Carcinosarcoma of the bile duct: a case report and review of literature

Ser Yee Lee^{1,2}, Jinru Shia³, T. Peter Kingham¹, William R. Jarnagin¹

¹Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; ²Department of Hepatopancreatobiliary and Transplant Surgery, Singapore General Hospital, Singapore; ³Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA

Correspondence to: T. Peter Kingham, MD. Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA. Email: kinghamt@mskcc.org.

Abstract: Carcinosarcomas of the bile ducts are very rare tumors consisting of both epithelial and mesenchymal elements. We report a case of bile duct carcinosarcoma and its clinical, radiological and pathological features and a brief review on this rare condition.

Keywords: Carcinosarcoma; sarcomatoid carcinoma; bile duct

Submitted May 19, 2015. Accepted for publication Jun 04, 2015. doi: 10.3978/j.issn.2304-3881.2015.06.09

View this article at: http://dx.doi.org/10.3978/j.issn.2304-3881.2015.06.09

Introduction

Carcinosarcomas, also known as sarcomatoid carcinomas, are very rare tumors consisting of both epithelial and mesenchymal elements. These tumors have been reported in many different organs, including the pancreas, lung, uterus, ovary, esophagus, stomach and kidney (1-5). However, carcinosarcoma of the biliary tree is rare, with only a handful of cases reported in the bile ducts (6-11). We report an interesting case of a bile duct carcinosarcoma and a brief literature review.

Case presentation

A 91-year-old female patient was referred to the hepatopancreato-biliary (HPB) service for further management of an intrabiliary mass near the biliary confluence detected on her CT scan (*Figure 1*). She had elevated liver enzymes [aspartate aminotransferase (AST): 133 U/L; alanine aminotransferase (ALT): 141 U/L and alkaline phosphate (ALP): 728 U/L], but bilirubin was within the normal range. Tumor markers were abnormal; alpha-fetoprotein (α FP), carbohydrate antigen 19-9 (CA 19-9) and carcinoembryonic antigen (CEA) were all elevated at 6.7 ng/mL, 5.8 ng/mL and 147 U/mL, respectively.

The consensus at a multi-disciplinary HPB tumor

conference was an intraluminal soft tissue mass at the confluence of the left and right main bile ducts resulting in marked bilobar intrahepatic biliary dilatation, suspicious for a papillary hilar cholangiocarcinoma. A decision was made for limited surgical resection of the hilar cholangiocarcinoma, peri-hilar lymphadenectomy and a hepatojejunostomy without a liver resection due to patient's age and personal preference to avoid a major hepatectomy. Additionally, given the difficulties of palliating jaundice in the setting of a large intraductal tumor, even a limited resection was considered preferable to non-operative decompression.

Intraoperatively, after exclusion of peritoneal metastases, a large papillary intrabiliary duct tumor arising from the biliary confluence was found and a complete gross resection was achieved by removing the biliary confluence and the tumor in-situ, and hepatojejunostomy was fashioned to the right, left and caudate ducts separately. The patient recovered uneventfully but the disease recurred after 2 months and she passed away soon after.

Histological features

On gross examination, the tumor was primarily exophytic with masses seen within both the right and left hepatic ducts. An area of mural invasion was noted involving the

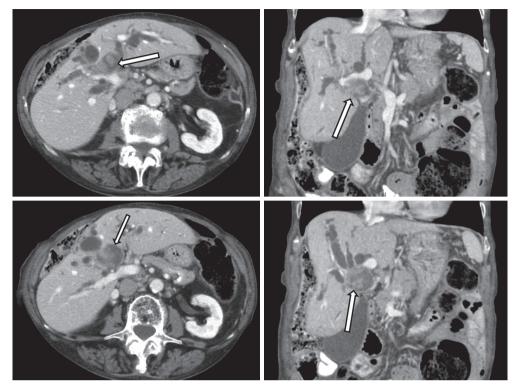


Figure 1 Computed tomography cross-sectional and coronal images. White arrows illustrate the hilar location and the intraductal papillary—like features of the bile duct carcinosarcoma distending the biliary confluence and causing proximal intrahepatic biliary dilatation.

