brain tumors and 45.6% of primary malignant 
brain tumors (2). Anaplastic Astrocytomas, another high 
grade glioma (HGG) accounts for 6.1% of all gliomas (3).

Standard of care for HGG entails maximal safe surgical 
resection followed by adjuvant radiotherapy (RT) and 
chemotherapy. Unfortunately, many patients recur within 5 
to 8 months of definitive treatment (4). Historically, median 
survival after progression is 6 months (5). While the use of 
radiotherapy in the primary setting for HGG has been well 
established, the treatment paradigm in the recurrent setting 
is less elucidated and varies by institution (4-13). Salvage 
therapies used alone or in combination include surgery, re-
irradiation, systemic treatment, tumor treatment fields (TTF) 
or palliation. Studies have shown a survival benefit with salvage 
treatment versus palliation (13). Currently, there remains a 
paucity of data and a lack of general consensus regarding the 
optimal management strategy for recurrent HGG.

Since the advent of stereotactic radiosurgery (SRS) and 
fractionated stereotactic radiotherapy (FSRT), more precise 
and focused targeting is now available and may be preferable 
in the re-irradiation/salvage setting (14). Various doses and 
fractionation schedules have been utilized, largely guided 
by location and volume of recurrence, with various levels 
of success. In general, SRS has been used for low volume 
disease while FSRT has been reserved for large volume 
recurrence (e.g., >4 cm), and allows safe delivery by taking 
advantage of the radiobiological benefits of fractionation 

(15,16). Given the poor prognosis of this patient group, 
efficacy must be balanced by the potential impact on patient 
quality of life. Herein, we review the various salvage RT 
series and their respective outcomes.

Radiobiology and physics of SRS and FSRT

There are key physics, radiobiologic, and dosimetric 
concepts to recall when evaluating SRS and FSRT 
regimens for recurrent HGG. From a physics perspective, 
the basic principles underlying conventionally delivered 
radiation therapy also guide the clinical use of SRS and 
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FSRT. However, SRS and FSRT require a much higher 
level of accuracy given the modality delivers very high 
radiation doses over a single or few fractions. Millimeter-
level precision is required in patient positioning with high 
reproducibility, which can be achieved either with a frame, 
or as is more common today, with a frameless, mask-based 
system (17). Target definition accuracy as well as precise 
image guidance is also critical with the small margins 
used in SRS and FSRT treatments. Radiobiologically, the 
literature suggests that high-dose, single fraction treatment 
primarily acts on tumor-supporting endothelial cells for its 
tumoricidal effects; in other words, the radiation response 
can be seen not only in the tumor cells themselves but also 
in the vasculature (18). The small margins required for SRS 
and FSRT limit collateral damage to normal tissues.

Kirkpatrick et al. noted that the immunostimulatory 
effects of SRS and FSRT are important to consider, 
especially with the growing role of immunotherapy in 
cancer treatment (19). They argue that although vascular 
damage may limit the ability of antigens to stimulate the 
immune system, a hypofractionated regimen such as FSRT, 
may leave antigen transport mostly intact and result in a 
stronger immune response than SRS. This is an emerging 
field of study which has the potential to shift the landscape 
of radiation techniques in the coming years.

SRS 

In a recent systematic review of SRS in HGG the authors 
report a median overall survival (OS) of 20 months and 
progression free survival (PFS) of 5.42 months. In this 
study, the pooled rate of radiation necrosis (RN) was 
5.9% but ranged from 0–44% (20). Another review deems 
SRS a safe and effective minimally invasive treatment for 
recurrent HGG. They report OS of 13–26 months after 
recurrence (21). 

Dose

Several prospective trials and retrospective studies have 
explored dose and fractionation schedules for SRS in 
recurrent gliomas (Table 1). Doses ranged from 9 to 25 
Gy. In some cases, up to 9 lesions were treated with SRS. 
Others limited SRS to small lesions which were defined 
differently depending on the study. Generally, doses were 
attenuated based on size and location of the lesion. Larger 
lesions and those in proximity to critical structures were 
prescribed lower doses.

Koga et al. published a study detailing the local control 
benefits of extended-field SRS. They evaluated the impact 
of adding a margin of 0.5- to 1.0-cm around the enhancing 
tumor. This study reported a statistically significant 
difference in local control between extended-field and 
conventional SRS. However, OS was not statistically 
significant between conventional and extended-field 
SRS groups and rates of RN were slightly higher in the 
population (n=9, 35 lesions) studied (26). 

