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Introduction

In recent years, targeted radioimmunotherapy (RIT) 
using monoclonal antibodies directed to cancer cell 
surface antigens has been clinically validated (1-4). In 
RIT, antibodies are labeled with radioisotopes and used 
for localization and therapy of cancer (5). There is now a 
preponderance of evidence to suggest that RIT will be most 
successful in the treatment of micrometastatic disease (6).

Calculation of the energy delivered to critical organs and 
tumors is essential to predict both organ toxicity and tumor 
response. The current practice (7) to perform dosimetry 
is combination planar whole-body imaging to determine 

absolute activity in the organs and medical internal 
radiation dose (MIRD) S-factor tables derived from five 
anthropomorphic phantom models (8).

A limit of this approach is the inaccuracy of activity 
measurements obtained from planar imaging (9). Organ 
dosimetry requires multiple views, the often highly 
subjective practice of drawing of regions of interest around 
organs, estimates of organ volume, calculation of fractional 
energy deposition in organs, difficult to correct background 
counts, attenuation correction, and scatter correction (9,10).

Magnetic resonance imaging (MRI) and computed 
tomography (CT) are high-resolution modalities that 
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can be used to provide the anatomical information for 
dosimetry and treatment planning, however, their image 
sensitivity is lower than that of single photon emission 
computed tomography (SPECT) (11-13). An idea to solve 
the problems is to use a high-resolution modality (e.g., 
MRI) for direct imaging of the radiopharmaceutical agents.

We have already synthesized 177Lutetium (177Lu)-
trastuzumab as a radiopharmaceutical agent for RIT of 
breast cancer and performed some preliminary studies 
(14,15). In the present study, we conjugated 177Lu-
trastuzumab to iron oxide nanoparticles. This type of 
magnetic nanoparticles is routinely used as a negative 
contrast agent in MRI and can improve the sensitivity of this 
modality (16,17). It was investigated whether the activity 
distribution of 177Lu-trastuzumab-iron oxide nanoparticles in 
organs can be determined more accurately by MRI.

Materials and methods

Reagents and chemicals

Trastuzumab, a humanized IgG1 monoclonal antibody 
directed against  human epidermal  growth factor 
receptor 2 (HER2), was purchased in 150 mg vial 
from Genentech Inc. (South San Francisco, USA). 
1,4,7,10-Tetraazacyclododecane-1,4,7,10-tetraacetic acid 
(DOTA) was prepared from Macrocyclic Company, and 
other chemical agents were purchased from Sigma.

Mice bearing breast tumor

The tumor was originally established from a spontaneous 
breast tumor (a murine mammary carcinoma) in an inbred 
female BALB/c mouse. The breast tumor model was 
established by subcutaneous implantation of the tumor 
fragments (about 1 mm3) in the right flank region of normal 
inbred female BALB/c mice (20-25 g, 8-10 weeks old). The 
biodistribution and imaging study was performed in the 
mice bearing breast tumors. The interaction of trastuzumab 
on tumor cells was assessed by immunohistochemistry (18). 
Animal experiments were performed in compliance with the 
regulation of our institution and with generally accepted 
guidelines governing such work.

Conjugation of trastuzumab-DOTA to magnetic nanoparticles

Trastuzumab was conjugated to DOTA according to 
the Yordanov method (13). Dextran-coated iron oxide 

nanoparticles were prepared using co-precipitation method 
that described completely before (16,17).

Sodium meta-periodate (30 mg) was added to iron oxide 
nanoparticles (1,400 mg) in citrate buffer (2 mL, 0.02 mol/L) 
and incubated for 5 h in the dark place. Trastuzumab-DOTA 
(200 mg) was added to the activated nanoparticle solution 
and incubated at 4 ℃ for 16 h. The mixture was deoxidized 
by adding sodium cyanoborohydride at 4 ℃ for 2 h.

Radiolabeling of DOTA-trastuzumab-nanoparticles with 177Lu
177LuCl3 (5 mCi, with typical specific activity 20 Ci/mg) 
was added to trastuzumab-DOTA-nanoparticles (150 μg) in 
ammonium acetate buffer (0.25 mol/L, pH =7.0) and heated 
for 3 h at 37 ℃. The complex was purified by gel filtration 
on Sephadex G-25 column. The last Fe (mg)/activity (mCi) 
ratio was determined (13-17).

