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Introduction

A critical issue in surgical treatment of hepatobiliary (HPB) 

lesions is the need for accurate localization, resection, and 

reconstruction, while sparing parenchyma and preserving 

function. High-resolution, contrast-enhanced pre-operative 

imaging can approximate the lesion in relation to adjacent 

structures. However, these images are usually obtained 
weeks, or even months prior to surgery. Registration of 
these images with intra-operative anatomy can be imprecise. 
Once in the operating room, surgeons must rely on visual 
inspection, tactile palpation and clinical judgment to 
determine location and set resection margins.

The use of ultrasound and its incorporation into the intra-
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operative environment in the 1980’s enhanced the precision 
of tumor localization (1). This gave surgeons the ability to 
visualize tumors in real-time. The use of intra-operative 
ultrasound (IOUS) improved the detection and localization 
of lesions by up to 35% when compared with traditional 
cross-sectional imaging (2). This is especially useful for 
lesions not readily visible on the surface of the liver.

Fluorescence imaging can further enhance the ability 
of surgeons to see lesions in real-time. Fluorescence is 
based on the use of an exogenous chromophore agent, 
which emits a signal when excited with light of a specific 
wavelength. Fluorophores within the visible spectrum 
emit a signal that is detectable with the naked eye while 
fluorophores at the near-infrared (NIR) spectrum require 
an imaging device to detect the signal (3). NIR fluorophores 
are more commonly used for intra-operative imaging 
due to decreased light scattering, auto-fluorescence, 
tissue absorption and increased tissue penetration (4,5). 
Differential biodistribution of these agents are exploited for 
contrast enhancement of the surgical field.

The three commonly used, FDA-approved fluorophores 
for intra-operative imaging are: methylene blue (MB), 
5-aminolevulinic acid (5-ALA), and indocyanine green 
(ICG). The present literature review seeks to describe the 
clinical uses of these fluorophores in HPB surgery and 
highlight key relevant studies regarding efficacy. MB is both 
a visible wavelength non-specific fluorophore when used 
at millimolar doses and an NIR 700 nm fluorophore when 
used at micromolar doses. 5-ALA is visible wavelength semi-
specific fluorophore. Both MB and 5-ALA have been used 
to a limited degree for fluorescence-guided HPB surgery 
and therefore will only be briefly discussed here. ICG is a 
non-specific NIR fluorophore and has a rapidly-expanding 
body of literature describing its applications for intra-
operative guidance of HPB procedures. The use of ICG 
for visualizing the gallbladder, bile ducts, liver segments, 
liver tumors, and liver transplant will be discussed. While 
ICG as a NIR fluorophore is sensitive, it is not specific and 
tumor-specific fluorescent antibodies are an exciting next 
generation of probes. Currently, developing molecules and 
their status in clinical trials will also be reviewed here.

We present the following article in accordance with the 
Narrative Review reporting checklist (available at http://
dx.doi.org/10.21037/hbsn.2019.09.13).

Methods

A Medline search was performed via PubMed using the 

keyword “fluorescence” with the following HBP surgery 
related keywords: “cholecystectomy”, “cholangiography”, 
“bile duct”, “hepatectomy”, “hepatic resection”, “liver 
resection”, “hepatobiliary surgery”, “liver transplant”, 
“pancreatic surgery” in conjunction with the following 3 
fluorophores “methylene blue”, “5-ALA”, “ICG”. Studies 
on the use of fluorescence-guided surgery (FGS) for 
pancreatic surgery were deferred for the purpose of this 
manuscript. Original studies were retrieved and selected by 
authors for clinical relevance to FGS. Papers were selected 
for their use of fluorophores for clinical intra-operative 
image-guidance during HPB surgery. Approaches and 
uses of the fluorophores are summarized. Studies were 
required to be written in English, and accessible through 
the University of California Systems Library. Pre-clinical 
animal studies and reviews were not included here. Studies 
were organized into a database using Microsoft Excel 
and summarized into tables. In discussing tumor-specific 
NIR fluorescent probes, relevant pre-clinical studies are 
mentioned. To evaluate current status of FGS in clinical 
trials, a review of clinicaltrials.gov was performed using the 
following HPB surgery related key words with fluorescence 
related keywords such as  “ICG”, “f luorescence”, 
“fluorescence-guided surgery”, “fluorophore”, and “near-
infrared as well as “tumor-specific probes”. Additional 
searches were performed directly using the names of 
the principal investigators resulted on the initial query. 
References of the included articles were checked to ensure 
that no additional relevant studies were missed with the 
search criteria. The number of overall articles recovered and 
reviewed specific to each topic are summarized in Table 1.

MB

MB is a water soluble heptically and renally eliminated 
molecule which traditionally has been used at high 
millimolar doses for sentinel lymph node detection 
under bright light in melanoma and breast cancer (6). At 
low micromolar concentrations, it exhibits fluorescence 
properties, emitting a peak signal at 688 nm (7). The 
mechanism behind the accumulation of MB at tumors is 
unclear. Within the field of HPB surgery, MB has been 
used more commonly as a visible stain with white-light 
visualization rather than as a fluorophore for FGS. It has 
been used to delineate anatomic segments, check for bile 
leaks, and evaluate extrahepatic biliary structures. When 
using MB as a contrast agent during cholecystectomy, the 
dye is injected directly into the gallbladder infundibulum 
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Table 1 Summary of number of articles reviewed for relevance to 
FGS

Variable Studies identified Relevant studies

MB

Cholecystectomy 1 1

Cholangiography 1 1

Bile duct 3 2

Hepatectomy 2 0

Hepatic resection 1 1

Liver resection 5 2

Liver surgery 4 2

Hepatobiliary surgery 1 0

Liver transplant 0 0

5-ALA

Cholecystectomy 0 0

Cholangiography 0 0

Bile duct 1 0

Hepatectomy 3 3

Hepatic resection 4 3

Liver resection 11 4

Hepatobiliary surgery 0 0

Liver surgery 26 5

Liver transplant 6 0

ICG

Cholecystectomy 39 33

Cholangiography 44 33

Bile duct 60 2

Hepatectomy 51 28

Hepatic resection 35 21

Liver resection 87 33

Hepatobiliary surgery 40 5

Liver surgery 130 33

Liver transplant 31 14

MB, methylene blue; 5-ALA, 5-aminolevulinic acid; ICG,  
indocyanine green.

