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Introduction

Omics technologies that generate a large amount of 
molecular data about biospecimens have the potential to 
provide accurate predictions of a patient’s prognosis and 
predictions of their response to a specific treatment regime. 
The idea of omics-based tests is that distinct subgroups 
of patients can be identified using multi-dimensional 
molecular data and therefore treatment decisions can be 
personalized to that subgroup. An omics-based test can 
guide the decisions to treat or not to treat and help identify 
the particular therapy most likely to work. The challenge 
is to identify and demonstrate definitively that the use of 
an omics-based test improves clinical outcomes in a patient 
population.

An omics-based test can be used to predict a patient’s 
prognosis, which is their expected clinical outcome. A test 
that provides accurate predictions of prognosis, regardless of 
treatment, is referred to as prognostic. A predictive omics-
based test is one that accurately predicts disease outcomes 
with the application of specific interventions. Predictive 

markers are therefore useful for the selection among two or 
more treatment options. Statistically, a prognostic omics-
based test is strongly associated with clinical outcome 
and a predictive omics-based test modifies the association 
between treatment and clinical outcome (interaction). 
High dimensional omics data can be used to identify 
specific molecular targets as potential mechanisms for drug 
development; however the use of omics technologies for 
drug development is beyond the scope of this review.

The path from development to definitively evaluating an 
omics-based test for prognosis or prediction of treatment 
response is long and arduous. Often, the end goal is to 
develop a test suitable for use in a clinical trial for guiding 
treatment. The oncology literature is full of reports that 
develop and/or evaluate omics-based tools for prognosis 
and prediction. Developing a simple test based on high-
dimensional omics data can be complex and requires 
careful application and interpretation of statistical methods. 
Definitive evaluation of a prognostic or predictive omics-
based test is costly and rife with methodological pitfalls. We 
aim to review the relevant issues, providing the resources 
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to ask the right questions when critically weighing the 
evidence presented in a report of an omics-based study. 
Figure 1 gives an overview of the omics test development 
process. Ultimately, for a practicing oncologist the question 
is: “Is this omics-based test something I want to use to 
improve outcomes of my patients?”

The long road to implementing a test in a practice starts 
with analytical validation of the assay involved, that is, 
demonstrating that the omics-based assay accurately and 
reproducibly measures the molecular quantities. After the 
assay performance is established, development of the test 
and preliminary evaluation are necessary. Those involve 
reducing the high-dimensional data into a one-dimensional 
quantity that will be used to make a decision. This one-
dimensional quantity is often a risk score: an estimate of 
the probability of a specific clinical outcome. It is necessary 
to establish the clinical validity of this risk score, that is, 
to demonstrate that the risk score is independently and 
strongly associated with clinical outcome. Care must 
be taken to completely separate the development of the 
risk score from the evaluation, otherwise estimates can 
be optimistically biased. Finally, the risk score must be 
translated into a binary decision, often using a threshold. 
It remains to demonstrate that the use of the test to make 
this decision improves patient outcomes. Figure 2 illustrates 
the types of studies that are involved in the omics test 
development and evaluation process. 

The following sections specify questions to be considered 
while reading a report of an omics-based clinical study. 
We review the importance of such questions, and common 
pitfalls to watch for. In the planning or reporting of an 
omics-based trial, answers to these questions should be 
made clear to the reader. Formal efforts to guide reporting 
have been developed, such as the REMARK checklist (1), 
the GRIPS statement (2), and an omics checklist (3).

Terminology

An omics-based test, or simply an omics test, is a mapping 
from the set of features on the omics assay to a single 
number. This number can be a binary value, such as good 
or poor prognosis, or it can provide a continuous scale, such 
as a risk score. It must be feasible to perform the test on 
an individual patient basis, by measuring the omics assay 
on the individual’s tissue. The assay generates a multitude 
of measurements, which we will refer to as features, and 
then fixed mathematical calculations are done to transform 
the many features into the single test value. Examples of 

such features are gene expression values, protein expression 
measurements, or genetic mutations. We use the term 
specimens to refer to individual patient tissues or fluids 
on which the assay would be run. We use the term sample 
in the statistical sense, meaning a group of individuals 
randomly selected from a population.