Figure 2 Gross specimen. Arrows illustrate the areas of mural invasion involving the right hepatic duct wall near the resection margins when the tumor specimen was bivalved.

right hepatic duct wall (Figure 2). Histologically, both the exophytic and murally invasive components were composed primarily of sarcomatoid elements, mostly in the form

of spindle and pleomorphic tumor cells with prominent mitotic activity (*Figure 3A*). A minor component of the tumor showed osteogenic differentiation with formation of malignant osteoid (*Figure 3B*). The carcinoma component was minor, constituting about 10% of the entire tumor with morphological features of biliary adenocarcinoma and the overall architectural pattern being papillary (*Figure 3C*). Notably, the underlying bile duct epithelium showed foci of low and high grade dysplasia (*Figure 3D*).

Discussion

Carcinosarcomas are pathologically characterized by the presence of both epithelial and mesenchymal components within the same tumor. The most common site for carcinosarcoma of the biliary tract is the gallbladder with fewer than 100 cases reported in the literature; comparatively, there are only 7 cases of carcinosarcoma of the bile ducts reported in the English literature to date (*Table 1*) (6-13).

The pathogenesis of these rare tumors is uncertain but several hypotheses exist. It has been theorized that

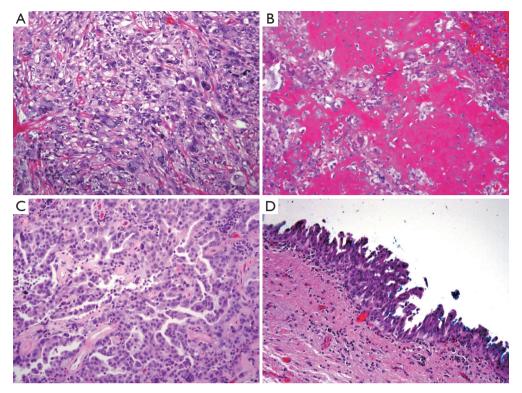


Figure 3 Histological features illustrating the mixed components of the tumor. (A) Both the exophytic and morally invasive components contained prominent sarcomatoid elements, in the form of spindle and pleomorphic tumor cells with prominent mitotic activity; (B) minor component of the tumor showed osteogenic differentiation with formation of malignant osteoid; (C) the carcinoma component, constituting about 10% of the entire tumor, had morphological features characteristic of biliary adenocarcinoma with tumor cells being cuboidal and the overall architectural pattern being papillary; (D) the underlying bile duct epithelium showed foci of low and high grade dysplasia. Hematoxylin and Eosin stain. Magnification: (A-C) is 100× and (D) is 40×.

carcinosarcoma arises from totipotent stromal stem cells that are capable of divergent differentiation. Another postulation is the collision tumor theory that suggests the distinct and concurrent malignant proliferation of both the epithelial and mesenchymal components within the same tissue. It has also been suggested that a carcinoma can transform into a sarcoma by metaplastic transformation (14-16). A distinguishing feature of a true carcinosarcoma is the biphasic nature of the tumor with a lack of transition between the two epithelial and sarcomatous components as opposed to a poorly differentiated carcinoma with spindle cell pattern (6,14). The sarcomatous element commonly consists of undifferentiated spindle cells and a variety of heterogeneous components such as, chondro-, osteo-, leiomyo-, rhabdomyosarcoma cells (Table 1). The epithelial element usually consists of adenocarcinoma and occasionally, components such as squamous-, small cell- and undifferentiated carcinomas (17-20). Genetic

analysis has been utilized to evaluate the pathogenesis of these tumors (21). They have also been sub-classified into two sub-groups: one with predominant sarcomatous differentiation or predominantly carcinomatous differentiation.