to outline the extrahepatic biliary tree (8). During liver 
surgery, MB can be directed to the segment to be removed 
via injection of dye into the appropriate portal vein branch 
under ultrasound guidance (9). MB was found to be most 
useful during parenchymal dissection as there was a clear 
color difference between the two areas beyond surface 
boundaries (10). When used to detect bile leaks at the cut 
edge of the liver, the dye is injected through a trans-cystic 
tube. In several studies, the postoperative biliary leakage 
rate was reduced by the MB test (3.6% vs. 7.3%, P<0.05) 
and on multivariate analysis, the absence of an MB test was 
an independent risk factor for a bile leak (OR =2.6, 95% 
CI: 1.43–4.65, P=0.002) (11,12). In transplant surgery, it 
was used to demonstrate that abdominal drains were not 
needed after donor hepatectomies if the MB bile leak test 
was negative (13).

MB has more commonly been used as a visible dye under 
white light for HPB procedures, but due to the superior 
tissue penetration of NIR fluorescence and its ability 
to emit a signal at around 700 nm, it has recently been 
explored as an agent for FGS. While there is limited use 
of MB for FGS described in the clinical literature, it has 
been compared against ICG in some pre-clinical studies 
and the advantages of a low liver signal, rapid fluorescence 
(within 5–20 minutes), and possibility of repeat dosing were 
noted (14,15). The disadvantages are that the signal overall 
is weaker and the mechanism by which MB accumulates at 
lesions is unclear. The dye also has the potential adverse 
effects of interfering with pulse oximetry, skin or urine 
discoloration, and anaphylaxis and hemolysis in G6PD- 
deficient patients.

As a f luorophore for f luorescence-guided HPB 
procedures, MB has only been examined in isolated case 
reports. There were no studies evaluating the use of MB in 
fluorescence-guided hepatectomies, cholecystectomies, or 
in liver transplants.

5-ALA

5-ALA is a water-soluble molecule that is processed by the 
porphyrin synthesis pathway into protoporphyrin IX (PPIX) 
that emits a peak signal at 635 nm (16). PPIX in normal cells 
is converted to heme by ferrochelatase (FC) in mitochondria 
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and eventually excreted into bile after heme is converted to 
biliverdin and bilirubin in the cytoplasm. The fluorophore 
is semi-selective. The fluorescence signal in cancer cells 
is due to increased porphobilinogen deaminase (PBG-D) 
synthesis of PPIX and decreased activity of FC, leading to 
an overall preferential accumulation of PPIX at tumors (17).  
5-ALA can penetrate the blood-brain barrier and this 
property has been exploited for FGS of brain tumors (18). 
It has also been utilized in dermatology and urology for 
detection of lesions (19,20).

Regarding HPB procedures, 5-ALA has been evaluated 
for visualization of liver lesions. There are 5 studies 
describing the use of 5-ALA for visualization in the 
literature. Schneider et al. first described fluorescence intra-
operative imaging of hepatocellular carcinoma (HCC) 
(described as “photodynamic diagnosis” or PDD) in a 
case report of a patient with HCC who was found to have 
additional hepatic micro-metastases which would have been 
missed with conventional white-light laparoscopy (21). In 
this case report, they used an oral solution of 20 mg/kg  
5-ALA and imaged with the Storz D-Light AF-system 
laparoscope (Karl Storz GmbH, Tuttlingen, Germany)  
6 hours after administration. In their subsequent case series 
they reported that the use of fluorescence imaging yielded 
detection of more metastatic lesions in 4 of 9 patients 
compared to white light (22). While the work demonstrated 
the feasibility of detection, it did not describe the surgical 
resection based on fluorescence-guidance.

Work by Inoue et al. describes the largest experience 
with 5-ALA-based FGS. The group first described their 
experience with a series of 70 patients who underwent 
liver resection for liver tumors (23). The patients had 
oral administration of 1 gram of 5-ALA in 20 mL 50% 
glucose solution 3 hours prior to surgery and imaging was 
performed with a specific blue light (Esperaluz ESLZ-PD-
HLVL405; CCS Inc., Kyoto, Japan) and a SC-52 Fuji filter 
(Fuji Film, Tokyo, Japan) for open surgeries and a Storz 
D-Light AF-laparoscope (Karl Storz GmbH, Tuttlingen, 
Germany) for minimally-invasive procedures. They note 
that the technology was most useful for tumors on the 
surface of the liver and was especially useful in laparoscopic 
surgery where palpation is limited. It was effective for 
margin assessment during parenchymal transection. There 
was a100% sensitivity for detection of HCC, 85.7% for 
colorectal liver metastases (CLM), and 100% for liver 
tumors of various etiologies with an overall sensitivity of 
5-ALA for detection of 92.5%. The margins of resection 
were negative for all patients in the case series (vs. 8% 

in their historical controls) despite having significantly 
smaller margin width in the specimen of 6.7±6.9 (range 
0–27) mm [vs. 9.2±7.0 (range 0–47) mm in their historical 
controls] (P=0.0083) that was attributable to fluorescence 
guidance. The same group compared the use of 5-ALA and 
ICG in 134 patients using 5-ALA, 1 gram given 3 hours 
before surgery with imaging devices as described above, 
and 0.5 mg/kg of ICG intravenously 14 days after surgery 
using photodynamic eye (PDE) (Hamamatsu Photonics, 
Shizuoka, Japan) for imaging. The sensitivity, specificity 
and accuracy of 5-ALA for detecting the main tumors 
were 57%, 100% and 58%, respectively, compared to the 
sensitivity, specificity and accuracy of ICG of 96%, 50% 
and 94% respectively. The use of fluorescence technology 
allowed detection of 5 additional lesions missed by pre-
operative imaging. They noted that ICG was more sensitive 
and less specific while 5-ALA was more specific but less 
sensitive, but both were useful in detecting small superficial 
tumors on the liver surface.

