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Introduction

The evolution of dietary habits together with drastic lifestyle 
modifications strongly affected modern health care of the 
western society during the last decades. In fact, the increasing 
prevalence of obesity worldwide, the metabolic syndrome, 
cardiovascular diseases, diabetes and related pathologies 
strongly correlate with the enhanced consumption of high 
caloric diets and sedentary life in combination with genetic 
factors (1). Non-alcoholic fatty liver disease (NAFLD)  
represents a typical feature in the pathophysiology of the 
metabolic syndrome and it has been demonstrated to be 
tightly associated with the progression of type II diabetes (2).  
NAFLD comprehends a wide spectrum of disorders ranging 
from simple steatosis, identified by an excessive accumulation 
of triglycerides (TG) in the liver exceeding 5% of total 

organ mass, to non-alcoholic steatohepatitis (NASH) often 
progressing to fibrosis (1) and even the development of 
hepatocellular carcinoma. Beyond viral hepatitis, NAFLD 
constitutes the second most common type of liver disease in 
the world (3) and it is estimated that its prevalence in the US 
overcomes one third of the population. Also in European 
countries its prevalence is rising now up to 20% and 30% of 
the adult population (4). Considering the central metabolic 
role of the liver in maintaining the energetic balance of the 
organism independently of its nutritional status, it is now 
well-established that perturbations of the balance between 
nutrients up-take and energy expenditure strongly affect the 
accumulation of lipids in hepatocytes. Therefore, in response 
to overfeeding and decreased physical activity, the liver, 
like other organs, accumulates TG. However, despite TGs 
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represent the most abundant form of lipid energy stores, 
many other lipid-derivatives such as free fatty acids (FFA), 
diacylglycerol (DAG), cholesterol and ceramides, accumulate 
in hepatocytes while triggering different biological responses. 
Moreover, other metabolic determinants have shown to 
influence the lipid storage capability of hepatocytes as, 
for example, de novo lipogenesis induced by carbohydrates 
assumption or the hepatic TG efflux in form of VLDL but also 
from the lipid catabolic activity of hepatic mitochondria (5).  
As previously mentioned, simple steatosis often evolves to 
NASH with a pathogenetic picture characterized by diffuse 
hepatocyte death and inflammatory cells infiltrating from 
different origins. How the hepatic accumulation of TG 
can lead to a necro-inflammatory condition still remains 
unknown. In this direction, overproduction of reactive 
oxygen species (ROS) has been classically proposed as a 
potential link between fat content increase and generation 
of a pro-inflammatory milieu (6), but convincing evidences 
for an indispensable role of free radicals in this context are 
still missing. Furthermore, growing proofs indicate simple 
TG accumulation in cytosolic lipid droplets as a cellular 
mechanism of defense from fatty acid hepato-toxicity rather 
than a process directly responsible for cell damage (7). Indeed, 
recent in vitro and in vivo studies support the hypothesis 
that FFAs not esterified and not compartmentalized in lipid 
droplets, alone or in combination with other lipid metabolites, 
are able to induce irreversible cell damage and trigger pro-
inflammatory signaling pathways (lipotoxicity) (8,9). Molecular 
mechanisms through which these different molecules 
modulate the expression of genes involved in cell death or 
cell cycle as well as of several pro-inflammatory mediators are 
still far from being clear. However, a key role for the innate 
immune system in the progression of NASH is gradually 
consolidating (10,11). In fact, whereas the action of toxic lipid 
metabolites on hepatocytes might induce cell damage, FFAs 
and fragments derived from injured cells are able to activate 
and mobilize resident liver macrophages Kupffer cells (KCs) 
as well as dendritic cells. This leads to further recruitment of 
neutrophils and lymphocytes orchestrating the development 
of the destructive inflammatory response.