The demographics of biliary carcinosarcoma are similar to that of gallbladder adenocarcinoma, with the majority occurring in elderly women and strongly associated with cholelithiasis (22). The prognosis is dismal, largely extrapolated from the experience of gallbladder carcinosarcomas. The reported median survival time of patients with carcinosarcomas of the gallbladder after surgical resection was only 7 months with a 1-, 2-, and 3-year survival rates of 37.2%, 31.0%, and 31.0% respectively (23). The median time to recurrence for patients who died was less than 2 months (23). The TNM staging system is a valuable prognostic tool in gallbladder carcinoma but has little role in gallbladder carcinosarcoma; a recent review

Table 1 Summary of patients' characteristics in current series and in literature

Table 1 of	uilliai y	n patients chara	מכובווזורים זוו כו	חובווו אבו	Table 1 Summary of patients, characteristics in current series and in negatine	ame				
Author/	70000		Investigation/		Orio/osove			IHC makers	IHC makers	
<u>`</u>	derider	Presentation	tumor	Location		Surgery	Pathology	(carcinomatous	(sarcomatous	Prognosis
year	age		"		,(mm))	6	component)	component))
Loud	F/35	Obstructive	ERCP, CT,	Hilar	Polypoidal/	BD	Biphasic pattern of	AN.	NR	N.
et al.		jaundice	PTC		Size-NR	resection	carcinomatous and			
1997 (8)							sarcomatoid components			
Yoon et al.	M/78	Abdominal	CT, PTC/	Mid	Infiltrative/40	PD	Biphasic pattern of	Cytokeratin++;	Cytokeratin++;	Died on
2003 (9)		pain and	tumor	CBD			carcinomatous and	CEA+; P53+;	Vimentin++;	5POD due
		obstructive	markers not				sarcomatoid components	PCNA+	α -SMA+; NSE	to cardiac
		jaundice	done				merging into another,		focal +; P53++;	complications
							2/22 LN + ve for		PCNA++	
							sarcomatoid component			
Kadono	F/75	Acute	ERCP with	Mid	Infiltrative/	PD	Biphasic pattern of	EMA+;	Vimentin+; EMA+;	2 years; died
et al.		obstructive	cytology(-),	CBD	Size-NR		carcinomatous and	Mucin-1	thrombomodulin+;	from local
2005 (7)		suppurative	PTC, CT/				sarcomatoid components	antigen+;	α1-	recurrence
		cholangitis	CEA ↑,				with chondroid tissue,	Keratin+	antichymotrypsin+;	
			CA19-9 ↑				osteoid formation with		S100+	
							focal ossification and a			
							squamous differentiation			
Jang et al.	F/68	Abdominal	CT, EUS/	Distal	Polypoidal/35	PD	Biphasic pattern	Cytokeratin	Cytokeratin+;	1 year
2005 (10)		pain,	AFP-ve,	CBD			of predominantly	++; CEA++	vimentin+ (diffuse)	disease free
		anorexia and	CEA-ve,				sarcomatous and			
		weight loss	CA19-9 ↑				focally carcinomatous			
							components, no			
							heterologous sarcomatous			
							components			
Sodergren	F/64	III health and	US, ERCP,	Hilar	Polypoidal/20	BD	Biphasic pattern	Cytokeratin +;	Vimentin+;	5-year
et al.		anorexia	CT/tumor			resection	with epithelial and	EMA+; CEA +	SMA+; desmin+;	disease free
2005 (6)			markers not				mesenchymal elements		myoglobin+;	
			done				with foci that resemble		S100+ (focal)	
							smooth muscle and other			
							foci with a chondroid			
							appearance			
Table 1 (continued)	Committee									

Table 1 (continued)