Inoue et al. also retrospectively evaluated the use of 
5-ALA PDD for visualization of bile leaks in the above 
cohort of patients (24). As the metabolized product is 
extracted in the bile, it is detectable by fluorescence. Rather 
than retrograde injection of various dyes at non-physiologic 
pressures, the physiologic metabolism and biliary excretion 
after oral 5-ALA intake make it useful for detection of bile 
leaks at physiologic draining pressures without the use 
of catheters to cannulate the biliary tree. There were 9 
patients with intra-operatively detected bile leaks, but the 
use of fluorescence imaging with 5-ALA showed a bile leak 
in 6 additional patients. They concluded that there was a 
statistically-significant difference although they number 
of patients who had bile leaks diagnosed using 5-ALA 
fluorescence imaging was very small.

5-ALA is a useful, orally-administered compound for 
intra-operative fluorescence imaging and guidance of liver 
lesions and bile leaks. It has not been described for use in 
fluorescence-guided cholecystectomy or liver transplant. 
5-ALA is a semi-selective fluorophore for tumors based on 
their aberrant metabolism of the dye. It is more specific 
than either MB or ICG based on the limited literature 
available. It has limited signal in the hepatic parenchyma, 
but is more concentrated in bile, making it potentially 
useful to evaluate bile leaks. Drawbacks are that it is a 
visible wavelength fluorophore and is very limited in 
visualizing deeper lesions, an issue commonly described 
in the studies mentioned above. While minor, its route 
of oral administration can be an issue in patients who are 



HepatoBiliary Surgery and Nutrition, Vol 9, No 5 October 2020 619

© HepatoBiliary Surgery and Nutrition. All rights reserved.   HepatoBiliary Surg Nutr 2020;9(5):615-639 | http://dx.doi.org/10.21037/hbsn.2019.09.13

unable to tolerate any oral intake. Additionally, it appears to 
cause adverse reactions such as photodermatosis (sunburn) 
needing 24 hour avoidance of sunlight exposure, GI upset, 
and abnormalities in liver function tests (25,26).

ICG

ICG is a water-soluble molecule that binds to plasma 
proteins, undergoes hepatic metabolism and biliary 
elimination (27). It was initially used for fundoscopy and 
estimation of cardiac and hepatic function (28). However 
due to its vascular partitioning, near exclusive biliary 
elimination mechanisms, and low toxicity, it has been used 
for a number of surgical procedures. ICG emits at NIR 
wavelengths with a peak signal at 830 nm that allows for 
increased tissue depth penetration of up to 10 mm (29). 
There are a wide array of ICG-optimized surgical imaging 
devices available (5,30). The NIR wavelength window also 
has decreased auto-fluorescence leading to background 
noise and increased contrast of the visualized structure (4). 
ICG has been widely used to evaluate tissue perfusion and 
lymphatic mapping. Within the field of HPB surgery, the 
hepatic metabolism of ICG makes it useful for many intra-
operative real-time imaging approaches. It is especially 
useful for non-invasive fluorescence cholangiography to 
evaluate the biliary tree. It can be used to selectively perfuse 
segments of the liver to better identify the boundaries of 
anatomic resection as well as to detect bile leakage after 
hepatic resections. Due to the enhanced permeability and 
retention (EPR) of ICG by disorganized neoplastic tissue, it 
is also useful in oncologic procedures, especially visualizing 
cancers of the HPB system.

ICG for evaluating the gallbladder and biliary tree

Intra-operative cholangiography (IOC) has been essential 
for intra-operative visualization of the biliary tree since 
its first introduction in 1930’s by Dr. Mirizzi (31). The 
use of IOC allows surgeons to better define the biliary 
anatomy, achieve early recognition and decrease severity 
of biliary injury should it occur (32). However, IOC is 
often cumbersome, resource-intensive, requires X-ray 
exposure, and administration of contrast which is invasive 
as it requires cannulation of the biliary tree. There can also 
be anatomic limitations to IOC especially in the setting of 
severe cholecystitis with friable tissue leading to inability 
to cannulate and further dissection would lead to increased 
risk of biliary injury.

Ishizawa first showed feasibility of ICG cholangiography 
to evaluate the biliary system by comparing trans-cystic 
administration and intravenous administration of ICG 
in 2008 using an open-field NIR fluorescence imaging 
device in patients undergoing open donor hepatectomy 
or open cholecystectomy (33). This approach was adapted 
into a minimally-invasive setting using intravenous ICG 
administration with a fluorescence laparoscope for patients 
undergoing laparoscopic cholecystectomy. In all 52 patients, 
the cystic duct was easily identified, and in 50 patients the 
cystic to common hepatic duct junction was easily identified 
under fluorescence prior to any dissection (34). After 
dissection, the cystic to common hepatic duct junction was 
identified in all patients under fluorescence imaging. The 
technology also identified unusual biliary anatomy such 
as accessory hepatic ducts and unusual cystic to common 
hepatic duct junctions, such as short cystic ducts and parallel 
or spiral junctions which place patients at high risk of bile 
duct injuries.