Historically, median survival from progression for GBM 
has been reported as 6 months whether the patients were 
treated with RT and TMZ upfront or not (5). Studies 
included in this review had a median OS from SRS ranging 
from 7 to 14.4 months with a median of 10.6. However, 
about half (10) studies included both WHO grade III and 
grade IV gliomas which may favorably skew the OS. 

Safety 

The majority of HGG will recur within 2 cm of the 
initial (pre-surgical) tumor bed which makes previous RT 
pertinent to the safety of re-irradiation (27,28). Normal 
tissue radiation tolerance is dependent on the volume 
treated, dose, and sensitivity of tissue being treated. Due 
to the highly conformal nature of both SRS and FSRT, 
treatment margins are eliminated and less healthy brain 
tissue is included in the field. This is especially relevant in 
the recurrent setting in which the majority of patients have 
already received RT to the area in question (15). 

RTOG 9005 explored maximum tolerated dose of 
SRS in patients with a history of prior RT in primary 
brain tumors. Although the trial did not focus on gliomas 
with previous RT up to 60 Gy, it showed that maximum 
tolerated doses varied based on tumor diameter and 
that tumor diameter correlated with risk of grade ≥3 
neurotoxicity. Twenty-four Gy, 18 Gy and 15 Gy were 
defined as the maximum tolerated doses for tumors ≤2, 
2–3 and 3–4 cm respectively (29). Several phase I dose 
escalation trials have shown varying risk of radionecrosis 
when utilizing doses above those in RTOG 9005 (30-32).

RN is perhaps the most serious late side effect of CNS 
RT. It occurs in brain tissue that has received a normalized 
tissue dose (NTD) of >100 Gy. Changes in RT technique 
at re-treatment have not been correlated with an increased 
risk of this phenomenon. Low initial dose and long intervals 
between treatments may lead to less neurotoxicity (33-35). 
Clinically, RN can imitate tumor recurrence with worsening 
presenting symptoms, new neurological deficits as well as 
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progressing enhancement on imaging. It may ultimately 
require surgical debulking. Other less invasive treatments 
may include bevacizumab, corticosteroids or hyperbaric 
oxygen (15,36). 

Some studies showed no grade 3 or higher toxicities 
while others demonstrated that up to 26% of patients 
suffered clinically significant toxicities. A phase I dose 
escalation trial showed clinically significant toxicities of 
up to 60% however there were only 10 patients enlisted 
in the trial. Only one experienced neurotoxicity and other 
toxicities were associated with the concurrent systemic 
therapy (32). In one institutional report, 26% of 174 GBM 
patients underwent salvage craniotomy for RN. This 
report found that larger mean treatment volumes may have 
predicted for RN. Median volume of lesions treated with 
SRS in this retrospective study was 7 cc with a maximum 
of 39 cc (37). Another report found that 23% of patients 
experienced RN, however, this only represented 3 patients 
all three of which had different treatment volumes and 
different doses (38). Kong et al. reported a 24.4% RN rate 
but further analysis was not commented on. All of these 
studies used a median of 16 or 17 Gy (39). 

Only one patient in a study by Sutera et al. experienced 
RN (grade 2), but not all patients were strictly treated with 
SRS. They included up to 8 fractions in their retrospective 
analysis (40). Another report found only one patient to 
have RN out of their 42-patient cohort. Additional disease-
specific data was not offered regarding this patient, but the 
median dose in this study was 20 Gy (41).

Cabrera et al. included neurocognitive testing and quality 
of life parameters in their prospective trial of concurrent 
SRS and bevacizumab. This was assessed through the Mini-
Mental State Examination (MMSE), Trail Making Test 
Parts A and B (TMT-A/B) and Functional Assessment 
of Cancer Therapy-Brain (FACT-Br) at baseline, 1 week 
and 2 months after SRS. Although they reported that 
neurocognition didn’t change during treatment, the physical 
well-being subscale of the FACT-Br showed significant 
worsening at the two-month time point compared to 
baseline or one week evaluations (42). 