Investigators determine the way that the mathematical 
calculations are done in the development phase. Often, 
there is a complete sample which is randomly allocated into 
development and validation sub-samples. These are also 
sometimes referred to as training and test sets of samples. 
At the end of the development phase, the model for the 
mathematical calculations is fixed and the algorithm is 
locked down.

That model is evaluated definitively in the validation 
phase in a completely independent sample. In order for the 
validation to be unbiased and definitive, it is imperative that 
no information from the validation sample leaks into the 
development phase. The validation should mimic realistic 
clinical use as much as possible, and that means that no 
further refinement to the test is allowed based on the 
observed results.

A given study may cover only one of the many steps 
and the entire process may be reported across multiple 
peer-reviewed publications. For example, at least four key 
publications were devoted to the development and validation 
of Oncotype DX, which is a commercially available omics-
based prognostic test used in breast cancer (4-7).

What is the intended clinical use?

As with all clinical studies, the end goal is to improve 
patient care. Omics studies are no different, and a clear 
statement of the intended clinical use of the omics-test 
should be prominent. Carefully describing the context for 
the use of the assay determines the type of study needed to 
develop and validate it. The intended use of the assay also 
provides an overarching context in which to interpret the 
population under study, the assay measurements, and the 
statistical methods.

Omics-based tests in oncology generally are used for 
one of two clinical purposes: prognosis or prediction of 
treatment response. A prognostic test is used to predict the 
likely clinical outcome of a patient. Often a prognosis is used 
to guide management of the disease. Patients with a very 
good prognosis may opt not to receive any treatment, while 
patients with a poor prognosis may opt for more aggressive 
treatment. An omics-based prognostic test that is currently 
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Figure 1 Schematic illustrating the omics test development process. 
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used in practice is EndoPredict, which is used to predict the 
risk of recurrence in ER-positive, HER2-negative breast 
cancer (8). For patients with a low risk of recurrence, it has 
been demonstrated that the risks of chemotherapy do not 
outweigh the benefits. Prognostic tests are clinically useful 
for guiding general disease management.

Predictive tests are most useful for selecting patient 
populations for treatment with specific targeted therapies. 
This presumes the existence of a particular molecular 
targeted therapy. The predictive test is used to identify 
patients who will benefit from the targeted therapy. 

Predictive tests are generally based on only one or a few 
molecular characteristics that the therapy targets. For 
example, HER-2 is a gene that is associated with a more 
aggressive form of breast cancer. Trastuzumab is a drug 
that specifically targets HER-2 and has been shown to 
be effective in HER-2 positive breast cancer (9). While 
targeted therapies generally target only one molecular 
characteristic, omics assays can be used to identify 
molecular targets for less well-understood drugs. However, 
most successful targeted therapies have associated predictive 
tests that were developed based on the underlying biology 

Figure 2 Schematic illustrating the types of studies involved in omics test assay validation, test development, and validation. 
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rather than a broad search over a large number of molecular 
features (10).

What is the patient population of interest?

Along with the intended clinical use, a report should have a 
clear statement of the intended population in which the test 
is being evaluated. This could be broad or quite specific. 
For the omics test to be useful, it must provide sufficient 
information above and beyond the standard of care in the 
target patient population. The distribution of the omics test 
and the expected benefit in the population should be clearly 
specified in advance.

The expected benefit of a new omics-based test could 
differ greatly by patient population. For instance, a 
prognostic test has more potential for benefit in stage 2 
breast cancer than it does in stage 1 breast cancer, as the 
prognosis for stage 1 is already very good. Evaluating an 
omics-based test in a broad population that encompasses 
multiple stages or multiple disease types can be difficult, 
as the test must provide more information beyond that 
provided by standard clinical and pathological factors.