There were 33 different studies from different groups 
reporting on the results of their studies of cholecystectomies 
under fluoresence guidance. They are summarized in Table 2.  
Fluorescence-guidance is useful in helping identify the 
cystic duct-common bile duct (CD-CBD) junction during 
cholecystectomies for many indications: cholelithiasis, 
acute cholecystitis, chronic cholecystitis, or cholecystitis 
needing a percutaneous cholecystostomy tube. Optimal 
dosing of ICG and timing of visualization are still variable, 
as demonstrated in Table 2, a dose of 2.5 mg intravenous 
approximately 1–2 hours prior to surgery seems to be 
the most widely used approach with acceptable liver 
background fluorescence. There is variability in approaches 
to dye delivery: intravenous vs. direct biliary injection. 
Regardless of the dose, schedule and route, the use of ICG 
was effective in identifying the critical view of safety (CVS) 
during different approaches to cholecystectomies in the 
reviewed studies. These groups looked at laparoscopic, 
robotic, or single-incision approaches to fluorescence-
guided cholecystectomies using a variety of fluorescence- 
enabled scopes. Hammamatsu, Storz, Stryker, Noavadaq, 
Olympus, and DaVinci Flirefly are the most commonly used 
in the operating room. The strength of the light source, the 
sensitivity of the camera capturing images, the proprietary 
software to process the image and render a “threshold” to 
display a positive fluorescence signal, as well as the final 
image output format (black and white vs. color overlay vs. 
intensity-based heat map) are heterogeneous and variable 
across different devices. All these above factors affect the 
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quality of the image that the surgeon can use. As these 
variables are heterogenous, it is difficult to directly compare 
them. Consensus of the available literature in this specific 
application of ICG FGS is very encouraging. Compared 
to bright-light surgery, most studies found that the use of 
ICG fluorescence guidance led to a higher identification 
rate of the cystic duct, the CD-CBD junction, the CVS, 
a shorter time to identification of vital structures, clearer 
dissection plane between the gallbladder and hepatic fossa, 
and improved identification of accessory hepatic ducts 
or recognition of aberrant anatomy if present. Boni et al. 
comment that they were able to identify the biliary anatomy 
in all cases where ICG was used, irrespective of whether 
the tissue was normal or inflamed (49). Contrary to this, 
Hiwatashi et al. noted that the group in which the CD was 
not identified, had a higher likelihood of inflammatory 
markers and clinical diagnosis of acute cholecystitis (63).

While the data on outcomes is even more limited, of the 
groups that report it, there were no major adverse reactions 
to dye administration and there were decreased rates of 
conversion to open surgery, decreased rates of subtotal 
cholecystectomies, shorter operative times. Schols et al. 
reported significantly earlier identification of the CD (ICG 
23 min vs. standard 31 min, P=0.004) and the CBD (ICG 
22 min vs. standard 32 min, P=0.001) (42). Buchs et al.  
found a significantly shorter operative time by 24 min 
compared to standard bright light single-incision robotic 
cholecystectomy (P=0.06) (41). While they did not report 
identification rates, they noted that the decreased operative 
time was attributable to earlier identification of the CVS. 
This difference was significant only for patients with body-
mass index (BMI) less than 24 as the thickness of the fat 
pad around the biliary tree led to limited ICG penetration 
and optimal CVS visualization. This was also supported by 
work by Daskalaki and Osayi et al. that specifically looked at 
group stratification by BMI.

As fluorescence-based IOC has little risk, the cost of 
the dye itself is low, and fluorescence-enabled laparoscopes 
are more widely available, many surgeons familiar with 
fluorescence technology favor its routine use. Proponents 
of FGS technology argue that the barrier to use of 
fluorescence-based cholangiography is low and technical 
feasibility is uncomplicated. The cost-effectiveness of this 
approach was evaluated by Dip et al, comparing the cost 
of IOC and fluorescence-based IOC (52). They found that 
the use of fluorescence IOC was more cost effective when 
compared to IOC at 13.97±4.3 USD vs. 778.43±0.4 USD 
per patient (P=0.0001) without the need to cannulate the 

CD. They note that the cannulation of the CD is one of 
the main points of contention by those who are adverse to 
routine IOC to prevent bile duct injury. If the wrong duct 
has been identified and cannulated, an IOC will prevent 
further injury such as complete transection of the CBD, but 
the choledochotomy will still need to be repaired.

However, incidences of biliary injuries during standard 
laparoscopic cholecystectomy are low and selective IOC 
is now preferred in most centers. There is not yet enough 
data to determine if fluorescence-cholangiography will 
affect rates of bile duct injury and or overall patient 
outcomes. Studies are ongoing to determine the added 
value of fluorescence cholangiography compared to 
conventional laparoscopic cholecystectomy. A number of 
studies compared fluorescent cholangiogram to IOC, while 
others compared FGS to standard bright light surgery 
(Table 3). Common end points are “time to identification 
of critical view of safety” “rate of identification of anatomic 
structures” and common secondary end points are “OR 
time”, “outcomes”, and “cost”.

ICG for visualizing bile leaks

Besides IOC, ICG is useful in evaluating the biliary system 
during hepatic resections as a tool for evaluating bile leaks. 
While the use of ICG for visualizing intrahepatic bile ducts 
is limited due to tissue depth penetration, it is useful to 
evaluate details over the cut surface of the liver. Kaibori et al.  
and Sakaguchi et al. both described the approach using a 
cholangiocatheter cannulation of the cystic duct stump 
to deliver ICG (66,67). Both studies showed that the use 
of ICG led to increased rates of detection of bile leaks 
compared to standard of care using a saline or fat emulsion 
injection. After repair, this led to no post-operative bile 
leaks in the ICG group in both studies compared to 6% 
and 10% respectively in the standard of care groups. The 
use of fluorescence imaging over the surgical bed of hepatic 
resections increased the rate of detection of bile leaks and 
subsequent complications.

ICG for visualizing hepatic segments

Anatomic resection of the liver based on Couinad segments 
revolutionized liver surgery by allowing surgeons to be 
methodical about the tissue that is removed while preserving 
healthy parenchyma (68). While intraoperative ultrasound 
is useful in visualizing the adjacent relationships of the 
vasculature, biliary structures and the lesion to be removed 
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in real-time, the determination of resection boundaries at 
the level of hepatic surface anatomy is still often difficult 
to determine. A variety of techniques have been used to 
better delineate the anatomic segments prior to initiating 
parenchymal transection. Selective ligation of vascular 
pedicles and subsequent visualization of the ischemic 
boundaries is one approach. Dye injection as demonstrated 
by Makuuchi is another (69). A major issue with the use 
of traditional dyes such as MB and indigo-carmine, is the 
rapid washout after injection. The active transport of ICG 
and liver specificity of its metabolism allow the fluorescence 
signal from ICG to persist throughout the operation for 
continued image guidance. Aoki et al. and Inoue et al.  
first showed the feasibility of this approach, especially when 
following the intersegmental planes during division of 
the liver parenchyma (70,71). Twelve out of the 33 papers 
relevant to FGS hepatic resections looked at segmental 
staining to help guide parenchymal resection (Table 4). These 
are given as either standard doses of 2.5–5 mg or weight- 
based at 0.25–0.5 mg/kg. Administration of the dye can be 
performed intraoperatively. Positive segmental staining can 
be obtained by selective portal vein injection while negative 
segmental staining can be obtained by intravenous injection 
during selective portal clamping. While there is increasing 
literature describing surgeons’ experiences and case series in 
this area, there is little to no information on outcomes. As 
technology and experience with this approach expands the 
information should be forthcoming.