  

Lipids and hepatotoxicity

Triglycerides (TG) and lipid droplets

TGs, which represent the major constituent of lipid droplets, 
are the most important storage of fatty acids (FAs), thereby 
providing energy to the liver and other tissues. They originate 

by two processes that depend on the esterification of FAs 
directly synthesized by the cell (de novo lipogenesis) or re-
esterification of FAs coming from the circulation (lipid 
up-take) (12). Increased TG accumulation and expansion 
is commonly associated with metabolic disorders such 
as obesity, and diabetes, usually characterized by hepatic 
steatosis. Anyway, it is not understood whether exceeding 
TGs or insulin resistance develop first (13). Pharmacological 
or genetic inhibition of enzymes involved in TG synthesis, 
such as glycerol-3-phosphate acyltransferase (GPAT) or 
acyl-coenzymeA-diacylglycerol acyltransferase (DGAT) 
members, have been shown to reduce hepatic steatosis 
(14,15). However, despite of the classical notion that TG 
might represent a first “hit” triggering the initial phases of 
NASH, it is recently getting more evident that TG per se are 
not deleterious for hepatocytes. Interestingly, other in vitro  
and in vivo experimental studies show that inhibiting the 
hepatic TG synthesis results in an amelioration of hepatic 
steatosis but exacerbate liver cell damage by an increased 
intra-hepatic accumulation of FFAs (8,16). Taken together 
these latter observations suggest a possible protective role for 
TGs against FFA mediated cyto-toxicity (Figure 1). On the 
same line, lipid droplets biology recently caught the attention 
of many investigators regarding its function in NASH (17), 
with a particular focus on the role of lipid droplets-associated 
proteins with lipase activity. For instance, mutations of the 
patatin-like phospholipase domain-containing protein 3 
(PNPLA3) gene, a lipid droplets-associated protein able to 
regulate TG hydrolysis, have shown to have a high correlation 
grade with NAFLD occurrence in humans (18). Furthermore, 
members of the perilipins family (PLIN), in particular PLIN1 
and -2, were found to be increased with hepatic steatosis 
and associated with lipid droplets formation (19). Of note,  
PLIN-2 overexpression was reported to decrease TG 
hydrolysis thereby resulting in increased steatosis (20). 
Therefore, it could also be important to note that accumulation 
of DAG, has been shown to trigger PKC-dependent signal 
transduction pathways responsible for hepatic insulin resistance 
and possibly also lipotoxicity (21). This accumulation can 
either be the result of lipase activity or is newly generated by 
esterification of increased FFA intracellular levels.

Free fatty acids (FFAs) and lipotoxicity: saturated vs. 
unsaturated fatty acids (FAs)

The cytotoxic effects of circulating FFAs could be identified 
as the culprit of hepatocyte dysfunction and death observed 
during NAFLD (22). These free circulating FAs result 
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from increased dietary intake or from mobilization of 
the peripheral stores in the adipose tissue, or from the 
partitioning activity of intracellular lipases on TG. Thus 
they are rather not just a merely accumulation of esterified 
lipids. It looks like that it is much more the quality of fatty 
acids than the quantity that impact on the cell functionality. 
A growing body of evidences indicates that saturated FAs 
(SFAs) (e.g., palmitate) mediate their effects directly on a 
cellular level by triggering pro-inflammatory pathways via 
toll like receptors (TLRs) or death receptor intracellular 
signals. Through these mechanisms they can also induce 
mitochondrial alterations responsible for ROS production 
and apoptosis (lipoapoptosis) (23-26). 

Furthermore, FFAs mediate many other metabolic 
effects by binding nuclear receptors (e.g., PPARs) that 
regulate the expression of genes involved in lipid anabolism 
and catabolism (27). They can also indirectly modulate 
the inflammatory response towards lipid toxicity (28).  

