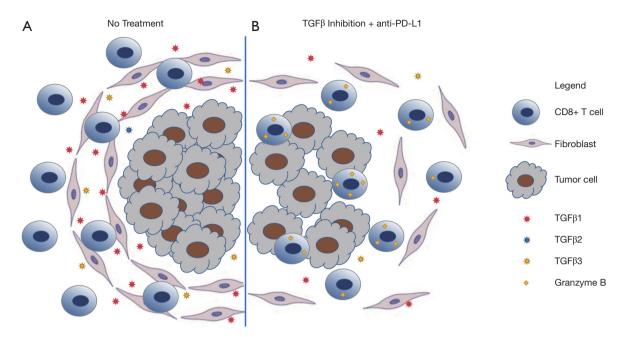


One checkpoint may hide another: inhibiting the TGF β signaling pathway enhances immune checkpoint blockade

Aditi Gupta, Sadna Budhu, Taha Merghoub

Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA


Correspondence to: Taha Merghoub. Swim Across America and Ludwig Collaborative Laboratory, Immunology Program, Parker Institute for Cancer Immunotherapy at Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Email: merghout@mskcc.org.

Comment on: Tauriello DVF, Palomo-Ponce S, Stork D, *et al.* TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554:538-43.

Submitted Nov 13, 2018. Accepted for publication Jan 06, 2019. doi: 10.21037/hbsn.2019.01.10 View this article at: http://dx.doi.org/10.21037/hbsn.2019.01.10

Tumors employ several mechanisms to evade recognition by the immune system. Among these are epigenetic changes such as loss of the antigen presenting machinery (e.g., HLA-A,B,C) that cause tumors to become invisible to the immune system. They can employ mechanisms to suppress the immune response through the enzyme indoleamine dioxygenase (IDO) and the inhibitory receptor programmed death ligand 1 (PD-L1). Both tumor cells and the surrounding stroma can be the source of such molecules. Tumors can recruit suppressive immune cells [regulatory T cells (Tregs), myeloid derived suppressor cells (MDSCs)] that inhibit T cell responses to tumors mainly by secreting anti-inflammatory cytokines (1,2). TGF^β is the most well characterized of these cytokines. TGFB is a pleotropic cytokine that is important in regulating immune responses. It is found in many cancer types and is associated with poor clinical outcome (3). Depending on the context of the microenvironment, TGF β can suppress the immune system by inducing Tregs, and inhibiting CD4+ and CD8+ T cell effector functions such as their activation or cytolytic activity. There are three isoforms of TGFβ in humans and mice (TGFβ1, TGFβ2 and TGFβ3) that have high homology with each other. Numerous cells make and secrete the inactive latent form of TGF^β into the extracellular space; however, only a few cells within the tumor microenvironment (TME) contain the machinery (α_{v} integrins, proteases, GARP etc.) to convert it to its active form. It appears that the suppressive functions of TGF β are mediated not only by its synthesis but also by the extent of its activation (4). Aside from its role in cancer, TGF β plays a critical role in controlling aberrant immune responses against self, such as in autoimmune diseases.

Since the FDA approval of Ipilimumab in 2011 and Pembrolizumab in 2014, immunotherapy has moved to the forefront of cancer care. While we have seen promising success of these agents as monotherapies, it is increasingly evident that the combination of these agents (e.g., Ipilumumab and Nivolumab) together or with other conventional therapies [e.g., chemotherapy and radiation therapy (RT)] and novel immunotherapy targets will provide greater clinical benefit. However, rational design of combination therapy is necessary to enhance the efficacy of these immunotherapies. When it comes to targeting specific molecules with immunotherapy, it is imperative to understand the spatial and temporal expression of these molecules in the tumor microenvironment. Secreted factors such as TGF β can be made by tumor cells, stromal fibroblasts and immune infiltrates. It is important to determine which cells predominantly express the target molecule. Another level of complexity comes from the fact that not all cancer types contain the same components of the microenvironment. Furthermore, the timing and doses of agents to be combined will need to be optimized. Some combinations have already been shown to be counterproductive due to inefficient timing (5). It is imperative to understand the biology of the immune system and the TME in order to design rational hypothesis-driven preclinical and clinical trials of combination therapy.

Figure 1 TGF β inhibition promotes T cell infiltration. Schematic depicting the role of TGF β in (A) promoting T cell exclusion through formation of a stromal barrier and (B) enhanced T cell infiltration and activation by combining TGF β inhibition with checkpoint blockade.

