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Nonalcoholic fatty l iver disease (NAFLD) affects 
approximately 25% of the global population and the future 
clinical and economic consequences are enormous. The 
rising disease burden from NAFLD reflects increased rates 
of obesity and its metabolic consequences, but genetic 
factors clearly determine how individuals respond to excess 
caloric intake and the resulting metabolic derangements. 
The review by Barbara and colleagues (1) focuses on key 
genetic variants of NAFLD from an ever-growing list (2).  
Of all the genetic variants, patatin-like phospholipase 
domain-containing protein 3 (PNPLA-3) has emerged 
as a major common determinant of NAFLD and may be 
envisioned as part of a future personalized management 
strategy. 

The PNPLA3 story begins in 2008, when a genome-
wide association study of the Dallas Heart Study cohort 
identified a significant association between rs738409 C>G, 
encoding Ile148Met (I148M) and NAFLD, independent 
of BMI, diabetes, and alcohol use (3). In this ethnically 
diverse North American cohort, the risk allele (*I148M) 
was most common in Hispanics, intermediate in those of 
European descent and lowest in African Americans. Fast 
forward to 2019, with numerous GWAS and candidate-
gene studies having firmly established PNPLA3 I148M 
as a genetic modifier of hepatic steatosis and a risk factor 
for steatohepatitis, fibrosis, and hepatocellular carcinoma 
(HCC) (4). The distribution of risk allele varies globally, 
with those of Hispanic and Asian ancestry more likely to 

carry the M variant (5) (Figure 1). 
The magnitude of genetic influence of PNPLA-3 on 

liver-related outcomes is noteworthy. A meta-analysis with 
the total of 14,266 NAFLD subjects, the M-variants (GG 
and GC) were associated with a 3.24-fold and 2.14-fold 
higher odds of HCC than those with those homozygous 
for wild-type (CC) (6). In a well-characterized biopsy-
proven NAFLD cohort from northern European with 
matched NAFLD-HCC cases to non-HCC NAFLD 
cases, the M-variants conferred a 2.26 higher risk of HCC 
risk than those with wild-type (7). Increasing body mass 
index amplifies the risk of the 148M-allele, with a study 
from Copenhagen showing the odds of cirrhosis among 
persons with BMI >35 kg/m2 was 5.8 in homozygotes 
for the M-variant (versus wild-type) and corresponding 
odds of cirrhosis for those with BMI <25 kg/m2 was 
2.4 (8). In a large Italian cohort, PNPLA3 M-variants 
were independently associated with a higher risk of 
decompensation [hazard ratio (HR), 2.04], HCC (HR, 2.66), 
and liver-related death (HR, 3.64) among biopsy-proven 
NAFLD patients (9). Thus, epidemiologic data support 
PNPLA3 I148M as a major genetic modifier of NAFLD.

PNPLA3 is a crucial lipid regulator in hepatocytes 
and stellate cells. PNAPL3 is regulated by TGF-β 
to release retinol from retinyl esters in stellate cells, 
involving stellate cell activation and fibrogenesis. Within 
hepatocytes, PNPLA3 is located in the lipid droplets, 
hydrolyzing triglycerides (TG) and catalyzing the transfer 
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of the polyunsaturated fatty acids (PUFA) from di- and 
tri-acylglycerols to phosphocholines (10). Its function 
is crucial in remodeling phospholipids of lipid droplets. 
Degradation of PNPLA3 is through ubiquitylation of 
lysine and targeted to the proteasomal degradation. The 
PNPLA I148M mutant is impaired in hydrolysis activity 
and less accessible for ubiquitylating degradation, which 
lead to retention of triglycerides and PUFA enriched 
lipid droplets, priming accumulation of liver fat. NAFLD 
patients with the 148M/M variant have higher levels 
of liver fat, lower serum fasting triglyceride levels, and 
are less insulin resistant. Interestingly, the retention of 
PUFA TGs in the liver and decease in the efflux of PUFA 
into VLDL-TG particles may mitigate cardiovascular 
disease in PNPLA3 148M carriers. Thus, a genetic 
profile favoring beneficial outcomes for one aspect of the 
metabolic syndrome may be detrimental for another. 

Since accumulation of I148M mutants alters lipid 
composition in hepatocytes and stellate cells and “primes the 
pump” in terms of NAFLD and its sequelae, a therapeutic 
approach that directly targets 148M is appealing (11).  

In a homozygous PNPLA3 148 M/M mutant knock-in 
mice model with the human PNPLA3 I148M mutation 
introduced into the mouse PNPLA3 gene using homologous 
recombination, silencing PNPLA3 with a GalNAc3-
conjugated-antisense oligonucleotides (ASO) markedly 
improved NAFLD activity score (NAS) and fibrosis stage in 
PNPLA3 mutant knock-in mice (12). PNPLA3-ASO also 
exerted some beneficial effects in wild type mice, likely due 
to nonselective suppression of wild type PNPLA3. These 
preclinical studies suggest new therapeutic targets, focused 
on reducing the mutant PNPLA3 protein, and where 
screening for PNPLA3 polymorphisms would be relevant 
for a personalized medicine approach.

Of  more  immed ia te  c l in i ca l  r e l evance  i s  the 
association PNAPLA3 genotype with response to lifestyle 
interventions. Patients with I148M mutants are more 
responsive to carbohydrate and calories restriction, while 
less responsive to omega-3 fatty acid and statin treatment. 
In a post-hoc analysis of 154 NAFLD patients from Hong 
Kong randomized to low calorie diet versus routine care 
for 12 months, I148M carriers in the dietary intervention 

Figure 1 The frequency of PNPLA3 I148M variant in different population across the global.
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group showed greater reduction of hepatic TG, body 
weight, central obesity and total cholesterol than those 
without I148M (13). Similarly, in a Polish randomized 
trial of stringent calorie restriction (500-Kal diet), the 
homozygous 148M/M had a greater reduction of hepatic 
steatosis compared to 148I/I (14). In a randomized 
controlled trial of high dose omega-3 fatty acids for 15– 
18 months in adults with NAFLD, PNPLA3 148 M/M 
genotype was independently associated increased liver fat; 
10% higher at study end than those with either PNPLA3 
148I/I or 148I/M (15). Finally, in a large European cohort 
with biopsy-proven NAFLD, statin use was associated with 
lower rates of steatosis, steatohepatitis and fibrosis overall, 
but PNPLA3 genotype was an important modifier, with 
benefits only seen in those without the 148I/M variant (16). 
Thus, NAFLD treatment interventions, whether lifestyle 
or medications, may be influenced by PNPLA3 genotype. 
This means that stratification for PNPLA3 I148M variant 
status in all therapeutic trials is essential to avoid negative 
results due to this confounder. 

The review by Barbara and colleagues highlights the 
complexity of NAFLD and the strong interplay between 
genetics and environment (1). The drug pipeline for 
new NAFLD therapy is rich and targets metabolic, 
inflammatory/oxidative stress and fibrogenesis pathways. 
Additional novel therapies related to an understanding 
of genetic modifiers such as PNPLA3 are important to 
consider. Ultimately, incorporation of NAFLD genetic 
modifiers into future clinical risk prediction tools and 
treatment algorithms may be anticipated enhance patient 
outcomes. 
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