Are the assay methods and laboratory 
procedures valid?

Analytical validation of an assay involves evaluating the 
performance of the measurement in terms of accuracy, bias, 
and precision under a variety of conditions. Conditions refer 
to pre-analytic factors such as specimen quality, specimen 
collection, storage, and processing procedures, and technical 
aspects such as laboratory technician and batch effects from 
reagent lots or other assay materials. The high-dimensional 
nature of omics data makes it very difficult to assess each of 
the hundreds or thousands of outputs from a single assay. 
In developing an omics-based signature that only uses a 
subset of the components of a high-dimensional assay, one 
can analytically validate the final signature alone. However, 
prior to developing the signature, one must develop detailed 
standard operating procedures for specimen handling and 
processing to ensure a baseline level of validity.

Study reports must state what type of specimens are used 
and whether the test is applied to formalin-fixed paraffin 
embedded (FFPE) or only fresh-frozen tissue. Most omics-
based assays require a minimum percentage of tumors to be 
successful. A report should clearly state what criteria were 
used to screen tissue specimens prior to running the assay. 
Generally this involves criteria for the rejection of poor-

quality specimens on the basis of percent tumor, percent 
necrosis, or some other marker of tissue quality.

Molecular assays can successfully be run on decades 
of old FFPE tissue (11). However, factors involved in 
the tissue processing and storage can impact the analyte 
extraction and quality (12-14). Relatively little attention 
has been given to studying the downstream effects of pre-
analytic factors on the individual omics features. In one 
study, the authors observe that older FFPE specimens 
tended to have lower expression levels and that this effect 
was different for different genes. The investigators modified 
their assay to account for this differential effect (15). Due 
to the high dimensionality of omics assays, a small amount 
of bias on each feature can translate into large errors 
when incorporating data from hundreds or thousands of 
features into a single continuous measurement. Therefore 
it is important to assess the impact of processing on the 
individual features in addition to the overall test.

In addition to processing and storage, technical aspects 
of an assay can impact the final results in a predictable 
way (16,17). There could be technical effects, differences 
due to reagent lots, and other batch effects. Such batch 
effects are commonly recognized yet often ignored in high-
dimensional assays (18). Efforts should be made to measure 
the impact of these technical aspects and minimize them to 
the greatest extent possible. The way in which specimens 
are assayed should be randomized to prevent confounding 
batch effects with the clinical outcome. Development and 
validation samples are sometimes run in the same batch or 
with the same lot of technical aspects. This does minimize 
batch effects; however, it can provide an overly optimistic 
assessment of the test, because in clinical use, running 
specimens all in the same batch is not always an option.

Similar to developing criteria for rejection of tissue 
specimens, in omics settings, criteria should be developed 
for the rejection of individual features (e.g., genes, proteins) 
prior to the development of the test, if problems cannot 
be resolved through improved assay procedures. Features 
that do not pass the pre-specified quality metrics should be 
removed from consideration from the final test. Note that 
this feature processing step does not involve any clinical 
outcome measurements. As a concrete example, in the 
development of the gene expression based test EndoPredict, 
investigators chose to exclude probe locations that have 
a dynamic range less than 2, probes for which fewer than 
1% of the specimens had calls, and probes whose 90th 
percentile was less than 350 units (8). Quality control steps 
of this nature can ensure a more robust and reproducible 
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development of the test.
Even with careful quality control and a locked down 

standard operating procedure, it is difficult to completely 
eliminate the effects of technical factors on assay results. 
Therefore, when designing the development phase, the 
investigator must be mindful not to confound technical 
factors with the clinical outcomes. The problem of batch 
effects is widespread in omics research and can lead to 
spurious or irreproducible results (18,19). As an extreme 
example, consider developing an omics-based test to predict 
a binary clinical response. In the development phase, all of 
the assays for the clinical responders were run using reagent 
A, while all of the assays for the clinical non-responders 
were run using reagent B. If it were the case that the reagent 
has a significant effect on the assays, then the development 
phase would then lead to what seems like an excellent 
predictor, except it is predicting the batch effect rather than 
the clinical outcome.