Most of the lipotoxic activities of lipids, in particular of 
saturated FFAs, have been shown to develop upon binding 
to TLRs (mainly TLR4 and TLR2) (29) on hepatocytes 
and  KCs and thereby activating Jun-(N)-terminal kinase 
(JNK)/IKK dependent pathways leading to the activation 
of NF-κB and AP-1 transcription factor families (30). 
They are the major regulators of pro-inflammatory genes, 
such as tumour necrosis factor-α (TNF-α), IL-1-beta and 
other chemoattractant mediators, such as MCP-1 (31). 
Palmitate was also shown to induce the release of the pro-
inflammatory chemoattractant IL-8 in hepatocytes through 
a mechanism involving a synergistic action of NF-κB and 
AP-1 (32). The orchestration of so many pro-inflammatory 
signals finally leads to the recruitment of different cell 
populations that contribute to the amplification of 
endocrine signals involving several parts of the organism 
(33,34). Alternatively, FFAs could also be shuttled to the 
mitochondria in order to get catabolized through beta-
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Figure 1 Hepatic up-take of FAs. FAs coming from diet or mobilized from peripheral storage places are usually conjugated with albumin 
that allows to enter the hepatocyte through specific transmembrane proteins, fatty acid transporter protein families or CD36/FAT 
transporter. Inside the cell, FAs originating from liponeogenesis, lipolysis or up-taken from the circulation are shuttled to several cell 
compartments according to the metabolic requirements. The bio-products of lipolysis such as diacylglycerol and FFAs might exert cytotoxic. 
Effects triggering stress signals lead to the activation of pro-inflammatory pathways (JNKs, IKKs) or increased ROS production in the 
mitochondrial compartment. FA, fatty acid; TG, triglycerides; PLIN, perilipins family; DAG, diacylglycerol; FFAs, free FAs; JNK, Jun-(N)-
terminal kinase; ROS, reactive oxygen species.



14 Ramadori et al. Lipids in NASH immunoregulation

© HepatoBiliary Surgery and Nutrition. All rights reserved. HepatoBiliary Surg Nutr 2015;4(1):11-23www.thehbsn.org

oxidation consequently increasing the oxygen free radicals 
generation and contributing to spread cell damage and 
activation of macrophages (35). Recently, the activating 
effects of SFAs on the JNK pathway have been convincingly 
supported by in vivo investigations. These data show 
that the JNK cascade, triggered by the kinase MLK3 in 
response to a SFA enriched diet, not only contributes to 
the development of hepatic steatosis and insulin resistance 
but also induces a pro-inflammatory M1 phenotype on 
bone marrow-derived macrophages (36). In other in vitro 
studies, palmitate has been reproducibly shown to induce 
endoplasmatic reticulum (ER) and oxidative stress in 
hepatocytes (37) and to trigger inflammasome activation 
in macrophages through TLR2/1 dimerization (38). 
Interestingly, most of these molecular mechanisms have 
been reported to play a key role in hepatic insulin resistance 
usually associated with NAFLD (39). On the contrary, 
although their contribution to insulin resistance is still 
controversially debated, unsaturated fatty acids (e.g., oleate, 
linoleate) seem not to affect the vitality of the cell although 
they have an impact on TG storage (40). 

Finally, FFAs, other than giving origin to DAG and 
TAG, are also the source of other metabolites, such as 
ceramides that are synthesized in the ER of hepatocytes 
using as substrate long-chain SFA (41). Whereas ceramides 
have been shown to exert a lipotoxic action on pancreatic 
cells and to participate in mechanisms involved in hepatic 
insulin resistance (42), direct evidences for a pro-apoptotic 
role on hepatocytes are still missing (43).

 

Cholesterol

On the base of clinical studies in humans (44), the 
supplementation of variable concentrations (0.2-2%) of 
cholesterol in experimental diets of murine NASH models 
resulted in acceleration of steatohepatitis development 
and increased hepatic steatotic grades (45). In fact, other 
than having a lipotoxic effect on hepatocytes (46), free 
cholesterol massively activates macrophages and hepatic 
stellate cells resulting in aggravation of steatohepatitis with 
worsening of fibrosis (47). Although cholesterol esters 
represent the major component of the cellular membranes 
and an important structural constituent of lipid droplets, 
thereby favoring cyto-protection and cell proliferation, 
free cholesterol has been shown to exert cytotoxic effects 
on hepatocytes. In fact, loss of the cholesterol esterifying 
enzyme ACAT1 was shown to induce TLR4 expression 
on hepatic stellate cells leading to increased TGF-beta 