ICG for visualizing hepatic tumors

The vasculature of neoplastic tissue is leaky and poorly 
organized, an effect called the EPR effect (103). This leads 
to retention of ICG in distinct patterns with certain HPB 
neoplasms that lend itself to utility in fluorescence-guided 
oncologic procedures. Ishizawa and Gotoh were the first 
groups to describe the use of ICG fluorescence to localize 
hepatic lesions (72,73). Patients received intravenous ICG as 
part of a routine pre-operative liver function assessment and 
the persistent signal at the tumors from this test was used 
to navigate resection margins. Twenty-one out of the 33 
articles relevant to ICG fluorescence hepatectomy used this 
approach to label the tumor for intra-operative guidance. 
Gotoh et al. described HCC lesions as a bright homogenous 
fluorescence signal (72). They were able to detect all 10/10 
pre-operatively diagnosed lesions, and in eight cases, 
new surface nodules not detected by either pre-operative 
imaging or IOUS were detected with the use of fluorescence 

imaging, 4/8 were HCC. Ishizawa described 37 patients 
with HCC and 12 patients with CLM, 23 of whom had the 
specimen imaged after resection with fluorescence imaging 
and 26 had real-time intra-operative fluorescence imaging 
after hepatic mobilization. They described three patterns of 
fluorescence: a bright homogenous fluorescence signal seen 
most commonly with HCC lesions, partial fluorescence seen 
in HCC lesions with components of hemorrhagic necrosis, 
and ring type fluorescence seen in CLM. Fluorescence 
microscopy for HCC lesions showed that the fluorescence 
was within the cancerous cells whereas in CLM lesions, the 
fluorescence was located at the surrounding non-cancerous 
liver parenchyma compressed by the tumor. Figure 1 adapted 
from Ishizawa’s review on ICG fluorescence imaging for 
HPB cancer shows these fluorescence patterns (104).  
Uchiyama used ICG in conjunction with contrast-enhanced 
IOUS to detect CLM and found that these lesions did not 
fluoresce homogenously compared to HCC and most were 
ring enhancing (n=18) (74). They found that the sensitivity 
of contrast-enhanced IOUS in conjunction with ICG 
fluorescence imaging was superior to multiple detector 
computed tomography (MDCT)/magnetic resonance 
imaging (MRI), 98.1% vs. 88.5% (P=0.05). They saw 
that even lesions that radiographically disappeared with 
neoadjuvant chemotherapy still showed a fluorescence signal 
and were positive for microscopically-viable cancer cells 
on pathology. Boogerd et al. reported on the use of ICG 
for hepatic resection of a wide variety of lesions including 
intrahepatic cholangiocarcinoma and hepatic metastases 
of uveal melanoma and breast cancer (59). These lesions 
showed a rim type fluorescence similar to CLM lesions.

Since the initial report of the use of ICG in hepatic 
resections, several hundred cases have been reported 
with a variety of timing and dosing of administration 
and overall, a good sensitivity ranging from 70–100% 
up to 10 mm depth (105). While the safety and efficacy 
of ICG administration has been well reported, the long-
term outcomes after fluorescence-guided hepatic resection 
compared to conventional resection is unclear. Handgraaf 
et al. showed that the use of fluorescence imaging increased 
the number of additional lesions detected during surgery 
for CLM to 25% from 13% (P=0.04) and the lesions 
detected by fluorescence imaging were usually smaller 
3.2±1.8 vs. 7.4±2.6 mm (P<0.001) (106). While was an 
improvement in liver-specific recurrence-free survival at 
4 years of 47% using fluorescence compared to 39% with 
conventional surgery, the study was not powered sufficiently 
to detect a significant difference. Further studies will need 
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Table 4 Summary of studies using ICG for hepatectomy

Authors Year n Dose Route Timing
Fluorescence 

imaging system
Surgery Tumors

Staining 
type

Aoki et al. 
(70)

2008 35 5 mg Injection into  
PV branch

Intraop Hammamatsu Open 13 HCC, 18 liver  
metastases,  
4 CholangioCA

Segmental 
stain

Gotoh  
et al. (72)

2009 10 0.5 mg/kg Intravenous 1–8 days  
before surgery

Hammamatsu Open 10 HCC Tumor 
stain

Ishizawa  
et al. (73)

2009 26 0.5 mg/kg Intravenous 1–7 days  
before surgery

Hammamatsu Open 20 HCC, 6 CLM Tumor 
stain

Aoki et al. 
(36)

2010 81 5 mg Injection into  
PV branch

Intraop Hammamatsu Open 28 HCC, 35 CLM, 8 
CholangioCA, 10 other

Segmental 
stain

Uchiyama 
et al. (74)

2010 32 0.5 mg/kg Intravenous 2 weeks  
before surgery

Hammamatsu Open 32 CLM Tumor 
stain

Uchiyama 
et al. (75)

2011 22 0.5 mg/kg Intravenous After ligation of 
portal pedicle

Hammamatsu Open 22 HCC Segmental 
stain

Ishizuka  
et al. (76)

2012 7 0.1 mg/kg/mL Intravenous Not reported Hammamatsu Open 7 CLM Tumor 
stain

Peloso  
et al. (77)

2013 25 0.5 mg/kg Intravenous 24 hours  
before surgery

Hammamatsu Open 25 CLM Tumor 
stain

Tanaka  
et al. (78)

2013 33 0.5 mg/kg Intravenous 2 days before 
surgery

Hammamatsu Open 10 cirrhotic livers,  
23 non-cirrhotic  
(specifically 12 HCC,  
9 CLM, 1 CholangioCA, 
1 hepatic carcinoid)

Tumor 
stain

Kudo  
et al. (79)

2014 17 0.5 mg/kg Intravenous 2 weeks  
before surgery

Olympus Laparoscopic 10 HCC, 6 CLM,  
1 uterine cancer

Tumor 
stain

Sakoda  
et al. (80)