Are the statistical methods for test development 
appropriate?

Once the analytical validity of the omics assay is established, 
the features are translated into a binary classification, a 
multi-category classification, or a continuous risk score. The 
methods used to perform this translation must be carefully 
evaluated to ensure that the features of the omics assay 
have been properly translated into a clinically meaningful 
quantity.

Unfortunately, a common approach to developing 
prediction models is to use cluster analysis of omics features, 
ignoring the clinical outcome among the development 
samples. Cluster analysis is a class of methods that is used 
to partition individuals into groups based on the similarities 
or differences among the omics features (20). The number 
of groups or clusters is not known in advance, but rather it 
is data dependent. Clustering is unsupervised in the sense 
that discovery of the groups is done without regard to the 
clinical outcome. The resulting clusters are not designed 
to provide valid information regarding a prognosis or 
prediction of response to therapy (21). A common argument 
in favor of clustering is that it identifies biologically distinct 
groups. However, the groups are identified using a statistical 
algorithm and the biological relevance is only considered post 
hoc. For developing omics-based prognostic or predictive 
tests, it is better to use supervised statistical methods which 
are designed to address those aims, outlined below.

Often, there are more features measured than there are 

patients in the sample. In such high-dimensional settings, 
it is required to identify a subset of the features that will 
be used in the final multivariable mathematical model. 
There are two broad statistical approaches to this problem: 
filtering and regularization.

Filtering is a statistical approach where univariate 
methods are applied to each of the many omics features in 
turn. Typically, the univariate method involves estimating 
the association of the feature with the clinical outcome. 
Then, a criterion, chosen in advance or selected using cross-
validation, is applied to the statistic to select a subset of 
features. For example, suppose an investigator is interested 
in developing a gene expression based test to predict clinical 
response to a new therapy. For each of the 1,000 gene 
expression features that are available, one could compute 
a t-statistic comparing the expression levels for responders 
versus non-responders. Genes with t-test P values greater 
than 0.0001 could be filtered out, and the remaining ones 
used in a multivariable logistic regression model to predict 
response (22) describes a novel approach to filtering that is 
applied successfully to predict B-cell lymphoma subtypes 
using gene expression microarrays.

Regularization is an approach in which all of the features 
in consideration are entered into a special multivariable 
statistical model for prediction of the clinical outcome, 
even if there are more features than study participants. 
The special model includes a penalty component which 
encourages the model to remove completely or downplay 
the impact of features that are not relevant. There are 
various types of penalty functions each with different 
properties, such as the lasso (23), the ridge penalty (24), the 
elastic net (25), and others (20). Each type of penalty term 
contains at least one tuning parameter, which may be pre-
specified or selected using cross-validation.

Each type of approach has its merits, and within each 
class there are a variety of specific models to choose from. 
It is difficult to determine what method will work best in 
advance. Instead of selecting a single model to use, multiple 
models can be averaged to improve prediction (26). This 
approach, called Bayesian model averaging, has proven 
successful in different applications, including prediction of 
cancer subtypes (27). It is more common, however, to try 
several different methods then select the one that performs 
the best on a small subset of the development sample. 
This is appropriate as long as the model selection is done 
entirely separately from the final validation sample. Leaking 
of information from the validation data into the model 
selection process can cause bias in insidious ways.
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In many oncology settings, such as pediatric cancers, 
patients and specimens may be very sparse. It may be difficult 
to enroll sufficient subjects to develop an omics test and then 
perform preliminary validation on an independent sample. In 
that case, cross-validation can provide an unbiased estimate 
of prediction error, if done properly (20). Cross-validation 
refers to the idea that a model can be evaluated in the same 
sample in which it is developed. Similar to a split sample 
approach, in cross-validation only a small portion of the 
sample is left out at a time. The model is estimated on the 
remaining samples, and the performance is evaluated on the 
left out independent portion. This process is repeated many 
times to get a more precise estimate of the performance (28) 
describe a cross validated trial design tailored for sparse data 
settings.