Systemic therapy

Varying combinations of systemic therapy and steroids 
were used in these studies. Doses of these agents also 
varied. Some patients were pretreated with steroids and 
others weren’t treated with steroids until clinical symptoms 
worsened. Not all concurrent or adjuvant treatments were 

detailed in published reports of the included studies. 
Bokstein et al. reported a significant survival advantage 

in GBM patients treated with SRS vs. bevacizumab alone 
(12.6 vs. 7.3 months) (43). However, tumor burden and 
volume was not matched in this retrospective study and 
40% of the patients in the SRS group received concurrent 
chemotherapy or biological therapy. Sutera et al. described 
an association between bevacizumab and inferior outcomes, 
however, only two patients received bevacizumab in their 
analysis (40). In contrast, Cuneo et al. described a survival 
benefit in patients receiving adjuvant bevacizumab after 
salvage SRS (11.2 vs. 3.9 months). They also reported a 
PFS benefit in this population (5.2 vs. 2.1 months) without 
any additional toxicity (36). Most patients included in 
this retrospective analysis received multiple courses of 
salvage systemic therapies including irinotecan, lomustine, 
etoposide and bevacizumab prior to SRS. Another 
prospective trial found that a small cohort of patients 
tolerated concurrent bevacizumab with SRS (42). The 
impact of other systemic therapies is difficult to deduce as 
many included studies were retrospective in nature and the 
included patient population received multiple agents (36, 
43-46).

Prognostic indicators

Cho et al. compared SRS and FSRT in recurrent HGG 
retrospectively and found that the two treatments yielded 
comparable survival. Although this was a non-randomized 
study, favorable prognostic factors included smaller tumor 
volume, younger age, high KPS and lower grade (47). 
Several other studies found age and performance status to 
be significantly associated with survival (40,41,45). Two 
other retrospective reports showed that higher KPS and 
small tumor volume predicted for increased OS (48). 

Time to recurrence may also play a role in predicting 
OS benefit. One retrospective study reported that longer 
interval between initial aggressive resection and recurrence 
correlated with survival (48). Similarly, Maranzano et al. 
described a potential survival benefit in patients that had 
adequate time (≥5 months) between initial RT and RT at 
recurrence (38). 

Patel et al. published a retrospective study stating survival 
was significantly improved in patients who either responded 
or had stable disease after SRS with median survival of 
15.8 vs. 7.3 following radiosurgery (44). Interestingly, it 
has also been reported that patients treated after 2005 
survive longer than those treated prior to this year. Sharma 
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Table 2 FSRT in recurrent HGG

First author Year
Number of 

patients
WHO  
grade

Dose and  
fractionation

Systemic  
therapy

MS from diagnosis 
(months)

MS from  
FSRT (months)

Grade ≥3 
toxicity

Hudes 1997 20 Grade III/IV 24–35 Gy, 8–10 fx None – 10.5 0%

Cho (47) 1999 25 Grade III/IV 20–45 Gy, 10–20 fx, 
median: 37.5 Gy

None – 12 30%

Combs (49) 2005 40 Grade III 20–57.6 Gy, 2 Gy/fx, 
median: 36 Gy

None 48 16 0%

Combs 2005 172 Grade II-IV 15–62 Gy, 2 Gy/fx, 
median: 36 Gy

None 21/50/111;  
Gr IV/III/II

8/16/22;  
Gr IV/III/II

0%

Combs (50) 2008 25 Grade II-IV 25–45 Gy, 2 Gy/fx, 
median: 36 Gy

TMZ 59 8 0%

Schwer 2008 15 Grade III/IV 36 Gy, 3 fx Gefitinib 29 10 13%

Gutin (51) 2009 25 Grade III/IV 30 Gy, 5 fx Bevacizumab – 12.5 28%

Patel 2009 10 Grade IV 36 Gy, 6 fx Multiple 24.1 7.4 10%

Minniti 2010 36 Grade IV 37.5 Gy, 15 fx TMZ 23.4 9.7 8%

Fields 2012 10 Grade III/IV 36 Gy, 3 fx Vandetanib 26.5 6 30%

Clark (52) 2014 21 Grade III/IV 30 Gy, 5 fx TMZ, CCNU, 
Bevacizumab

– 12.5 5%

Greenspoon 
(53)

2014 31 Grade IV 25–35 Gy, 5 fx TMZ – 9 13%

Wuthrick (54) 2014 11 Grade III/IV 30–42 Gy, 10 fx Sunitinib – 11 9%

Shi 2016 12 Grade III/IV 30–35 Gy, 10 fx Panobinostat – 6.1–16.1 58%

Shi 2018 36 Grade II-IV 30–37.5 Gy, 10 fx Bevacizumab 24.9 4.8 0%

Song (55) 2019 17 Grade III/IV 30–35 Gy, 10 fx Alisertib – 11.1 24%

FSRT, fractionated stereotactic radiotherapy; HGG, high grade glioma; WHO, World Health Organization; MS, median survival; TMZ, 
temozolomide; Gy, Gray; fx, fraction.

et al. hypothesizes that this could be due to the treatment 
standardization of GBM patients after the publication of the 
Stupp protocol or that their institution started prescribing 
higher median prescription doses to smaller volumes around 
that time (46).