2014 2 5 mg Injection into  
PV branch

Intraop Olympus Laparoscopic 2 HCC Segmental 
stain

Tummers 
et al. (81)

2015 3 10 mg Intravenous 1 day before 
surgery

Storz Laparoscopic 3 uveal melanoma Tumor 
stain

Yamamichi 
et al. (82)

2015 3 0.5 mg/kg Intravenous 2–3 days  
before surgery

HyperEye Open 3 hepatoblastoma Tumor 
stain

Barabino 
et al. (83)

2016 3 0.25 mg/kg Intravenous 24 hours  
before surgery

Fluoptics Open 2 endocrine liver  
metastasis, 1 CLM

Tumor 
stain

Kaibori  
et al. (84)

2016 48 0.5 mg/kg Intravenous 14 days before 
surgery

Hammamatsu Open 31 HCC, 13 CLM, 2 
CholangioCA, 2 benign

Tumor 
stain

Takahashi 
et al. (85)

2016 15 5–7.5 mg Intravenous 1–2 days  
before surgery

Intuitive,  
Novadaq

Open,  
laparoscopic, 

robotic

9 CLM, 2  
neuroendocrine,  
1 FNH, 1 hemangioma

Tumor 
stain

Zhang  
et al. (86)

2017 50 0.25 mg/kg Injection into PV, 
Rt gastric vein, 
central venous  

catheter

Intraop Hammamatsu Open 38 HCC, 4 cavernous 
hemangiona,  
3 CholangioCA, 2 CLM, 
1 Malignant fibrous 
histiocytoma,  
2 micronodular cirrhosis

Segmental 
stain

Kawaguchi 
et al. (87)

2017 21 2.5 μg/mL of 
total liver volume 
estimated from 

3D CT

Intravenous after 
segmental HV, 

PV, HA clamping

Intraop Hammamatsu Open 9 HCC, 9 CLM,  
3 others

Segmental 
stain

Table 4 (continued)



HepatoBiliary Surgery and Nutrition, Vol 9, No 5 October 2020 627

© HepatoBiliary Surgery and Nutrition. All rights reserved.   HepatoBiliary Surg Nutr 2020;9(5):615-639 | http://dx.doi.org/10.21037/hbsn.2019.09.13

Table 4 (continued)

Authors Year n Dose Route Timing
Fluorescence 

imaging system
Surgery Tumors

Staining 
type

Terasawa 
et al. (88)

2017 41 0.5 mg/kg  
preoperatively, 

1.25 mg  
intraoperatively

Intravenous 3 days before 
surgery and 

intraop

Novadaq Laparoscopic 7 HCC, 46 CLM,  
6 others

Tumor 
stain

Narasaki  
et al. (89)

2017 16 2.5 mg/L of  
estimated liver  

volume

Intravenous intraop Mini-FLARE Open 6 CholangioCA, 5 GB 
cancer, 2 pancreatic 
cancer, 1 ampullary 
cancer, 1 CLM, 1 renal 
cancer

Segmental 
stain

Kobayashi 
et al. (90)

2017 105 0.25 mg ICG  
diluted with  

indigocarmine or 
2.5 mg ICG

Intravenous or 
injection into PV 

branch

Intraop Hammamatsu Open 71 HCC, 25 CLM,  
5 CholangioCA,  
2 other

Segmental 
stain

Lieto et al. 
(91)

2018 9 0.5 mg/kg Intravenous 1 day before 
surgery

Fluoptics Open 3 HCC, 6 CLM Tumor 
stain

Nanashima 
et al. (92)

2018 3 0.5 mg/kg Intravenous “Several days” 
before surgery

Hammamatsu Open 3 HCC Tumor 
stain

Cheung  
et al. (93)

2018 20 0.5 mg/kg Intravenous 10–14 days 
before surgery

Novadaq Laparoscopic 20 HCC Tumor 
stain

Peyrat  
et al. (94)

2018 43 0.25 mg/kg, 
additional dilute 

injections  
intraoperatively

Intravenous, PV 
injection intraop

1 day before 
surgery,  
Intraop

Fluoptics Open 2 HCC,  
2 CholangioCA,  
36 CLM, 3 other

Tumor 
stain

Nomi et al. 
(95)

2018 16 1.5 mg Intravenous Intraop Novadaq Laparoscopic Not reported Segmental 
stain

Chiba et al. 
(96)

2018 24 Not reported Injection into 
cystic artery

Intraop HyperEye Open 24 GB cancer Segmental 
stain

Alfano  
et al. (97)

2019 27 0.5 mg/kg  
followed by  
0.2 mg/kg  

if >7 days after 
1st injection

Intravenous 1–7 days  
before surgery

Stryker Open 19 HCC,  
2 CholangioCA,  
6 CLM

Tumor 
stain

He et al. 
(98)

2019 2 0.5 mg/kg Intravenous 72–96 hr  
before surgery

Hammamatsu Open 2 HCC Tumor 
stain

Urade  
et al. (99)

2019 3 2.5 mg Intravenous Intraop Olympus Laparoscopic 2 HCC, 1 liver  
metastasis

Segmental 
stain

Souzaki  
et al. (100)

2019 5 0.5 mg/kg Intravenous 18–138 hours 
before surgery

Not reported Open, VATS 5 hepatoblastoma Tumor 
stain

Yoshioka 
et al. (101)

2019 1 0.5 mg/kg Intravenous 2 days before 
surgery

Novadaq Laparoscopic 1 HCC recurrent Tumor 
stain

Marino  
et al. (102)

2019 20 2.5 mg Injection into PV 
branch

Intraop Intuitive Robotic Not reported Segmental 
stain

PV, portal vein; VATS, video assisted thoracoscopic surgery; HCC, hepatocellular carcinoma; CLM, colorectal liver metastasis;  
CholangioCA, cholangiocarcinoma.
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to be performed to determine the long-term outcomes of 
fluorescence guided oncologic surgery.