In doing cross-validation, it is important to validate the 
entire model estimation process, not only part of it. For that 
reason it is often best to avoid complex test development 
procedures involving multiple, data-driven selection steps 
and/or tuning parameters so as not to mistakenly leak 
information from the validation data (29). More complex 
procedures can also lead to overfitting, in which the model 
identifies random noise in the data, rather than a true signal 
of clinical use.

How is the validation study designed?

Once the mathematical model is estimated and completely 
locked down based on the development sample, a study 
to definitively evaluate the locked-down test should be 
designed to address the clinical use in the population of 
interest. The key characteristic of the evaluation study or 
sample is that it is completely independent of the sample 
on which the test was developed. Once the test is defined 
and locked down, no information from the evaluation 
sample can be used to change the features of the test. The 
evaluation sample could be a randomly selected subgroup 
from the same parent study as the development set, or it 
could be from a separate study altogether conducted in 
the same population. As long as the population and the 
intended clinical use are clearly defined, the evaluation can 
be done definitively.

A definitive evaluation can be done retrospectively, 
meaning that stored specimens are selected from a study that 
has completed. The omics assay is then run on the archived 
specimens and the locked down test is associated with the 
clinical outcomes, which have already been observed at the 
time of the assay measurement. This retrospective design 

can yield high quality evidence of the test’s characteristics, if 
it is done carefully. It is imperative to develop a protocol for 
the study in which the omics test is clearly and completely 
defined, the main hypotheses are specified, and the assay 
standard operating procedures are detailed. The archived 
specimens need to come from a study or trial with a well-
defined population under study, not a convenience sample. 
Sample size and power calculations should be done with 
the same rigor as they are in a clinical trial. Such a study, 
called “prospective-retrospective”, can yield a high degree of 
evidence in the evaluation of an omics-test, and with great 
efficiency (30).

Alternatively, prospective studies can be used to evaluate 
an omics-based test by performing the assay at the start of 
the study and then following patients for clinical outcomes. 
Again, all of the key details need to be specified up front 
in the protocol. The details of the study design should 
be tailored to appropriately answer the clinical question 
definitively. Several review articles are available that describe 
the potential study designs for the evaluation of prognostic 
and predictive tests (31-34). Details of specific designs and 
statistical approaches are available for Bayesian approaches 
(35,36), adaptive or sequential approaches (37,38), and 
standard frequentist approaches (39-41). This has been and 
continues to be an active research area in statistics, which 
means that designs are continually evolving to appropriately 
address the clinical question in the population of interest.

In the design, careful consideration should be given to the 
study power and sample size. A prospective study in which 
patients may be undergoing painful biopsies or unnecessary 
treatment should not be done unless there is a high 
probability of definitively answering the scientific question. 
Likewise, precious archived specimens should not be wasted 
on a retrospective study that is under-powered. Most standard 
statistical tools for power analysis apply to prognostic tests, 
however predictive or therapy-guiding omics-based tests 
require a different approach. Many protocols for predictive 
tests are powered to detect the interaction effect between the 
treatment and the test (42). The existence of a treatment-by-
test interaction is necessary but not sufficient for the test to 
be useful in guiding therapy (43). Tools for power and sample 
size analysis have been designed to specifically address the 
question of a qualitative interaction (44-46).

Are the development and validation samples 
strictly separated?

This issue has been discussed in previous sections, yet 
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this error occurs so frequently that it requires an in-depth 
discussion. The evaluation sample for the assessment of 
a prognostic or predictive test needs to be completely 
independent from the development sample. This is 
especially true for omics-based tests, whose development is 
often complex. Any information from the evaluation sample 
that leaks into the development sample can bias the results, 
making tests appear better than they truly are.

