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Abstract: Machine learning techniques have been widely used in many scientific fields, but its use in medical 

literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of 

machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on 

how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R. 

After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked. 

Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance 

calculation and choice of appropriate predictors all have significant impact on the model performance. 
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Introduction to k-nearest neighbor (kNN)

kNN classifier is to classify unlabeled observations by 
assigning them to the class of the most similar labeled 
examples. Characteristics of observations are collected for 
both training and test dataset. For example, fruit, vegetable 
and grain can be distinguished by their crunchiness and 
sweetness (Figure 1). For the purpose of displaying them 
on a two-dimension plot, only two characteristics are 
employed. In reality, there can be any number of predictors, 
and the example can be extended to incorporate any 
number of characteristics. In general, fruits are sweeter 
than vegetables. Grains are neither crunchy nor sweet. Our 
work is to determine which category does the sweet potato 
belong to. In this example we choose four nearest kinds of 
food, they are apple, green bean, lettuce, and corn. Because 
the vegetable wins the most votes, sweet potato is assigned 
to the class of vegetable. You can see that the key concept of 
kNN is easy to understand. 

There are two important concepts in the above example. 
One is the method to calculate the distance between 
sweet potato and other kinds of food. By default, the 
knn() function employs Euclidean distance which can be 
calculated with the following equation (1,2).

( ) ( ) ( )2 2 2
1 1 2 2( , ) n nD p q p q p q p q= − + − + + − [1]

where p and q are subjects to be compared with n 
characteristics. There are also other methods to calculate 
distance such as Manhattan distance (3,4). 

Another concept is the parameter k which decides 
how many neighbors will be chosen for kNN algorithm. 
The appropriate choice of k has significant impact on 
the diagnostic performance of kNN algorithm. A large k 
reduces the impact of variance caused by random error, but 
runs the risk of ignoring small but important pattern. The 
key to choose an appropriate k value is to strike a balance 
between overfitting and underfitting (5). Some authors 
suggest to set k equal to the square root of the number of 
observations in the training dataset (6).  

Working example

For illustration of how kNN works, I created a dataset that 
had no actual meaning. 

>  set.seed(seed=888)

>  df1 <- data.frame(x1=runif(200,0,100), 
x2=runif(200,0,100))

>  df1 <- transform(df1, y=1+ifelse(100 - x1 - x2 
+ rnorm(200,sd=10) < 0, 0, ifelse(100 - 2*x2 + 
rnorm(200,sd=10) < 0, 1, 2)))

> df1$y<-as.factor(df1$y)

>  df1$tag<-c(rep("train",150),rep("test",50))

The first line sets a seed to make the output reproducible. 
The second line creates a data frame named df1, and it 
contains two variables x1 and x2. Then I add another 
categorical variable y, and it has three categories. However, 
the variable y is numeric and I convert it into a factor by 
using as.factor() function. A tag variable is added to split the 
dataset into training set and test set. Next we can examine 
the dataset by graphical presentation. 

>  library(ggplot2)

>  qplot(x1,x2, data=df1, colour=y,shape=tag)

As you can see in Figure 2, different categories are 
denoted by red, green and blue colors. The whole dataset 
is split in 150:50 ratio for training and test datasets. Dots 
represent test data and triangles are training data. 

Performing kNN algorithm with R 

The R package class contains very useful function for the 
purpose of kNN machine learning algorithm (7). Firstly one 
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Figure 1 Illustration of how k-nearest neighbors’ algorithm works. 
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needs to install and load the class package to the working 
space. 

> install.packages(“class”)

> library(class)

Then we divide the original dataset into the training and 
test datasets. Note that the training and test data frames 
contain only the predictor variable. The response variable is 
stored in other vectors. 

> train<-df1[1:150,1:2]

> train.label<-df1[1:150,3]

> test<-df1[151:200,1:2]

> test.label<-df1[151:200,3]

Up to now, datasets are well prepared for the kNN model 
building. Because kNN is a non-parametric algorithm, 
we will not obtain parameters for the model. The kNN() 
function returns a vector containing factor of classifications 
of test set. In the following code, I arbitrary choose a k 
value of 6. The results are stored in the vector pred. 

> pred<-knn(train=train,test=test,cl=train.label,k=6)

The results can be viewed by using CrossTable() function 
in the gmodels package. 