Two studies by Mariathasan et al. (6) and Tauriello et al. (7) in Nature highlighted how understanding the mechanisms behind the failure of immune checkpoint blockade in urothelial and colorectal cancer (CRC) can aid in developing treatment to overcome resistance to immunotherapies. It is now recognized that immune checkpoint blockade works best in tumors that are heavily infiltrated by T cells or "hot" tumors. Conversely, immunotherapies are less effective in tumors that either lack T cells, referred to as "immune desert" or "cold" tumors, or in tumors that exclude T cells. Mariathasan et al. and Tauriello *et al.* showed that the presence of TGF β in the stroma of tumors leads to exclusion of T cell infiltration into tumors by trapping them in the periphery. Concurrent blockade of TGFβ signaling and PD-L1 in these immune excluded tumors lead to greater anti-tumor effects by turning an immune excluded tumor into an inflamed "hot" tumor (Figure 1). In addition, it appears that CD8+ T cells were necessary for the anti-tumor efficacy as both studies show enhanced CD8+ T cell activation.

Tauriello *et al.*, modeled microsatellite-stable (MSS) human CRC using genetically engineered mice (designated LAKTP), which developed carcinomas that displayed a TME with high levels of stromal TGF β activity conferring poor prognoses (3,8). In this model, cancer associated

fibroblasts (CAFs) were the main source of TGF^β in mouse and human CRC samples. Treatment with galunisertib, a TGFBR1-specific inhibitor, reduced primary tumors and metastatic disease burden. The addition of anti-PD-L1 with galunisertib eradicated most overt metastatic disease and prolonged overall survival for more than a year after treatment. Activation of both CD4+ and CD8+ T cells was observed with galunisertib treatment. A complementary study by Mariathasan et al. evaluated biomarkers of clinical responses to the anti-PD-L1 antibody, atezolizumab, in patients with metastatic urothelial cancer. Transcriptomic evaluation revealed that clinical response was associated with a CD8+ effector T cell phenotype and high tumor mutation burden, but TGF^β signaling in fibroblasts was associated with poor response and survival (3). This finding was particularly relevant for the T cell excluded subtype of metastatic urothelial cancer, where a pan-fibroblast $TGF\beta$ response signature (F-TBRS) was significantly associated with non-responders.

Both studies above (Tauriello *et al.* and Mariathasan *et al.*) suggest that targeting the TME through inhibition of TGF β signaling may be a means to enhance checkpoint blockade immunotherapy across several cancer types. In both cases, the authors showed that the source of TGF β is primarily derived from CAFs, which express high levels

of TGF^{β1} and TGF^{β3}. To date, most preclinical studies involving the TGF^β pathway use tumor models that are enriched in stromal components such as CAFs. However, the role and source of TGF β in stroma-poor tumors, such as melanoma, remains to be investigated. It will be interesting in the future to determine whether TGF^β blockade will only benefit patients whose tumors are enriched with CAFs. In addition, TGF^β has been shown to have profound effects on suppressing both adaptive and innate immune cells. Most studies on TGF β focus on its immunosuppressive role on CD4+ and CD8+ T cells (9). These two studies demonstrated that TGFβ inhibition enhanced CD4+ and CD8+ T cell activation and differentiation, especially when combined with PD-L1 blockade. However, the authors did not explore the effects of TGF β inhibition on innate immune cells. It is well known that TGF^β can promote immunosuppressive macrophages and tolerogenic dendritic cells (9). It would be interesting to see the effects of TGF^β inhibition on innate immune cell populations in the tumor microenvironment and the periphery.

TGF β signaling blockade can be achieved by targeting discrete steps in the processing of TGF β and its signaling pathway: ligand biosynthesis, ligand-receptor interaction, and downstream signal transduction. To target ligand production, antisense oligonucleotides and antisense RNA methods are currently being tested (10,11). The ligandreceptor interaction can be interrupted using TGF β neutralizing monoclonal antibodies and soluble receptors. The most developed of these include Fresolimumab, which has pan-TGF β ligand blocking activity, LY2382770, a TGF β 1 ligand-selective blocking antibody, and IMC-TR1, a TGF β RII-blocking antibody. Of note, α_v integrins ($\alpha_v \beta_6$ and $\alpha_v \beta_8$) were shown to be involved in the activation of TGF β (4). There is now an anti- β 6 integrin antibody in clinical development (10,12). Galunisertib (LY2157299) is a small molecule inhibitor of TGFBRI and is the most developed TGF^β receptor kinase inhibitor (10,11). Lastly, M7824 is a fusion protein composed of the extracellular domain of human TGF^βRII, acting as a TGF^β trap, connected to the C-terminus of human anti-PD-L1 (13). So far, the most advanced inhibitors in the clinic target TGF^β signaling directly or block all three isoforms of TGFB. Given the homeostatic roles of TGF^β, including proliferation, differentiation, and migration, inhibition of all 3 isoforms may be detrimental to normal physiology in treated individuals. In fact, there has been side effects and toxicities associated with TGF β inhibitors in the past; therefore, selective inhibition of one isoform rather than pan-TGF^β blockade may lead to adequate tumor control while reducing off target effects. Currently, isoform specific inhibitors of TGF^{β1} and TGF β 3 are undergoing clinical development (14). Table 1 summarizes the disease indications and the stage of development each therapy discussed above has reached. So far, there is no striking efficacy observed with these agents as monotherapies; however, a vast amount of pre-clinical data exists to support their combination with other agents.