Leaking information between samples can happen in 
subtle ways. Sometimes, part of the model development 
process is repeated on the validation data. This is called 
partial resubstitution (21). For example, a common model 
development approach is to first filter a subset of 50 genes 
from a larger set of 450,000 based on their observed 
association with the outcome. Then, the 50 genes are put 
into a regression model to develop a single risk score. 
Occasionally, investigators will perform the filtering on the 
development sample and then re-estimate the regression 
model using the combined development and validation 
samples. This gives overly optimistic estimates of the 
performance of the algorithm. Partial resubstitution can 
be difficult to detect when the model development is more 
complex, and if cross-validation is used to estimate the 
performance.

In settings where relatively few samples are available, 
cross-validation is an efficient and valid approach to 
estimating performance (47). The key point whether using 
the split sample approach or cross validation is that the 
entire model building process must be validated. Even 
informal checks of the model on the validation sample, such 
as viewing survival curve plots, prior to locking down the 
model can unknowingly cause bias.

Are the statistical methods appropriate for test 
validation?

To assess the value of an omics-based test for prognosis or 
prediction we need to estimate the association between the 
test and the clinical outcome on an independent sample 
(the validation sample). Appropriate statistics are essential 
to measure this association. Often, investigators will report 
only the odds ratio (in the case of a binary clinical outcome) 
or the hazard ratio (for a time-to-event clinical outcome) for 
the omics test. The odds ratio or hazard ratio is insufficient 
to determine the clinical utility of an omics-based test (48). 
Ideally, a statistical method or set of statistical measures should 
be chosen to address the intended clinical use of the test.

For a prognostic test, how often does the test correctly 

predict recurrence (true positives) and how often does it 
correctly predict non-recurrence (true negatives)? It is 
imperative to report both of these measures, also known 
as the sensitivity and specificity; because one can correctly 
predict all true positives simply by predicting that all cases 
are positive. Is the performance good enough to change 
clinical practice? Patients want to know the likelihood 
of recurrence given their test results; this is called the 
positive predictive value. If the likelihood of recurrence is 
very low overall in the population, as it is in stage 1 breast 
cancer, then a new test must be highly informative for 
it to be practice changing. For continuous-valued tests, 
extensions to these measures exist and can be visualized 
with the receiver operating characteristic (ROC) curve. 
Furthermore, extensions also exist for time-to-event clinical 
outcomes such as overall or progression free survival (49) 
provides an excellent reference for statistical measures for 
the evaluation of diagnostic and prognostic tests.

In recent years, a number of potentially misleading 
statistical methods have crept into common usage. The net 
reclassification index (NRI) and its sibling, the integrated 
discrimination improvement (IDI), were designed to 
assess the added value of a new test to existing criteria: the 
incremental value. For example, it is often of interest to 
determine whether a novel omics-based test adds value to 
standard clinical and pathological features. The NRI and 
IDI specifically evaluate whether the novel component 
enhances the differentiation of patients into risk groups. 
This does not address the question whether the novel 
component correctly classifies patients (50,51). Others have 
noted additional problems with the statistical operating 
characteristics of the method, most importantly, that it is 
not a valid measure (52-54). More fundamentally, it is not 
clear what clinical question this measure addresses; does it 
matter if patients are classified differently if we don’t know 
whether they are classified correctly?

A proper evaluation of an omics-based test takes a 
comprehensive and pre-specified approach to address the 
intended clinical use. For predictive omics-based tests to 
guide therapy, a rigorous approach to evaluation has been 
described, along with statistical software for general use (55). 
This continues to be an active area of biostatistical research.

Concluding remarks

The use of omics-based tests for prognosis, predicting, and 
therapy selection is steadily increasing in oncology. Careful 
evaluation of the quality of studies by consumers of the 
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clinical oncology literature is imperative to provide a high 
level of patient care. Formal sets of reporting criteria exist 
for the producers of such literature (1-3,56) and these are 
also useful for readers to be aware of. We hope that the 
discussion here has brought attention to the issues from 
the readers’ perspective and will help promote critical 
evaluation of the relevant literature.
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