Figure 2 Visual presentation of simulated working example. The class 1, 2 and 3 are denoted by red, green and blue colors, respectively. Dots 
represent test data and triangles are training data.
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> install.packages(“gmodels”)

> library(gmodels)

> CrossTable(x = test.label, y = pred,prop.chisq=FALSE)

 Cell Contents

  N
N / Row Total
N / Col Total

N / Table Total

Total Observations in Table:  50 

Pred

test.label 1 2 3 Row Total

1 29 0 0 29

1.000 0.000 0.000 0.580

0.935 0.000 0.000

0.580 0.000 0.000

2 2 6 2 10

0.200 0.600 0.200 0.200

0.065 0.857 0.167

0.040 0.120 0.040

3 0 1 10 11

0.000 0.091 0.909 0.220

0.000 0.143 0.833

0.000 0.020 0.200

Column 
Total

31 7 12 50

0.620 0.140 0.240

Diagnostic performance of the model

The kNN algorithm assigns a category to observations in 
the test dataset by comparing them to the observations in 
the training dataset. Because we know the actual category 
of observations in the test dataset, the performance of the 
kNN model can be evaluated. One of the most commonly 
used parameter is the average accuracy that is defined by the 
following equation (8):

1

  /
l

i i

i i i i i

TP TNAverage Accuracy l
TP FN FP TN=

+
=

+ + +∑ [2]

where TP is the true positive, TN is the true negative, FP is 
the false positive and FN is the false negative. The subscript 
i indicates category, and l refers to the total category. 

> table<-CrossTable(x = test.label, y = pred,prop.
chisq=TRUE)

> tp1<-table$t[1,1]

> tp2<-table$t[2,2]

> tp3<-table$t[3,3]

> tn1<-table$t[2,2]+table$t[2,3]+table$t[3,2]+table
$t[3,3]

> tn2<-table$t[1,1]+table$t[1,3]+table$t[3,1]+table
$t[3,3]

> tn3<-table$t[1,1]+table$t[1,2]+table$t[2,1]+table
$t[2,2]

> fn1<-table$t[1,2]+table$t[1,3]

> fn2<-table$t[2,1]+table$t[2,3]

> fn3<-table$t[3,1]+table$t[3,2]

> fp1<-table$t[2,1]+table$t[3,1]

> fp2<-table$t[1,2]+table$t[3,2]

> fp3<-table$t[1,3]+table$t[2,3]

> accuracy<-(((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3

> accuracy

[1] 0.9333333

The CrossTable() function returns the result of cross 
tabulation of predicted and observed classifications. The 
number in each cell can be used for the calculation of four 
basic parameters true positive (TP), true negative (TN), 
false negative (FN) and false positive (FP). The process 
repeated for each category. Finally, the accuracy is 0.93. 

Sensitivity and specificity 

Sensitivity is a measure of the proportion of positives that 
are correctly identify positive observations. Specificity 
is a measure of the proportion of negatives that are 
truly negative. They are commonly used to measure 
the diagnostic performance of a test (9). In evaluation 
of a prediction model, they can be used to reflect the 
performance of the model. Imaging a perfectly fitted 
model that can predict outcomes with 100% accuracy, both 
sensitivity and specificity are 100%. In multiclass situation 
as in our example, sensitivity and specificity are calculated 
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separately for each class. The equations are as follows.

[3]( )/i i i iSen TP TP FN= +

( )/i i i iSp TN TN FP= + [4]

where TP is the true positive, TN is the true negative, FP is 
the false positive and FN is the false negative. The subscript 
i indicates category.

> sen1<-tp1/(tp1+fn1)

> sp1<-tn1/(tn1+fp1)

> sen1

[1] 1

> sp1

[1] 0.9047619

Multiclass area under the curve (AUC)

A receiver operating characteristic (ROC) curve measures the 
performance of a classifier to correctly identify positives and 
negatives. The AUC ranges between 0.5 and 1. An AUC of 0.5 
indicates a random classifier that it has no value. Multiclass 
AUC is well describe by Hand and coworkers (10). The 
multiclass.roc() function in pROC package is able to do the 
task.

> install.packages("pROC")

> library(pROC)

> multiclass.roc(response=test.label, predictor=as.
ordered(pred))

Call:

multiclass.roc.default(response = test.label, predictor = 
as.ordered(pred))

Data: as.ordered(pred) with 3 levels of test.label: 1, 2, 3.

Multi-class area under the curve: 0.9212

As you can see from the output of the command, the 
multi-class AUC is 0.9212. 

Kappa statistic

Kappa statistic is a measurement of the agreement for 
categorical items (11). Its typical use is in assessment of the 
inter-rater agreement. Here kappa can be used to assess 

the performance of kNN algorithm. Kappa can be formally 
expressed by the following equation:

[5]( ) ( )
1 ( )

P A P E
kappa

P E
−

=
−

where P(A) is the relative observed agreement among raters, 
and P(E) is the proportion of agreement expected between 
the classifier and the ground truth by chance. In our 
example the tabulation of predicted and observed classes are 
as follows:

> table<-table(test.label,pred)