As other forms of anti-cancer treatment impact TGF β production and activity, rational combination therapies can be crafted. RT can activate TGF β through reactive oxygen species, which in turn leads to radioresistance and dose-limiting toxicities. The sustained therapeutic effects of RT can be further enhanced by combining it with anti-TGF β therapy to enhance tumor cytotoxicity, even outside the field of radiation (abscopal effect), while reducing associated toxicities of both therapies (15). Similarly, the studies by Tauriello *et al.* and Mariathasan *et al.* have revived the application of TGF β inhibition in cancer and provided preclinical and clinical rationale for testing the combination of TGF β inhibitors with PD-1/PD-L1 blockade in various cancers.

Drug; company	Туре	Targets	Disease applications	Stage	Clinical trial identifiers	Summary of results
Trabedersen (AP12009); Antisense Pharma	Antisense oligonucleotide	TGFβ2 ligand	Monotherapy vs. SOC in refractory GBM or anaplastic astrocytoma	Phase III	NCT00761280	Non significant OS benefit (terminated due to low patient recruitment)
			Monotherapy in melanoma	Phase I/II	NCT00844064	Preliminary evidence of improved OS

Table 1 Summary of $\mathrm{T}\mathrm{G}\mathrm{F}\beta$ inhibitors in clinical development

Table 1 (continued)

292

Gupta et al. TGF β inhibition enhances immune checkpoint blockade

Drug; company	Туре	Targets	Disease applications	Stage	Clinical trial identifiers	Summary of results
Belagenpumatucel-L (Lucanix); NovaRx	Antisense gene-modified allogeneic tumour cell vaccine	TGFβ2	Monotherapy as maintenance therapy in NSCLC	Phase III	NCT00676507	OS benefit in patients with prior radiotherapy and/or randomized within 12 weeks of chemotherapy completion
			Monotherapy as maintenance in high-risk ovarian cancer	Phase II/III	NCT02346747	Preliminary evidence of improved relapse-free survival
			Monotherapy <i>vs.</i> gemcitabine + docetaxel in Ewing's sarcoma	Phase IIb	NCT02511132	Ongoing
			Combination with nivolumab in NSCLC after platinum-based therapy	Phase III	NCT02639234	Ongoing
			Combination with nivolumab for advanced or metastatic melanoma	Phase I	NCT02574533	Ongoing
			Combination with durvalumab for advanced women's cancers	Phase II	NCT02725489	Enrolling
Fresolimumab (GC- 1008); Cambridge Antibody Technology/ Genzyme/Sanofi	Humanized monoclonal antibody	TGFβ1, TGFβ2 and TGFβ3 ligands	Monotherapy in melanoma and renal cell carcinoma	Phase Ib	NCT00356460	Preliminary evidence of antitumor activity
			Relapsed malignant pleural, mesothelioma	Phase II	NCT01112293	No partial or complete responses observed
			Combination with RT in metastatic breast cancer	Phase II	NCT01401062	High dose fresolimumab resulted in improved OS
			Combination with RT in early stage NSCLC	Phase I/II	NCT02581787	Recruiting
Galunisertib (LY2157299); Eli Lilly	Small molecule	TGFβRI kinase	LY2157299 alone or with lomustine therapy versus lomustine alone in recurrent glioblastoma	Phase II	NCT01582269	No improved OS compared to lomustine alone
			LY2157299 with temozolomide-based radiochemotherapy in newly diagnosed malignant glioma	Phase II	NCT01220271	Ongoing
			Monotherapy and in combination with sorafenib in hepatocellular carcinoma	Phase II	NCT01246986	OS benefit in patients with >20% decrease in TGFβ1, AFP, and CDH1 levels from baseline; combination ongoing

Table 1 (continued)

Table 1 (continued)

HepatoBiliary Surgery and Nutrition, Vol 8, No 3 June 2019

Table 1 (continued)

