
Page 1 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Big-data Clinical Trial Column

Introduction to machine learning: k-nearest neighbors

Zhongheng Zhang

Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua 321000, China

Correspondence to: Zhongheng Zhang, MMed. 351#, Mingyue Road, Jinhua 321000, China. Email: zh_zhang1984@hotmail.com.

Author’s introduction: Zhongheng Zhang, MMed. Department of Critical Care Medicine, Jinhua Municipal Central
Hospital, Jinhua Hospital of Zhejiang University. Dr. Zhongheng Zhang is a fellow physician of the Jinhua Municipal
Central Hospital. He graduated from School of Medicine, Zhejiang University in 2009, receiving Master Degree. He has
published more than 35 academic papers (science citation indexed) that have been cited for over 200 times. He has been
appointed as reviewer for 10 journals, including Journal of Cardiovascular Medicine, Hemodialysis International, Journal of
Translational Medicine, Critical Care, International Journal of Clinical Practice, Journal of Critical Care. His major research
interests include hemodynamic monitoring in sepsis and septic shock, delirium, and outcome study for critically ill patients.
He is experienced in data management and statistical analysis by using R and STATA, big data exploration, systematic
review and meta-analysis.

Zhongheng Zhang, MMed.

Abstract: Machine learning techniques have been widely used in many scientific fields, but its use in medical

literature is limited partly because of technical difficulties. k-nearest neighbors (kNN) is a simple method of

machine learning. The article introduces some basic ideas underlying the kNN algorithm, and then focuses on

how to perform kNN modeling with R. The dataset should be prepared before running the knn() function in R.

After prediction of outcome with kNN algorithm, the diagnostic performance of the model should be checked.

Average accuracy is the mostly widely used statistic to reflect the kNN algorithm. Factors such as k value, distance

calculation and choice of appropriate predictors all have significant impact on the model performance.

Keywords: Machine learning; R; k-nearest neighbors (kNN); class; average accuracy; kappa

Submitted Jan 25, 2016. Accepted for publication Feb 18, 2016.

doi: 10.21037/atm.2016.03.37

View this article at: http://dx.doi.org/10.21037/atm.2016.03.37

Zhang. Introduction to machine learning: k-nearest neighbors

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Page 2 of 7

Introduction to k-nearest neighbor (kNN)

kNN classifier is to classify unlabeled observations by
assigning them to the class of the most similar labeled
examples. Characteristics of observations are collected for
both training and test dataset. For example, fruit, vegetable
and grain can be distinguished by their crunchiness and
sweetness (Figure 1). For the purpose of displaying them
on a two-dimension plot, only two characteristics are
employed. In reality, there can be any number of predictors,
and the example can be extended to incorporate any
number of characteristics. In general, fruits are sweeter
than vegetables. Grains are neither crunchy nor sweet. Our
work is to determine which category does the sweet potato
belong to. In this example we choose four nearest kinds of
food, they are apple, green bean, lettuce, and corn. Because
the vegetable wins the most votes, sweet potato is assigned
to the class of vegetable. You can see that the key concept of
kNN is easy to understand.

There are two important concepts in the above example.
One is the method to calculate the distance between
sweet potato and other kinds of food. By default, the
knn() function employs Euclidean distance which can be
calculated with the following equation (1,2).

() () ()2 2 2
1 1 2 2(,) n nD p q p q p q p q= − + − + + − [1]

where p and q are subjects to be compared with n
characteristics. There are also other methods to calculate
distance such as Manhattan distance (3,4).

Another concept is the parameter k which decides
how many neighbors will be chosen for kNN algorithm.
The appropriate choice of k has significant impact on
the diagnostic performance of kNN algorithm. A large k
reduces the impact of variance caused by random error, but
runs the risk of ignoring small but important pattern. The
key to choose an appropriate k value is to strike a balance
between overfitting and underfitting (5). Some authors
suggest to set k equal to the square root of the number of
observations in the training dataset (6).

Working example

For illustration of how kNN works, I created a dataset that
had no actual meaning.

> set.seed(seed=888)

> df1 <- data.frame(x1=runif(200,0,100),
x2=runif(200,0,100))

> df1 <- transform(df1, y=1+ifelse(100 - x1 - x2
+ rnorm(200,sd=10) < 0, 0, ifelse(100 - 2*x2 +
rnorm(200,sd=10) < 0, 1, 2)))

> df1$y<-as.factor(df1$y)

> df1$tag<-c(rep("train",150),rep("test",50))

The first line sets a seed to make the output reproducible.
The second line creates a data frame named df1, and it
contains two variables x1 and x2. Then I add another
categorical variable y, and it has three categories. However,
the variable y is numeric and I convert it into a factor by
using as.factor() function. A tag variable is added to split the
dataset into training set and test set. Next we can examine
the dataset by graphical presentation.

> library(ggplot2)

> qplot(x1,x2, data=df1, colour=y,shape=tag)

As you can see in Figure 2, different categories are
denoted by red, green and blue colors. The whole dataset
is split in 150:50 ratio for training and test datasets. Dots
represent test data and triangles are training data.

Performing kNN algorithm with R

The R package class contains very useful function for the
purpose of kNN machine learning algorithm (7). Firstly one

S
W

E
E

T

Crunchy

Fruit

Vegetable

Grain

Figure 1 Illustration of how k-nearest neighbors’ algorithm works.

Annals of Translational Medicine, Vol 4, No 11 June 2016 Page 3 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

needs to install and load the class package to the working
space.

> install.packages(“class”)

> library(class)

Then we divide the original dataset into the training and
test datasets. Note that the training and test data frames
contain only the predictor variable. The response variable is
stored in other vectors.