ICG and minimally invasive liver surgery

Fluorescence navigation using a NIR wavelength is well-
suited for minimally-invasive liver surgery since this is 
already an environment where the surgeon is interacting with 
a monitor for visualization. Within four years of introduction 
of NIR fluorescence technology to open surgeries, NIR-
enabled fluorescence laparoscopes were commercially 
available. In 2012, Ishizawa et al. first reported the initial 
experience of laparoscopic fluorescence-imaging guidance 
to delineate hepatic segments during resection (107).  
Kudo et al. reported in 2014 on the first series of patients 
undergoing laparoscopic hepatectomy using a positive 
fluorescence signal to identify the liver surface tumors (79). 
Of the 33 papers identified using ICG for FGS of liver 
lesions, 10 discuss using a minimally-invasive approach, 
either laparoscopic or robotic. Authors of these studies 
especially note that the use of fluorescence in laparoscopy 
was especially useful for identifying small sub-centimeter 
sub-capsular lesions that were not readily evident under 
bright-light visualization (108). They note the added 
benefit of fluorescence for visualization in these minimally-
invasive approaches, especially that contrast enhancement 
compensates for the inability of the surgeon receive manual 
tactile feedback. Additionally image guidance was useful at 
superficial depths where IOUS may not readily detect these 
lesions. Fluorescence-navigation technology assisted in 
increasing the sensitivity of detecting lesions and localizing 
the resection margins in minimally-invasive settings.

Currently ongoing clinical trials using ICG in liver 
surgery are summarized in Table 5, however the work is still 
limited, focusing on feasibility, accuracy, and detections 
rates. There is limited information on outcomes, but with 
further experience, as well as expansion and maturation of 
this technology, more data should become available.

ICG in liver transplants

The ability to use ICG to delineate boundaries of liver 
segments, visualize the biliary tree and directly assess 
perfusion without directly cannulating the vasculature 
makes it uniquely applicable to the field of transplant 
surgery in both living donor liver transplants (LDLT) and 
for liver transplant recipients in general. The technology 
allows donor liver parenchyma to be precisely transected at 
the segmental interfaces, identify aberrant anatomy, check 
for bile leaks and evaluate the perfusion and function of 
the residual liver after donor partial hepatectomy. Mizuno 
et al. first used ICG to delineate aberrant anatomy in a 

Figure 1 Differential patterns of fluorescence signals on the cut 
surface of different liver cancers using ICG. ICG administered 
pre-operatively gives a fluorescence signal over the liver when 
imaged with a NIR-fluorescence camera. The patterns can be 
classified into bright homogenous “total” fluorescence type (A) 
well-differentiated hepatocellular carcinoma (HCC), partial 
fluorescence type (B) moderately differentiated HCC, and rim-
type fluorescence (C), poorly differentiated HCC (upper) and 
CLM (lower). Adapted from (104). ICG, indocyanine green; CLM, 
colorectal liver metastases. 
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LDLT and further expand the application by using ICG 
fluorescent-cholangiogram to determine the point of 
transection of the bile duct (109,110). For liver transplant 
recipients, the technology allows surgeons to directly 
evaluate vascular anastomoses without instrumentation or 
cannulation, check for bile leaks and additionally gives an 
indicator of synthetic function as the fluorophore undergoes 
biliary excretion. Kubota et al. first used this technology 
in 3 patients receiving LDLT to evaluate vascular  
anastomoses (111). Recipients were imaged 10 seconds 
after injection and showed adequate flow through both the 
hepatic artery and portal vein. Forty minutes after the initial 
injection, there was biliary excretion of the dye showing 
appropriate biliary function and all patients recovered 
uneventfully. Figueroa et al. reported on the largest study of 
liver recipients using this technology: 72 patients received 
intravenous injections of ICG and perfusion patterns 
over the liver surface were evaluated and categorized as 
homogenous, non-perfused areas, and patchy perfusion 
throughout (112). Patients with patchy perfusion had a 
higher rate of primary graft dysfunction of 60% compared 
to patients with non-perfused areas (30%) and patients with 
homogenous perfusion (17%).

Tumor-specific fluorescence imaging for HPB surgery

While imaging with fluorophores alone is useful for 
evaluating surface anatomy of the liver and visualizing 
hepatic lesions, the technology is sensitive, but not specific. 
Not all nodules that exhibit a fluorescence signal are 
malignant. While we are still accumulating more knowledge 
on the use of fluorescence pattern recognition, especially 
using ICG, there is not one signal intensity or pattern that 
clearly indicates malignancy. While the decision is clear for 
fluorescent lesions that clearly correlate with pre-operative 
imaging, it is unclear what to do for these indeterminate 
lesions where the location may change the extent of planned 
surgery. The technology often identifies additional lesions 
and after these lesions are resected, histologic examination 
shows that not all are malignant. Case-series reporting on 
additional lesions discovered by NIR fluorescence imaging 
describe false-positive fluorescent nodules, especially in the 
setting of cirrhosis. False positive rates are variable and can 
be as high as 40% and up to 87% in cirrhotic livers (78). 
Tanaka et al. report that the positive predictive value of ICG 
in cirrhotic livers can be as low as 5.4% compared to 100% 
in healthy livers (78). While those numbers are extreme, 
most groups use a combination of clinical judgment, bright-
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light inspection, and contrast enhanced IOUS to indicate 
malignancy prior to resection (88).

The use of tumor-binding probes conjugated to 
fluorophores can confer further specificity to FGS. These 
probes use a variety of mechanisms to confer specificity 
to lesions. The most common approach is targeting 
using antigen-antibody binding, but other approaches 
such as peptide binding, selective protease activation, pH 
differential, or aberrant tumor metabolism are all viable 
techniques to selectively deliver a fluorescence signal to the 
target lesions while decreasing background noise.

Our lab has developed orthotopic mouse models of 
hepatic cancers, especially CLM (113-115). By either 
orthotopically implanting the tumor specimen or 
additionally serially selecting for cell line variants that form 
hepatic metastases, we are able to create clinically-relevant 
mouse models for use in further establish of tumor-specific 
fluorescence platforms (116).