$\overline{}$	
tinued	
(con)	
_	
e	
e	

\range	/200000		Investigation/	/-	Orio/ogora			IHC makers	IHC makers	
Autiloi/		Addition General Presentation	tumor	Location		Surgery	Pathology	(carcinomatous	(sarcomatous	Prognosis
year	age		markers		(ITIITI)			component)	component)	
Aurello	F/73	Obstructive	US, ERCP		Distal Polypoidal/26	PD	Biphasic pattern	Cytokeratin	Cytokeratin AE1/	Alive,
et al.		jaundice	with	CBD			with heterologous	AE1/AE3+;	AE3+ (focal);	7 months;
2008 (11)			cytology(+),	,,			differentiation ki-67	EMA+; CAM	EMA+ (focal);	disease-free
			PTC, CT/				YMIB-1 (80%, uniformly	5.2+	CAM 5.2+ (focal);	
			CEA ↑,				distributed)		vimentin+ (diffuse)	
			CA19-9 ↑							
Tanaka	M/71	Recurrent	CT, ERCP	Distal	Distal Polypoidal/75	PD	Biphasic pattern with	RN RN	Negative for	3 months;
et al.		cholangitis		CBD			predominant sarcomatous		epithelial and	disease-free,
2012 (12)							and a few carcinomatous		non-epithelial	died at
							components in the ductal		markers (not	10 months
							wall and invasive front;		specified)	
							ki-67 index (40%)			
Lee et al.	F/91	Fatigue and	CT/AFP	Hilar	Polypoidal/20	BD	Biphasic pattern of	RN RN	N.	Died at
(present		abnormal	↑, CEA ↑,			resection	papillary adenocarcinoma,			2 months
case)		LFT	CA19-9 ↑				poorly; differentiated			
							carcinoma, spindle cell			
							and pleomorphic sarcoma,			
							with a heterologous			
							element of osteoid			
							sarcoma			

*, largest dimension; +/++, positive staining/strongly positive staining. PD, pancreaticoduodenectomy; CT, computed tomography; US, ultrasound; ERCP, endoscopic retrograde cholangiopancreatogram; PTC, percutaneous transhepatic cholangiogram; EUS, endoscopic ultrasound; LFT, liver function tests; CA 19-9, carbohydrate antigen 19-9; CEA, carcinoembryonic antigen; aFP, alpha-fetoprotein; BD, bile duct; CBD, common bile duct; NR, not reported; IHC, immunohistochemistry; α-SMA, α-smooth muscle actin; NSE, neuron specific enolase; PCNA, proliferating cell nuclear antigen; EMA, epithelial membrane antigen demonstrated that the survival time is in matter of months regardless of their tumor stage (24-29).

In general, carcinosarcomas are locally aggressive tumors with a propensity to metastasize systemically even in early stages (7,30). It been suggested that the aggressiveness of the tumor depends on the sarcomatoid component, as they metastasize to the lymph nodes and distant organs more readily. Interestingly, it is also the sarcomatoid component that forms the bulk of polypoidal element that leads to an earlier presentation as it obstructs the bile ducts, in contrast to gallbladder carcinosarcomas, where the carcinomatoid element forms the infiltrative component of the tumor (6,7,9,11,17). Kubota et al. (31) studied ki-67 in a case of gallbladder carcinosarcoma and compared it to a cohort (n=11) of patients with ordinary gallbladder adenocarcinoma: the ki-67 index in the spindlecell component was higher than that in the epithelial component, which may account for the more aggressive biological behavior of the carcinosarcoma. This observation is consistent with other studies reporting that Ki-67 has prognostic value in various types of carcinosarcoma and other malignant tumors as well (31,32). Due to the rarity of bile duct carcinosarcoma, its true prognosis and clinicopathological features are not well established. Based on the reported cases, the survival time can vary widely, from 2 months to 5 years of disease-free survival (Table 1).

Management of all biliary malignancy, including carcinosarcoma, remains challenging, and this is particularly true for those arising from the proximal biliary tree. The strategy has largely been extrapolated from the experience in treating cholangiocarcinoma, with resection as the mainstay of treatment. As is also true for the more common biliary adenocarcinoma, there is no clear evidence that chemotherapy or radiotherapy confers any survival benefit, either as adjuvant treatment or in the palliative setting (20,25). However, judging from the poor results, it is clear that surgery alone is inadequate. Adjuvant chemotherapy has been used in carcinosarcomas of the female genital tract but with disappointing results and the role of radiation is currently unclear as well (6,7,20,30). Lumsden et al. reported improved survival with the use of intracavitary radiotherapy via a T-Tube for a case of a gallbladder carcinosarcoma (28).