sensitization with consequent aggravation of fibrosis (48). 
Moreover, cholesterol content in modified lipoproteins 
has been demonstrated to bind specific receptors on KCs 
(SR and CD36) thereby increasing the NASH-related 
inflammatory response (49). Cholesterol can further be 
stored in lysosomes of KCs and hepatocytes. It can further 
generate crystal precipitates typical of NASH histology 
responsible for inflammasome activation (50). Hence, 
the pharmacological reduction of free cholesterol with 
atorvastatin in mice resulted in reduced inflammation and 
liver damage without modifying levels of FFAs (51).

Toll like receptors (TLRs) and the innate 
immunity during NASH-pathogenesis

The worst consequence of hepatic cellular alterations 
direct ly  or  indirect ly  generated by an abnormal 
accumulation of fatty acids is loss of cellular functions 
leading to irreversible cell damage. In this context, the 
innate immune system has the capability to respond to 
specific key molecules, which are released by damaged cells, 
thus leading to their elimination. Thereby, those metabolic 
stressors or even dead cells release so-called damage-
associated molecular patterns (DAMPs). Intracellular 
DAMPS include high-mobility group gel box 1 (HMGB1) 
heat shock proteins, fibrinogen and fibrinonectin and 
mitochondrial products such as formyl-peptides and 
mitochondrial DNA. Comparable mechanisms are used 
to eliminate certain pathogens, indicated as  pathogen 
associated molecular patterns (PAMPs). Interestingly 
some of their receptors are used redundantly by both 
PAMPs and DAMPs. In particular, TLRs can be utilized 
by both pathways in response for instance to HMGB1 
and lipopolysaccharides (LPS) (52-54). TLRs are widely 
expressed within the liver on KCs, hepatocytes, sinusoidal 
endothelial cells and hepatic stellate cells (55). Functionally, 
TLRs decode molecular patterns presented on a broad 
range of pathogens and host molecules. After binding 
with respective ligands, they trigger both antiviral and 
inflammatory responses. On a cellular level individual TLRs 
interact with different combinations of adapter proteins and 
activate consecutively transcription factors already discussed 
such as NF-κB, AP-1 (via JNK) and interferon responsive 
factors (IRF). The intra-cellular transduction molecule 
MyD88 is shared by almost all TLRs and recruits members 
of the IL-1 receptor associated kinase family. Therefore, 
TLR-signaling shows close similarities to IL-1 intracellular 
signaling, as common adaptor molecules are used. 
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Similarly, after release from necrotic cells, HMGB1 
stimulates KCs and monocytes to produce pro-inflammatory 
mediators, thereby acting as an endogenous ligand for 
TLR4 giving possibly rise to the formation of inflammatory 
complexes with other pattern-related molecules (ssDNA, 
endotoxin, IL-1β, nucleosomes) (52). Other than being 
classically involved in acute liver injury, like hepatic ischemia-
reperfusion injury (56) and alcoholic liver injury (57),  
TLR4 is also up-regulated in methionine and choline 
deficient diet (MCD) steatohepatitis (54) and fructose-
induced hepatic steatosis (58). As described above, saturated 
FFAs represent potential TLR4 ligands (59), indicating this 
receptor family as an interesting therapeutic target in NASH. 
Indeed, deletion of either TLR4 or MD2 dampens (but 
does not completely abolish) necro-inflammatory activity 
of MCD steatohepatitis, with the most impressive effects 
exerted against NADPH oxidase expression and activation 
of inflammatory cells (60). Other studies have identified 
activation of TLRs 2 and 9 in various experimental models 
of NAFLD or NASH. In this line, TLR9-deficient mice 
are protected from steatohepatitis in the CDAA model (61),  
which is of particular interest, as TLR9 amplifies the 
inflammatory response of macrophages (62) indicating 
other potential loops for the perpetuation of inflammation 
in NASH. TLR5, which is not expressed in the liver, has 
recently been reported to influence gut flora and being 
related to the development of obesity, metabolic syndrome, 
insulin resistance and steatosis (63). Any relevance to NASH 
has yet to be established, although fascinating and promising 
indications emerged from the observation that transplanting 
the altered intestinal flora from TLR5-/- mice to healthy 
animals resulted in a similar disease phenotype, including 
(non-inflamed) fatty liver. An interesting, although to date 
not yet fully resolved, aspect is whether and how the intestinal 
microbiome itself can contribute to hepatotoxicity. In this 
regard it was shown that dietary fat intake can promote the 
absorption of LPS from gut flora (64). LPS translocates into 
the circulatory system likely either through direct diffusion 
via intestinal paracellular permeability or through absorption 
by enterocytes via chylomicron secretion (65). This process 
can then participate to support inflammatory conditions thus 
finally contributing to NASH-development.