Yano et al. used a genetically-engineered adenovirus 
expressing green fluorescence protein (GFP) with an 
orthotopic CLM mouse model to show efficacy for  
FGS (117).  The adenovirus cal led OBP-401, is  a 
conditionally-replicative adenovirus with the replication 
cassette under the control of the human telomerase reverse 
transcriptase (hTERT) promoter and a GFP gene under the 

control of a cytomegalovirus (CMV) promoter (118). The 
virus was administered directly into the tumor and imaging 
was performed 3 days after injection. A strong GFP signal 
was visualized at the tumor for FGS. The localization of 
OBP-401 GFP correlated with the red fluorescence protein 
(RFP) cells. Two groups of mice (n=16) underwent FGS 
vs. standard bright light surgery (BLS) and were evaluated  
120 days after surgery. After BLS, there was still residual 
tumor at the surgical bed as indicated by GFP and RFP 
signals using fluorescence imaging (Figure 2A), but 
after FGS using OBP-401, there was no residual cancer 
remaining (Figure 2B). 94% (15/16) mice that underwent 
BLS had large tumor recurrences compared to mice that 
underwent FGS 19% (3/16) (P<0.001).

Hiroshima et al. also compared FGS vs. BLS using 
a orthotopic CLM model, but delivered fluorescence 
to the tumor with an intravenous injection of anti-
carcinoembryonic antigen (CEA) antibody conjugated to 
a 650 nm fluorophore (119). The antibody-fluorophore 
conjugate was successful at delineating the tumor over 
the liver with a best signal to noise ratio at 72 hours. 
After BLS, there was still residual tumor at the surgical 
bed compared to FGS under anti-CEA-DyLight650 
navigation where no residual cancer was detectable  
(Figure 3A). Additionally, the wavelength of the dye showed 

Figure 2 Visualizing a liver metastasis with viral-GFP in an orthotopic model of colon cancer. OBP-401, a conditionally-replicative 
adenovirus expressing GFP, was injected into orthotopically-implanted colorectal liver metastases 3 days before surgical resection. After 
BLS, both a GFP fluorescence signal from OBP-401 and an RFP signal from RFP-labeled cells were detected in the surgical bed (A). After 
OBP-401-FGS, there were no residual cancer cells (B). Adapted from (117). GFP, green fluorescence protein.

After BLS After fluorescent guided surgery

Merge MergeBright
field

Bright
field

A B
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Figure 3 Visualizing a liver metastasis in an orthotopic model of colon cancer with a fluorescent antibody. Comparison between visible 
wavelength fluorescence and near-infrared fluorescence signal using anti-CEA antibody conjugated to DyLight650 visualized using a Mini 
Maglite® LED Pro flash light (Mag Instrument) with an excitation filter (ET640/30X, Chroma Technology Corporation) and a Canon EOS 
60D digital camera with an EF-S18-55 IS lens (Canon) and an emission filter (HQ700/75M-HCAR, Chroma Technology Corporation). (A) 
The surface-exposed tumor (white arrow head) was clearly detected under both GFP and anti-CEA-DyLight650 navigation. In contrast, the 
tumors covered with normal tissues (yellow arrow heads) were detected only under anti-CEA-DyLight650 navigation. No residual tumor 
was detected after FGS. (B) Representative gross images of excised tumors (left panel: exposed tumor, right panel: buried tumor). Upper 
panels indicate bright field (BF) images; middle and lower panels indicate fluorescence images for GFP and DyLight 650 [650], respectively. 
The area surrounded by a white broken line indicates the buried part of the excised tumor. CEA650 fluorescence was able to penetrate 
normal liver tissue and visualize the buried part of the tumor, which was not detected by GFP fluorescence. Scale bars: 10 mm (A) and  
2.5 mm (B). Adapted from (119). CEA, carcinoembryonic antigen; GFP, green fluorescence protein.

A BBefore FGS

BF BF

GFP

GFP

10 m
m

2.5 mm

650

650

10 m
m

Exposed tumorAfter FGS Buried tumor

an improved fluorescence signal penetration in the presence 
of overlying tissue compared to GFP (Figure 3B). Disease-
free and overall survival were significantly higher in the FGS 
group compared to BLS. In these orthotopic mouse models 
of CLM, using tumor-specific fluorescence navigation for 
surgical resection, decreased the volume of residual disease 
and increased overall and disease-free survival.

Clinical translation of these approaches is rapid 

and underway (Table 6). Van Dam’s group is evaluating 
the use of an anti-VEGF antibody conjugated to an 
800 nm fluorophore, bevacizumab-800CW, in FGS 
of cholangiocarcinomas (NCT03620292). While the 
majority of these active clinical trials for tumor-specific 
probes are for colorectal and pancreatic cancers, the 
experience and concepts from these can be broadened into 
hepatic and biliary surgeries. Gutowski et al. report on 
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the results of clinical trial NCT02973672 using an anti-
CEA antibody conjugated to a 700 nm dye called SGM-
101 that successfully imaged colorectal and pancreatic 
cancers and this probe is advancing to a phase III clinical 
trial (120,121). SGM-101 was found also to be able to label 
CLM as well as pancreatic cancer metastases to the liver as 
shown in Figure 4 (123). Rosenthal’s group is working on 
an epidermal growth factor receptor (EGFR) conjugated 
to an 800 nm fluorophore for HPB and pancreatic cancers 
(NCT02736578, NCT03384238) (124-126).

These tumor-specific probes are still relatively early 
in their development, but the preliminary results are 
promising. With tumor-specific probes, there is enhanced 
and specific fluorescence at target lesions compared to a 
nonspecific dye such as ICG. Further work will need to be 
performed to optimize probe design, dose, schedule, and 
imaging devices. HPB procedures, especially those with 
minimally-invasive approaches, are cases where FGS can be 
used to potentially impact oncologic outcomes.

FGS is valuable for HPB surgery with both visible 
wave length  and NIR f luorophores .  Nonspec i f i c 
fluorophores are readily available and used in a variety of 
modalities to aid in visualization of desired structures. Non-
specific accumulation at tumors helps localize the lesions 
at the surface as well as deeper within the parenchyma. 
Tumor-specific probes are a promising advancement in 
FGS with a greater degree of specificity. While advancing 

rapidly, the technology is still relatively new and it will be 
very interesting to see its impact on outcomes in the next 
few years.
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