This case report includes interesting radiologic and histologic features of carcinosarcoma of the bile duct. Carcinosarcomas often demonstrate unusual gross and radiographic features. Polypoid growth, which was also observed in this patient, was reported to be the characteristic gross feature of carcinosarcomas (5,7,8,33). The features of intraductal expansion, distension of the

biliary confluence by the polypoidal tumor and subsequent proximal biliary tree obstruction were noted in our patient and are illustrated in *Figure 1*. This growth pattern is also seen in papillary cholangiocarcinoma, which is often a more indolent disease. As the present cases illustrates, the radiographic features of carcinosarcoma and papillary cholangiocarcinoma may be indistinguishable.

Conclusions

We report a case of carcinosarcoma of the bile duct with biphasic areas of papillary adenocarcinoma, poorly differentiated carcinoma intermingled with spindle cell and pleomorphic sarcoma and a heterologous element of osteoid sarcoma. To the best of our knowledge, this is the eighth case of biliary carcinosarcoma, it's pathological and immunohistochemical characteristics define and distinguish it from a hilar cholangiocarcinoma. Complete resection is the optimal mode of treatment when possible, but the prognosis for most patients is poor; roles for chemotherapy and/or radiation therapy are undefined.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest to declare.

Informed Consent: Written informed consent was obtained from the patient for publication of this case report and any accompanying images. A copy of the written consent is available for review by the editor-in-chief of this journal.

References

- Shimada K, Iwase K, Aono T, et al. Carcinosarcoma of the gallbladder producing alpha-fetoprotein and manifesting as leukocytosis with elevated serum granulocyte colony-stimulating factor: report of a case. Surg Today 2009;39:241-6.
- 2. Jonson AL, Bliss RL, Truskinovsky A, et al. Clinical features and outcomes of uterine and ovarian carcinosarcoma. Gynecol Oncol 2006;100:561-4.
- 3. Batsakis JG, Suarez P. Sarcomatoid carcinomas of the upper aerodigestive tracts. Adv Anat Pathol 2000;7:282-93.
- 4. Zarbo RJ, Crissman JD, Venkat H, et al. Spindle-cell carcinoma of the upper aerodigestive tract mucosa. An

- immunohistologic and ultrastructural study of 18 biphasic tumors and comparison with seven monophasic spindlecell tumors. Am J Surg Pathol 1986;10:741-53.
- Iyomasa S, Kato H, Tachimori Y, et al. Carcinosarcoma of the esophagus: a twenty-case study. Jpn J Clin Oncol 1990;20:99-106.
- Sodergren MH, Silva MA, Read-Jones SL, et al. Carcinosarcoma of the biliary tract: two case reports and a review of the literature. Eur J Gastroenterol Hepatol 2005;17:683-5.
- Kadono J, Hamada N, Higashi M, et al. Carcinosarcoma of the extrahepatic bile duct. J Hepatobiliary Pancreat Surg 2005;12:328-31.
- Loud PA, Warshauer DM, Woosley JT, et al. Carcinosarcoma of the extrahepatic bile ducts: cholangiographic and CT appearance. Abdom Imaging 1997;22:85-6.
- Yoon GS, Choi DL, Sarcomatoid carcinoma of common bile duct: a case report. Hepatogastroenterology 2004;51:106-9.
- 10. Jang KS, Jang SH, Oh YH, et al. Sarcomatoid Carcinoma of the Distal Common Bile Duct- A Case Report. Korean J Pathol 2005;39:360-3.
- 11. Aurello P, Milione M, Dente M, et al. Synchronous carcinosarcoma of the intrapancreatic bile duct and carcinoma in situ of wirsung duct: a case report. Pancreas 2008;36:95-7.
- 12. Tanaka M, Ajiki T, Matsumoto I, et al. Duodenal protrusion by carcinosarcoma of the extrahepatic bile duct. Dig Endosc 2012;24:484.
- 13. Wick MR, Swanson PE. Carcinosarcomas: current perspectives and an historical review of nosological concepts. Semin Diagn Pathol 1993;10:118-27.
- 14. Nomura K, Aizawa S, Ushigome S. Carcinosarcoma of the liver. Arch Pathol Lab Med 2000;124:888-90.
- 15. de Brito PA, Silverberg SG, Orenstein JM. Carcinosarcoma (malignant mixed müllerian (mesodermal) tumor) of the female genital tract: immunohistochemical and ultrastructural analysis of 28 cases. Hum Pathol 1993;24:132-42.
- 16. Nappi O, Glasner SD, Swanson PE, et al. Biphasic and monophasic sarcomatoid carcinomas of the lung. A reappraisal of 'carcinosarcomas' and 'spindle-cell carcinomas'. Am J Clin Pathol 1994;102:331-40.
- 17. Sadamori H, Fujiwara H, Tanaka T, et al. Carcinosarcoma of the gallbladder manifesting as cholangitis due to hemobilia. J Gastrointest Surg 2012;16:1278-81.
- 18. Kim MJ, Yu E, Ro JY. et al. Sarcomatoid carcinoma of the gallbladder with a rhabdoid tumor component. Arch Pathol Lab Med 2003;127:e406-8.
- 19. Takahashi Y, Fukushima J, Fukusato T, et al. Sarcomatoid