Quality control tests

The size distribution of the nanoparticles was analyzed 
using Zeta Sizer 3000HS (Malvern, UK). The core size of 
nanoparticles was determined by transmission electronic 
microscopy (TEM) (JEM 2010, JEOL, Japan). Labeling 
yield of the last complex (177Lu-trastuzumab-nanoparticle) 
was analyzed by instant thin layer chromatography (ITLC) 
(14,15). The stability of the complex in phosphate buffer 
and human blood serum up to 7 d was determined (14). 
The immunoreactivity of the complex on SKBr3 cells was 
also checked based on the method described by Lindmo 
et al. (19). SKBr3 cells are hormone-independent cells 
originally derived from a breast adenocarcinoma expressing 
high levels of HER2 (20).

The biodistribution study was performed in mice 
bearing breast tumor at 4 and 24 h post injection [300 μCi, 
100 μg (Fe)/0.1 mL] of 177Lu-trastuzumab-nanoparticle 
and 177Lu-trastuzumab to find the difference between their 
biodistributions.

Activity determination by MRI
177Lu-trastuzumab-nanoparticles [300 μCi, 100 μg (Fe)/0.1 mL] 
were injected intravenously into 20 mice bearing breast 
tumors and randomly divided into four groups (n=5). At 1, 
3, 5 and 7 d post injection, the animals were anesthetized 
(using combination of xylazine hydrochloride and ketamine 
hydrochloride). Imaging was performed with 1.5 Tesla MRI 
system (Siemens, Symphony) and a knee coil. All animals 



Chinese Journal of Cancer Research, Vol 27, No 2 April 2015

© Chinese Journal of Cancer Research. All rights reserved. Chin J Cancer Res 2015;27(2):203-208www.thecjcr.org

205

were scanned by a fast gradient echo pulse sequence 
(TR =3,000, TE =90, flip angle =10°) in 288×384 matrix 
size. Measurements of signal intensities (liver and tumor) 
were performed directly on the T2 images using an 
operator-defined region of interest (ROI) with a constant 
size of pixels. The relative change in signal intensity before  
SIbefore and after administration of the complex with the 
complex SIafter was calculated as follows:

Enhancement=100
−

× before after

before

SI SI
SI

The relation between iron content in organs and 
enhancement in images was obtained by imaging from 
a phantom with definite concentration of iron oxide 
nanoparticles. The mean tumor and liver volumes were 
determined from MRI images. After calculation of iron 

content in each organ, the activity was evaluated by the 
complex Fe (mg)/Lu (mCi) ratio.

Activity determination by SPECT imaging

After MRI, each mouse was scanned using a small field-of-
view SPECT (E.cam, Siemens Medical Systems) equipped 
with a low-energy, high-resolution collimator (LEHR). The 
images were recorded with 550,000 counts and in matrix 
size of 256×256. The energy windows were set to 113±11 keV 
and 208±21 keV to limit the main γ-photons of 177Lu. After 
reconstruction, the computer-assisted ROI technique was 
applied to estimate the counts presenting in livers and 
tumors as described by van Reenen et al. (21). Considering 
the sensitivity of SPECT system, the mean liver and tumor 
activity was calculated for each mouse.

Activity determination by tissue extraction

When imaging was completed, the animals were killed 
by CO2 gas and dissected. The livers and tumors were 
removed, weighed and counted for 177Lu using a dual-
channel automated gamma counter (ORTEC EG&G).

Statistical analysis

SPSS package (version 13.0, SPSS Inc., Chicago, IL, USA) 
was used for statistical analyses. For all the tests, P<0.05 was 
considered as statistically significant. Student’s t-test was 
used to analyze the activity estimation data point by point.

Results

Quality control tests

The complex characteristics are summarized in Table 1. 
The mean hydrodynamic size of the nanoparticles was 
41±15 nm by dynamic light scattering (DLS) technique (the 
data are shown in Figure 1) and the average core size was 
9.0±2.5 nm. The labeling yield and immunoreactivity were 
61%±2% and 80%±2% respectively. On average, 86%±5% 
and 80%±3% of 177Lu-trastuzumab were stable in phosphate 
buffer and in human blood serum up to 7 d, respectively. 
Nanoparticle-trastuzumab was stable in phosphate buffer 
up to 8 d. The size increasing was only 4% and no free 
trastuzumab was measurable in phosphate buffer saline 
(PBS) at this period.