Fatty acids (FAs)-induced ER-stress

Beyond their negative impact on mitochondrial functionality 
and their contribution to ROS generation, lipids have been 
shown to further mine hepatocyte vitality via triggering ER-

stress. Accumulation of unfolded proteins within the ER is 
often observed in cells like hepatocytes that have high rates 
of protein synthesis. Usually it provokes cellular responses, 
known as the unfolded protein response (UPR), involving 
the activation of chaperones that seemingly converge in 
the activation of three key molecular events (NF-κB, JNK 
and C/EBP activation). Although detailed information 
about molecular players are still missing, downstream 
effects are the recruitment of inflammatory cells, increased 
phosphorylation of insulin receptor signalling intermediates 
(which worsens insulin resistance), enhanced lipogenesis 
and oxidative stress resulting in apoptosis of cells. ER stress 
contributes to disease progression of NASH and it has been 
shown that saturated FFAs directly induce a hepatocyte ER 
stress response, with increased levels of ER stress seen in 
patients with NAFLD/NASH (66). Furthermore, X-box 
binding protein-1 (XPB-1), a master regulator of the UPR, 
was shown to be over-expressed in both mice and men 
under NASH conditions (67,68). Interestingly, the UPR is 
tightly linked to the activation of oxidative stress. Nrf2-/- 
mice displayed more oxidative stress during high fat diet, 
thus provoking an enhanced UPR and pro-inflammatory 
environment of the liver. NRF2-dependent gene production 
physiologically seems to suppress lipogenesis, support 
mitochondrial function, increase the threshold for the 
UPR and inflammation and thus enables livers to adapt to 
dietary-induced oxidative stress (69).

Lipotoxicity and cell death 

The final result of lipotoxicity is the death of individual 
hepatocytes, which undergo apoptosis or necrosis at the 
cellular level. Apoptosis represents an important connection 
linking liver injury and fibrosis and can thus be an important 
driver of inflammation and fibrosis-development during liver 
disease. Increased levels of apoptosis, however, are indeed 
a feature of NASH, as they are seen in obese patients with 
NASH compared with controls (70). Animal and in vitro 
studies have shown that FFAs sensitize hepatocytes to the 
cytotoxic effects of death ligands [such as tumor necrosis 
factor-related apoptosis-inducing ligand (TRAIL)] and 
expression of the death receptor Fas (CD95) is higher in liver 
biopsies of patients with NASH compared with those from 
patients with simple steatosis or no disease (Figure 2). Murine 
studies have also demonstrated that FFAs can induce up-
regulation of the p53 tumor suppression gene, expression of 
the TRAIL-receptor (TRAIL-R) and increased levels of JNK 
as an important regulator of apoptosis that has been shown 