Drug; company	Туре	Targets	Disease applications	Stage	Clinical trial identifiers	Summary of results
			Galunisertib + gemcitabine <i>vs.</i> gemcitabine in metastatic pancreatic cancer	Phase II	NCT01373164	Trend to OS benefit
			Combination with nivolumab in glioblastoma, NSCLC and hepatocellular carcinoma	Phase Ib	NCT02423343	Ongoing
			Combination with durvalumab in metastatic pancreatic cancer	Phase Ib	NCT02734160	Ongoing
			Combination with RT in metastatic breast cancer	Phase II	NCT02538471	Ongoing
IMC-TR1; ImClone Systems/Eli Lilly	Humanized monoclonal antibody	TGFβRII	Advanced solid tumors	Phase I	NCT01646203	Safe
M7824; EMD Serono	Humanized monoclonal bifunctional antibody	TGFβRII and PD-L1	Advanced non-small cell lung cancer	Phase II	NCT03631706	Ongoing

Table compiled from the following sources: Akhurst and Hata 2012, Kang, Demaria *et al.* 2016, de Gramont, Faivre *et al.* 2017, Tolcher, Berlin *et al.* 2017, Formenti, Lee *et al.* 2018. GBM, glioblastoma multiforme; NSCLC, non-small cell lung cancer; SOC, standard of care; OS, overall survival.

Acknowledgments

Funding: This study was supported by NIH grants R01CA056821, P01CA33049, and P01CA59350, and MSKCC Cancer Center Core Grant P30CA008748. This study was supported by funding from Ludwig Institute for Cancer Research, Swim Across America, Parker Institute for Cancer Immunotherapy, Howard Hughes Medical Institute and the Breast Cancer Research Foundation.

Footnote

Conflicts of Interest: T Merghoub is a consultant for: Immunos Therapeutics and Pfizer; is co-founder and has equity in: IMVAQ therapeutics; has research support from: Bristol-Myers Squibb, Surface Oncology, Kyn Therapeutics, Infinity Pharmaceuticals, Inc., Peregrine Pharmaceuticals, Inc., Adaptive Biotechnologies, Leap Therapeutics, Inc., and Aprea. is an inventor on patent applications related to work on Oncolytic Viral therapy, Alpha Virus Based Vaccine, Neo Antigen Modeling, CD40, GITR, OX40, PD-1 and CTLA-4.

References

- Nishikawa H, Sakaguchi S. Regulatory T cells in tumor immunity. Int J Cancer 2010;127:759-67.
- Solito S, Bronte V, Mandruzzato S. Antigen specificity of immune suppression by myeloid-derived suppressor cells. J Leukoc Biol 2011;90:31-6.
- Bald T, Smyth MJ. TGFbeta shuts the door on T cells. Br J Cancer 2018;119:1-3.
- 4. Travis MA, Sheppard D. TGF-beta activation and function in immunity. Annu Rev Immunol 2014;32:51-82.
- Messenheimer DJ, Jensen SM, Afentoulis ME, et al. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clin Cancer Res 2017;23:6165-77.
- 6. Mariathasan S, Turley SJ, Nickles D, et al. TGFbeta

Gupta et al. TGF β inhibition enhances immune checkpoint blockade

attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 2018;554:544-8.

- Tauriello DVF, Palomo-Ponce S, Stork D, et al. TGFbeta drives immune evasion in genetically reconstituted colon cancer metastasis. Nature 2018;554:538-43.
- Romero D. Immunotherapy: Inhibition of TGFbeta enhances immune-checkpoint blockade. Nat Rev Clin Oncol 2018;15:201.
- Dahmani A, Delisle JS. TGF-beta in T Cell Biology: Implications for Cancer Immunotherapy. Cancers (Basel) 2018;10:194.
- Akhurst RJ, Hata A. Targeting the TGFbeta signalling pathway in disease. Nat Rev Drug Discov 2012;11:790-811.
- Neuzillet C, Tijeras-Raballand A, Cohen R, et al. Targeting the TGFbeta pathway for cancer therapy.

Cite this article as: Gupta A, Budhu S, Merghoub T. One checkpoint may hide another: inhibiting the TGF β signaling pathway enhances immune checkpoint blockade. HepatoBiliary Surg Nutr 2019;8(3):289-294. doi: 10.21037/hbsn.2019.01.10

Pharmacol Ther 2015;147:22-31.

- de Gramont A, Faivre S, Raymond E. Novel TGF-beta inhibitors ready for prime time in onco-immunology. Oncoimmunology 2016;6:e1257453.
- Lan Y, Zhang D, Xu C, et al. Enhanced preclinical antitumor activity of M7824, a bifunctional fusion protein simultaneously targeting PD-L1 and TGF-beta. Sci Transl Med 2018;10.
- 14. Gupta A, Budhu S, Giese R, et al. Abstract 4716: Targeting specific TGF- β isoforms in combination with radiation therapy leads to differential antitumor effects in mouse models of cancer. Cancer Res 2018;78:abstract 4716.
- Vanpouille-Box C, Diamond JM, Pilones KA, et al. TGFbeta Is a Master Regulator of Radiation Therapy-Induced Antitumor Immunity. Cancer Res 2015;75:2232-42.