The biodistribution study of 177Lu-trastuzumab and 

Table 1 The complex (Fe3O4:trastuzumab:177Lu) characteristics 
at pH=7

Characteristic Value

Iron/antibody molar ratio 3.1-3.5

Nanoparticle core size (nm), x±s 9.0±0.5

Nanoparticle hydrodynamic size (nm), x±s 41±15

Total amount of Fe (μg):Lu (μCi) 1:3

Figure 1 Nanoparticle size distribution determined by DLS 
technique with the mean of 41±15 nm. DLS, dynamic light 
scattering.
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177Lu-trastuzumab-nanoparticles was performed in mice 
bearing breast tumor and the comparison results are shown 
in Figure 2. As can be seen, 177Lu-trastuzumab-nanoparticles 
aggregated in liver more (about 7%) than 177Lu-trastuzumab 
but there was no specific accumulation in other organs 
(P<0.05).

Activity determination

The immunohistochemistry results showed the spontaneous 
breast tumor that we used in this study expressed medium 
levels of HER2. The MRI and SPECT images of a 
representative mouse before and after administration of the 
complex are presented in Figure 3 and Figure 4 respectively. 
The MRI image of phantom with definite concentration 

of iron oxide nanoparticles and its calibration curve are 
shown in Figure 5. The mean activity in tumor and liver 
determined by three methods are presented in Table 2. As 
can be seen, the activity calculation using MRI images was 
nearer to real amounts than that using SPECT images. The 
standard deviation amounts in activity estimation by MRI 
was statistically lower than that by SPECT (P<0.05).

Discussion

In RIT, accurate estimation of the dose delivered to 
metastatic tumors and critical organs is essential for 
treatment planning and predicting RIT response (5,22). 
Accurate dose estimation requires exact measurements 
of organ volume and radiopharmaceutical content (8,22). 
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Figure 2 The comparison biodistribution of 177Lu-trastuzumab 
(A) and 177Lu-trastuzumab-nanoparticles (B) in mice bearing breast 
tumor.

Figure 4 The SPECT images at 1 and 7 d post injection of the 
complex (300 μCi Lu). The arrows show the tumors. SPECT, 
single photon emission computed tomography.

Figure 3 The MRI images before and 1 d after injection of the 
complex (100 μg Fe). MRI, magnetic resonance imaging.
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Nuclear medicine systems do not provide the required 
resolution for dose estimation to metastatic small tumors 
accurately.

MRI is an anatomical imaging system with high-
resolution and low-sensitivity images and the possibility to 
adjust the contrast to a desirable level (11,12,17). In this 
regard, MRI can be considered as complementary modality 
to scintigraphy because SPECT has high-sensitivity low-
resolution images (10). Combination of these modalities can 
solve many problems related to RIT. One option available 
is making the hybrid systems to acquire co-registered and 
fused images. It was reported that using co-registration 
micro-positron emission tomography (microPET) with 
MRI images could confirm the position of 86Y-trastuzumab 
uptake relative to various organs. Their results demonstrated 

the usefulness of combined microPET and MRI for the 
evaluation of novel therapeutics (11). In another study, 
microPET/CT and microMRI images were applied for 
in vivo evaluation of 64Cu-NO2A-8-Aoc-BBN(7–14)NH2 in 
T-47D tumor-bearing mouse. The pharmacokinetic profile 
justifies investigation of this bioconjugate as a potentially 
useful diagnostic/therapeutic agent (23). Researchers 
applied the volume-rendered image, fused microSPECT/
CT image from 111Indium-DOTA(GSG)-G3-C12 for better 
detecting localization in the tumor and clearance from the 
renal/urinary pathway (24). In this study, we synthesized a 
dual radiopharmaceutical agent for therapy of breast cancer 
that could be followed by both SPECT and MRI systems. 
For better estimating the organs activity, 177Lu-trastuzumab 
was conjugated to iron oxide nanoparticles in order to 
be traced by MRI systems. Iron oxide nanoparticles are 
magnetic nanoparticles that produce a negative signal in 
their aggregation position. The main objective of this study 
was to determine the accumulated activity in organs in a 
new method by 177Lu-trastuzumab-iron oxide nanoparticles 
and MRI. The organ activity was determined with three 
different methods (MRI, SPECT imaging and tissue 
extraction) and compared with each other. The results 
showed very good correlation between the data derived 
MRI images and tissue extraction. So, 177Lu-trastuzumab-
iron oxide nanoparticles with MRI had the ability to 
measure organ activity more accurately than with SPECT 
imaging and thus the dosimetry in this strategy could be 
performed more accurately than usual methods.

Conclusions

177Lu-trastuzumab-iron oxide nanoparticles showed 
promising properties as a radioimmunoconjugate for better 
calculation of organs activity using MRI in mice bearing 
tumor. At this stage, we can conclude that the complex 
is potentially useful in providing high quality images for 
patient-specific dosimetry. However, further investigation is 
required to optimize the protocol of imaging and possibly 
better contrast agents should be used.
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