16 Ramadori et al. Lipids in NASH immunoregulation

© HepatoBiliary Surgery and Nutrition. All rights reserved. HepatoBiliary Surg Nutr 2015;4(1):11-23www.thehbsn.org

to promote the development of NASH in mice (71). Another 
possible mechanism, recently shown to prevent apoptosis 
during NASH development, is based on the interaction of 
the hepatocyte growth factor (HGF) receptor c-Met with 
the FAS-receptor. The pleiotropic growth factor HGF 
binds to its receptor c-Met and induces its dimerization and 
phosphorylation. Subsequently, specific intracellular cascades 
activating PI3K, Ras, and ERK-dependent pathways, 
responsible for pro-mitogenic and anti-apoptotic events, 
are induced. The apoptosis-inducing death-receptor Fas is 
usually bound by c-Met, thus allowing a very tight regulation 
of apoptosis (72). Interestingly, this control mechanism was 
shown to be altered during NASH pathogenesis, because 
under this condition Fas ligand is produced in excess and the 
physiological inhibition through c-Met is hampered (73). 
The relevance of this theory could be proven experimentally 
by the use of mice lacking hepatocellular c-Met, which 
developed significantly more liver damage after MCD 
administration (74). In order to investigate the interplay 
with death receptors signaling in particular (e.g., TNF) 
and TRAIL, c-Met/Caspase-8 double conditional KO-

mice were generated. The fact that the deleterious effects 
of the single mutant were repressed in c-Met/Casp8 double 
mutants brings further strong arguments for a relevant role 
of death receptor signaling during NASH-pathogenesis. 
Hence, on a molecular level Caspase-8 seems to be the 
relevant factor triggering apoptosis in hepatocytes during 
NASH (75,76). Recently, besides classical apoptosis, the 
concept of necroptosis, defined as a “programmed” necrotic 
cell death pathway controlled by RIP1 and RIP3 kinases, 
becomes of interest. In a recent paper, Gautheron et al. 
showed an upregulation of RIP3 in human NASH and in a 
dietary mouse model of steatohepatitis (77). RIP3 is known 
to mediate liver injury, inflammation, induction of hepatic 
progenitor cells/activated cholangiocytes and liver fibrosis 
through a pathway counteracted by Caspase-8, functions that 
have been shown to be mediated by a positive feedback loop 
involving activation of JNK. Furthermore, RIP3-dependent 
JNK activation promotes the release of pro-inflammatory 
mediators like MCP-1, thereby attracting macrophages to 
the injured liver and further augmenting RIP3-dependent 
signaling, cell death, and liver fibrosis. This pathway might 
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Figure 2 Hepatotoxic effects of FAs. FAs have been shown to induce cytotoxicity and hepatic damage through four main mechanisms: (I) 
activation of inflammatory signals via direct TLR2/4 binding; (II) mitochondrial dysfunction and increased oxidative stress; (III) induction 
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represent a novel and specific target for pharmacological 
strategies in patients with NASH. Caspase-3, an important 
mediator of the intrinsic apoptotic pathway also seems to be of 
importance for NASH-pathogenesis. Accordingly, apoptosis 
was reduced in mice deficient in Caspase-3 (Casp3-/-)  
with a marked reduction in the expression of cytokines 
involved in inflammatory signaling and of profibrotic genes 
which resulted in reduced hepatic collagen deposition (78).  
Nevertheless, serum aminotransferase levels and NAFLD 
activity scores (NAS) were similar to WT MCD-fed mice. 

The inflammasome

The inflammasome is a larger multiprotein oligomer 
involved in inflammatory activation that regulates caspase-1 
activation. The NLRP3 (nucleotide-binding domain, 
leucine-rich repeat containing, also known as NALP3) 
inflammasome is expressed in myeloid cells and up-regulated 
by PAMPs. Once all the components of the NALP3-
inflammasome are assembled in the cytosol, caspase 1 gets 
released and promotes the cleavage and maturation of pro-
inflammatory cytokines (pro-IL-1β, pro-IL-18, and IL33) 
to trigger inflammation. The inflammasome is typically 
activated in experimental alcohol- induced liver injury and 
in mice fed the MCD diet, but not during simple HF diet-
induced steatosis (24). In vivo, it seems likely that hepatocytes 
challenged with SFAs release undefined “danger signals” 
triggering the activation of the inflammasome also in hepatic 
lymphocytes and macrophages. They are thereby amplified 
through the release of inflammatory mediators such as 
IL-1β and TNF-α. Experiments using loss of function 
tamoxifen-inducible Nlrp3 knock-out mice unraveled that 
those are protected from diet-induced steatohepatitis and 
show a reduced activation of macrophages (79). Also bone-
marrow derived cells might contribute to AIM2 and NLRP3 
inflammasome activation in a MyD88-dependent manner in 
dietary steatohepatitis (80). 