MGMT promoter methylation status is known to be 
a favorable prognostic factor in GBM patients. However, 
only a handful of the included studies documented MGMT 
status. One study showed a significant median OS benefit 
in patients with MGMT promoter methylation (33.4 
vs. 16 months). However, only 22 patients had MGMT 
sequencing at the time of this study (41). Another report 
had 11 patients with MGMT promoter methylation, but 
did not find a statistically significant difference between 
OS in the cohort (40). A third study included 15 patients 
with MGMT sequencing results and only 5 with MGMT 

promoter methylation. Survival statistics were not provided 
on this subgroup (46). 

Imber et al. reported a trend toward decreased OS in 
patients in which multiple targets were treated with SRS 

(37,38). Twenty-one percent of patients in one study had 
multiple lesions upon recurrence. It is unclear how many 
of those recurrent lesions were treated with SRS, but their 
survival was similar to the other studies included in this 
review. Pinzi et al. did not find any significant OS difference 
between patients with multiple treated lesions vs. a single 
lesion (45).

FSRT

There have been a variety of dose and fractionation 
regimens used for FSRT treatment in the setting of 
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recurrent high-grade glioma, as detailed in Table 2. In 
a study comparing the efficacy of SRS versus FSRT in 
recurrent WHO Grade III and Grade IV tumors, Cho 
et al. used a median dose of 37.5 Gy in 15 fractions for 
their FSRT arm (47). Similarly, Minniti et al. evaluated the 
efficacy of salvage FSRT in combination with TMZ with a 
dose of 37.5 Gy in 15 fractions (56). Both of these studies 
represent modestly hypofractionated radiation regimens 
with 2.5 Gy per fraction. In contrast, a Phase I dose-
escalation study investigating FSRT given in combination 
with gef i t inib for  recurrent  HGG, Schwer e t  a l .  
were able to deliver 36 Gy in 3 fractions without dose-
limiting toxicity (31). In addition, Fields et al. gave 36 Gy 
in 3 fractions of FSRT in combination with dose-escalated 
vandetanib in their phase I trial for recurrent malignant 
glioma. These two trials represent the most aggressively 
hypofractionated FSRT regimens, with biologically effective 
dose approaching that of SRS regimens (32). The median 
dose of the literature surveyed in this review as shown in 
Table 2 is approximately 35 Gy in 10 fractions, although 
many trials did allow for dose variation to account for prior 
radiation dose, proximity to critical structures, and size of 
the recurrent lesion.

Toxicity remains a concern with FSRT treatment for 
recurrent high-grade glioma, although perhaps to a lesser 
degree as compared to SRS, given the normal tissue repair 
capacity between fractions of radiation. Many of the FSRT 
studies referenced in Table 2 quoted a zero percent rate 
of Grade III or higher toxicity. Hudes et al.’s paper aimed 
to determine the optimal dose of FSRT while decreasing 
rates of re-operation due to SRS toxicity (30). Shi et al.’s 
2018 retrospective review of recurrent HGG patients who 
progressed on bevacizumab and subsequently received 
FSRT also noted no treatment-related Grade III or higher 
toxicity (57). In contrast, a Phase I study investigating the 
role of combining panobinostat and FSRT reported a 
58% rate of Grade III or higher toxicity, although much 
of this was hematologic and associated with the oral 
radiosensitizing agent, with only one Grade III RN event 

(58). In direct comparison studies, such as Cho et al., of 
FSRT versus SRS—where the confounder of concurrent 
systemic therapy was not present—toxicity rates as a whole, 
and particularly radiation necrosis rates, are significantly 
lower when using FSRT (47).

Conclusion

Both SRS and FSRT have shown efficacy and safety in 

a variety of different dose and fractionation schedules 
in recurrent HGG. Further conclusions are difficult to 
delineate as the included studies used varying inclusion 
criteria, doses, and systemic therapies (concurrent or 
adjuvant). It is important to note that the majority of the 
included studies did not comment on MGMT status which 
is known to impact survival. Most studies included in this 
review reported toxicity of therapeutic intervention, but few 
recorded quality of life and neurocognitive changes. Further 
prospective trials are ongoing and necessary to further 
elucidate a standard of care for these patients. 
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