> table

pred

test.label 1 2 3

1 29 0 0

2 2 6 2

3 0 1 10

The relative observed agreement can be calculated as 

[6]( ) (29 6 10) / 50 0.9P A = + + =

the kNN algorithm predicts 1, 2 and 3 for 31, 7, and 
12 times. Thus, the probability that kNN says for 1, 2 
and 3 are 0.62, 0.14 and 0.24, respectively. Similarly, the 
probabilities that 1, 2 and 3 are observed are 0.58, 0.2 and 
0.22, respectively. Then, the probability that both classifier 
say 1, 2 and 3 are 0.62×0.58=0.3596, 0.14×0.2=0.028 and 
0.24×0.22=0.0528. The overall probability of random 
agreement is:

[7]( ) 0.3596 0.028 0.0528 0.4404P E = + + =

and the kappa statistic is:

[8]
( ) ( )

( )
0.9 0.4404 0.82

1 1 0.4404
P A P E

kappa
P E
− −

= = ≈
− −

Fortunately, the calculation can be performed by cohen.
kappa() function in the psych package. I present the 
calculation process here for readers to better understand the 
concept of kappa. 

> install.packages("psych")
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> library(psych)

> cohen.kappa(x=cbind(test.label,pred))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha = 
alpha)

Cohen Kappa and Weighted Kappa correlation coeffi-
cients and confidence boundaries 

lower estimate upper

unweighted kappa 0.68 0.82 0.96

weighted kappa 0.87 0.93 0.99

Number of subjects = 50

Tuning k for kNN

The parameter k is important in kNN algorithm. In the 
last section I would like to tune k values and examine 
the change of the diagnostic accuracy of the kNN 
model. Custom-made R function is helpful in simplify 
the calculation process. Here I write a function named 
“accuracyCal” to calculate a series of average accuracies. 
There is only one argument for the function. That is the 
maximum number of k you would like to examine. There 
is for loop with in the function that calculates accuracy 
repeatedly from one to N. When you run the function, 
the results may not exactly the same for each time. That 

is because the knn() function breaks ties at random. 
To explain, if we have 4 nearest neighbors and two are 
classified as A and 2 are classified as B, then A and B are 
randomly chosen as predicted result. 

> accuracyCal<-function(N) {

         accuracy<-1

        for (x in 1:N) {

              pred<-knn(train=train,test=test,cl=train.
label,k=x)

              table<- table(test.label,pred)

              tp1<-table[1,1]

              tp2<-table[2,2]

              tp3<-table[3,3]

              tn1<-table[2,2]+table[2,3]+table[3,2]+table[3,3]

              tn2<-table[1,1]+table[1,3]+table[3,1]+table[3,3]

              tn3<-table[1,1]+table[1,2]+table[2,1]+table[2,2]

              fn1<-table[1,2]+table[1,3]

              fn2<-table[2,1]+table[2,3]

              fn3<-table[3,1]+table[3,2]

              fp1<-table[2,1]+table[3,1]

              fp2<-table[1,2]+table[3,2]

              fp3<-table[1,3]+table[2,3]

              accuracy<-c(accuracy, (((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3)

                          }

              return(accuracy[-1])

              }

The following code creates a visual display of the 
results. An inset plot is created to better visualize how 
accuracy changes within the k range between 5 and 20. The 
subplot() function contained in TeachingDemos package is 
helpful in drawing such an inset. It is interesting to adjust 
graph parameters to make the figure a better appearance  
(Figure 3). The figure shows that the average accuracy is 
highest at k=15. At a large k value (150 for example), all 
observations in the training dataset are included and all 
observations in the test dataset are assigned to the class with 
the largest number of subjects in the training dataset. This 
is of course not the result we want. 

> install.packages("TeachingDemos")
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Figure 3 Graphical presentation of average accuracy with different k 
values. The inset zooms in at k range between 0 and 30.



Annals of Translational Medicine, Vol 4, No 11 June 2016 Page 7 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Cite this article as: Zhang Z. Introduction to machine 
learning: k-nearest neighbors. Ann Transl Med 2016;4(11):218. 
doi: 10.21037/atm.2016.03.37

> library(TeachingDemos)

> qplot(seq(1:150),accuracyCal(150),xlab="k 
values",ylab="Average accuracy",geom = c("point", 
"smooth"))

> subplot( 

        plot(seq(1:30),accuracyCal(30), col=2,xlab='', 
ylab='',cex.axis=0.8), 

        x=grconvertX(c(0,0.75), from='npc'),

        y=grconvertY(c(0,0.45), from='npc'),

        type='fig', pars=list( mar=c(0,0,1.5,1.5)+0.1) )

Summary

The article introduces some basic ideas underlying the kNN 
algorithm. The dataset should be prepared before running 
the knn() function in R. After prediction of outcome with 
kNN algorithm, the diagnostic performance of the model 
should be checked. Average accuracy is the most widely 
used statistic to reflect the performance kNN algorithm. 
Factors such as k value, distance calculation and choice of 
appropriate predictors all have significant impact on the 
model performance. 
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