Hepatic immune cells in NASH development

Kupffer cells (KCs)

KCs, as specialized hepatic tissue macrophages, mediate 
the inflammatory response in many liver diseases (Figure 3).  
Gut-derived endotoxins are able to stimulate their 
phagocytic capacity through binding CD14, TLRs 2 
and 4 and triggering adapter proteins such as MD2/
MyD88 leading to NF-κB activation. KC is also a major 

source of IFN-γ, which is an important cytokine for 
lymphocyte recruitment. Specific KC depletion (e.g., by 
gadolinium or clodronate liposomes) was shown to produce 
beneficial effects in experimental models of alcohol-
induced steatohepatitis by reducing hepatic damage and 
inflammation (81). Similarly, KC ablation by liposomal 
clodronate resulted in an inhibition of inflammation and 
fibrosis in a CDAA model of steatohepatitis (82). Moreover, 
employment of an analogue depletive strategy resulted in 
reduction of hepatic TG accumulation in a murine model of 
diet induced obesity. In this specific case, a diminished NF-
κB activity turned out to enhance PPAR-α-dependent lipid 
oxidative catabolism (83).

Mechanistically, depletion of KCs leads to reduced 
IL-1b expression, which in term reduces the level of 
inflammation (84). Another way through which KCs 
contribute to proinflammatory hepatic conditions is their 
response to an overload with toxic lipids, especially in 
the initial phase of NASH-development. Interestingly, 
in their study Leroux and colleagues could show that 
the total amount of KCs was not changed in steatotic 
livers in spite of a massive overload with enlarged lipid 
droplets. Functional assays then revealed that those KCs 
were able to recruit significantly more inflammatory cells 
and expressed more pro-inflammatory chemokines and 
cytokines, such as IFN-γ, IL1b, CCL5 or -2 (85). 

An interesting and obviously clinically relevant mechanism 
of NASH-pathogenesis is the infiltration of macrophages 
into the hepatic tissue. Those macrophages expressed 
predominantly CD68, CCR2 and Ly6C. CCR2 knockout 
mice developed less steatosis, less cell infiltration and even 
less fibrosis in an experimental model of NASH (86). The 
inhibition of this receptor also seems to be a clinically 
promising approach, as first phase 1 and 2 studies using 
CCR2 (BMS-741672) or combined CCR5/2 inhibitors 
(cenicriviroc) have been undertaken in patients with diabetes 
and diabetic complications (clinicaltrials.gov identifier: 
NCT00699790 and NCT01712061).  

Neutrophils

The presence of neutrophils  [polymorphonuclear 
neutrophils (PMNs)] among the liver inflammatory infiltrate 
of alcoholic steatohepatitis has long been acknowledged. 
Neutrophils are also present in NASH where their possible 
pathogenic significance remains obscure (87). In a mouse 
model of NASH development it was recently shown 
that neutrophil-derived myeloperoxidase aggravates the 
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severity of the liver phenotype (88). Accordingly, another 
report remarked a contribution of neutrophils in NASH 
by feeding transgenic mice over-expressing the human 
neutrophils peptide (HNP1) a CDAA diet (89). In further 
clinical studies, a large NASH patient cohort was analysed 
for their neutrophil to lymphocyte ratio. The authors 
observed a higher N/L ratio in patients with NASH and 
advanced fibrosis suggesting this ratio as a novel non-
invasive diagnostic marker to predict advanced disease (90). 
From a clinical point of view attempts have been made to 
find methods to better predict the course of NASH. In 
this regard it was found that serum levels of the apoptotic 
marker M30 and full-length CK8/18 (necrosis) are 
increased in patients with the predominantly inflammatory 
form of liver steatosis, indicating that both apoptosis and 
necrosis occur in humans with the inflammatory form of 
NAFLD (91). 