- carcinoma with components of small cell carcinoma and undifferentiated carcinoma of the gallbladder. Pathol Int 2004;54:866-71.
- 20. Ajiki T, Nakamura T, Fujino Y, et al. Carcinosarcoma of the gallbladder with chondroid differentiation. I Gastroenterol 2002;37:966-71.
- 21. Iwaya T, Maesawa C, Tamura G, et al. Esophageal carcinosarcoma: a genetic analysis. Gastroenterology 1997:113:973-7.
- 22. Born MW, Ramey WG, Ryan SF, et al. Carcinosarcoma and carcinoma of the gallbladder. Cancer 1984;53:2171-7.
- 23. Okabayashi T, Sun ZL, Montgomey RA, et al. Surgical outcome of carcinosarcoma of the gall bladder: a review. World J Gastroenterol 2009;15:4877-82.
- 24. Pu JJ, Wu W. Gallbladder carcinosarcoma. BMJ Case Rep 2011;2011:bcr0520103009.
- 25. Liu KH, Yeh TS, Hwang TL, et al. Surgical management of gallbladder sarcomatoid carcinoma. World J Gastroenterol 2009;15:1876-9.
- 26. Fong Y, Jarnagin W, Blumgart LH. Gallbladder cancer: comparison of patients presenting initially for definitive operation with those presenting after prior noncurative intervention. Ann Surg 2000;232:557-69.
- 27. Oh TG, Chung MJ, Bang S, et al. Comparison of the sixth and seventh editions of the AJCC TNM classification for gallbladder cancer. J Gastrointest Surg 2013;17:925-30.
- 28. Lumsden AB, Mitchell WE, Vohman MD. Carcinosarcoma of the gallbladder: a case report and review of the literature. Am Surg 1988;54:492-4.
- 29. Fagot H, Fabre JM, Ramos J, et al. Carcinosarcoma of the gallbladder. A case report and review of the literature. J Clin Gastroenterol 1994;18:314-6.
- 30. Harris MA, Delap LM, Sengupta PS, et al. Carcinosarcoma of the ovary. Br J Cancer 2003;88:654-7.
- 31. Kubota K, Kakuta Y, Kawamura S, et al. Undifferentiated spindle-cell carcinoma of the gallbladder: an immunohistochemical study. J Hepatobiliary Pancreat Surg 2006;13:468-71.
- 32. Ariyoshi K, Kawauchi S, Kaku T, et al. Prognostic factors in ovarian carcinosarcoma: a clinicopathological and immunohistochemical analysis of 23 cases. Histopathology 2000:37:427-36.
- 33. Inoshita S, Iwashita A, Enjoji M. Carcinosarcoma of the gallbladder. Report of a case and review of the literature. Acta Pathol Jpn 1986;36:913-20.

Cite this article as: Lee SY, Shia J, Kingham TP, Jarnagin WR. Carcinosarcoma of the bile duct: a case report and review of literature. HepatoBiliary Surg Nutr 2016;5(1):72-78. doi: 10.3978/j.issn.2304-3881.2015.06.09