Lymphocytes and dendritic cells

Lymphocytes are abundantly present in the liver and have 

been shown to accumulate in NASH livers, but individual 
subpopulations and their pathogenic roles during injury 
and inflammation are not functionally characterized. It 
was recently described that during all stages of the disease 
portal tracts were more densely populated and dominated 
by CD68+ macrophages and CD8+ lymphocytes (10). An 
increase in portal macrophages in NAFLD patients with 
simple steatosis represented an early detectable change, 
even before an enhanced expression of proinflammatory 
cytokines (IL1b, TNF-α) became evident. Portal and 
periductal accumulation of other cell types examined most 
significantly occurred in advanced stages of NASH. For 
intrahepatic dendritic cells it was shown that they expand 
in NASH livers and presumably mature there into an 
activated immune phenotype (92). Hence they can limit 
sterile inflammation through the clearance of apoptotic 
cells and necrotic debris and they seem to play an important 
immune-modulatory role on CD4+T-cell functions. 
However, further experimental studies are required to 
establish a therapeutic approach aiming at the modulation 
of dendritic cells activity in NASH progression.  

Figure 3 Cellular interactions during NASH-pathogenesis. Development of hepatic steatosis is resulting from a complex interplay of 
involved organs and different cell types. Gut-derived endotoxins and white fat tissue produced FFAs together with pro-inflammatory signals 
trigger an intrahepatic inflammatory response. This involves activation of liver resident macrophages (Kupffer-cells) and other hepatic 
immune cells and the subsequent infiltration of immune cells into the liver, which then release cytokines, chemokines and other mediators. 
In term hepatocytes start to accumulate intracellular fat, inflammation sustains and eventually liver fibrosis can develop. TNF, tumour 
necrosis factor; FFAs, free fatty acids; KC, Kupffer cells; LPS, lipopolysaccharides; NASH, non-alcoholic steatohepatitis.
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Interestingly a significant accumulation of natural killer 
T (NKT) cells could be detected in the MCD dietary mouse 
model contributing to the development of NASH (93,94). 
Indeed, several research groups demonstrated a significant 
decrease of CD4+ T regulatory cells (Tregs) in a high fat 
diet mouse model (95,96). Moreover, a Th17 response 
seems to be important for the progression from simple 
steatosis to steatohepatitis (97). Sutti et al. could even show 
that oxidative stress leads to the induction of the oxidative 
stress response, thereby triggering cellular immunity 
leading to a more severe development of NASH (35).  
Finally, a study by Miyagi et al. (98) demonstrated a 
protective role of invariant NKT cells for progression 
from inflammation to fibrosis, not altering steatosis in a 
HF mouse model whereas Gadd et al. (10) described that 
the presence of an enriched portal infiltrate (CD3+, CD4+, 
CD8+, CD20+ and CD68+ cells) in human NAFLD 
strongly correlates with the fibrosis score.

Conclusive remarks

Decades of studies on clinical and experimental models 
of steatohepatitis gave light on novel aspects of NAFLD 
pathophysiology. The dissection of metabolic pathways 
regulating lipid turn-over in the liver enabled the 
comprehension of mechanisms through which hepatocytes 
can adapt and re-organize their metabolic activity once 
challenged by stressful conditions. On the other hand, 
specific lipid metabolites, endogenous or exogenous, turned 
out to activate pathways that irreversibly alter the cell 
functionality in a manner that might not necessarily depend 
on their amount.

A growing body of evidence indicates that such metabolic 
alterations of the hepatocyte directly or indirectly trigger a 
plethora of defensive mechanisms that not only involve the 
hepatic innate immune system but also result in an inter-
organ communication process involving a wide variety of 
cell populations and molecular mediators. The importance 
of identifying and unravelling this fine communicative 
network will offer new keys of lecture for the development 
of therapeutic and diagnostic strategies for the management 
of fatty liver diseases.
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