> train<-df1[1:150,1:2]

> train.label<-df1[1:150,3]

> test<-df1[151:200,1:2]

> test.label<-df1[151:200,3]

Up to now, datasets are well prepared for the kNN model
building. Because kNN is a non-parametric algorithm,
we will not obtain parameters for the model. The kNN()
function returns a vector containing factor of classifications
of test set. In the following code, I arbitrary choose a k
value of 6. The results are stored in the vector pred.

> pred<-knn(train=train,test=test,cl=train.label,k=6)

The results can be viewed by using CrossTable() function
in the gmodels package.

Figure 2 Visual presentation of simulated working example. The class 1, 2 and 3 are denoted by red, green and blue colors, respectively. Dots
represent test data and triangles are training data.

0

25

50

75

100

0 25 50 75 100
x1

x2

tag
test

train

y
1

2

3

×
2

×1

tag

y

test

train

1

2

3

100

75

50

25

0

0 25 75 10050

Zhang. Introduction to machine learning: k-nearest neighbors

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Page 4 of 7

> install.packages(“gmodels”)

> library(gmodels)

> CrossTable(x = test.label, y = pred,prop.chisq=FALSE)

 Cell Contents

 N
N / Row Total
N / Col Total

N / Table Total

Total Observations in Table: 50

Pred

test.label 1 2 3 Row Total

1 29 0 0 29

1.000 0.000 0.000 0.580

0.935 0.000 0.000

0.580 0.000 0.000

2 2 6 2 10

0.200 0.600 0.200 0.200

0.065 0.857 0.167

0.040 0.120 0.040

3 0 1 10 11

0.000 0.091 0.909 0.220

0.000 0.143 0.833

0.000 0.020 0.200

Column
Total

31 7 12 50

0.620 0.140 0.240

Diagnostic performance of the model

The kNN algorithm assigns a category to observations in
the test dataset by comparing them to the observations in
the training dataset. Because we know the actual category
of observations in the test dataset, the performance of the
kNN model can be evaluated. One of the most commonly
used parameter is the average accuracy that is defined by the
following equation (8):

1

 /
l

i i

i i i i i

TP TNAverage Accuracy l
TP FN FP TN=

+
=

+ + +∑ [2]

where TP is the true positive, TN is the true negative, FP is
the false positive and FN is the false negative. The subscript
i indicates category, and l refers to the total category.

> table<-CrossTable(x = test.label, y = pred,prop.
chisq=TRUE)

> tp1<-table$t[1,1]

> tp2<-table$t[2,2]

> tp3<-table$t[3,3]

> tn1<-table$t[2,2]+table$t[2,3]+table$t[3,2]+table
$t[3,3]

> tn2<-table$t[1,1]+table$t[1,3]+table$t[3,1]+table
$t[3,3]

> tn3<-table$t[1,1]+table$t[1,2]+table$t[2,1]+table
$t[2,2]

> fn1<-table$t[1,2]+table$t[1,3]

> fn2<-table$t[2,1]+table$t[2,3]

> fn3<-table$t[3,1]+table$t[3,2]

> fp1<-table$t[2,1]+table$t[3,1]

> fp2<-table$t[1,2]+table$t[3,2]

> fp3<-table$t[1,3]+table$t[2,3]

> accuracy<-(((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3

> accuracy

[1] 0.9333333

The CrossTable() function returns the result of cross
tabulation of predicted and observed classifications. The
number in each cell can be used for the calculation of four
basic parameters true positive (TP), true negative (TN),
false negative (FN) and false positive (FP). The process
repeated for each category. Finally, the accuracy is 0.93.

Sensitivity and specificity

Sensitivity is a measure of the proportion of positives that
are correctly identify positive observations. Specificity
is a measure of the proportion of negatives that are
truly negative. They are commonly used to measure
the diagnostic performance of a test (9). In evaluation
of a prediction model, they can be used to reflect the
performance of the model. Imaging a perfectly fitted
model that can predict outcomes with 100% accuracy, both
sensitivity and specificity are 100%. In multiclass situation
as in our example, sensitivity and specificity are calculated

Annals of Translational Medicine, Vol 4, No 11 June 2016 Page 5 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

separately for each class. The equations are as follows.

[3]()/i i i iSen TP TP FN= +

()/i i i iSp TN TN FP= + [4]

where TP is the true positive, TN is the true negative, FP is
the false positive and FN is the false negative. The subscript
i indicates category.

> sen1<-tp1/(tp1+fn1)

> sp1<-tn1/(tn1+fp1)

> sen1

[1] 1

> sp1

[1] 0.9047619

Multiclass area under the curve (AUC)

A receiver operating characteristic (ROC) curve measures the
performance of a classifier to correctly identify positives and
negatives. The AUC ranges between 0.5 and 1. An AUC of 0.5
indicates a random classifier that it has no value. Multiclass
AUC is well describe by Hand and coworkers (10). The
multiclass.roc() function in pROC package is able to do the
task.

> install.packages("pROC")

> library(pROC)

> multiclass.roc(response=test.label, predictor=as.
ordered(pred))

Call:

multiclass.roc.default(response = test.label, predictor =
as.ordered(pred))

Data: as.ordered(pred) with 3 levels of test.label: 1, 2, 3.

Multi-class area under the curve: 0.9212

As you can see from the output of the command, the
multi-class AUC is 0.9212.

Kappa statistic

Kappa statistic is a measurement of the agreement for
categorical items (11). Its typical use is in assessment of the
inter-rater agreement. Here kappa can be used to assess

the performance of kNN algorithm. Kappa can be formally
expressed by the following equation:

[5]() ()
1 ()

P A P E
kappa

P E
−

=
−

where P(A) is the relative observed agreement among raters,
and P(E) is the proportion of agreement expected between
the classifier and the ground truth by chance. In our
example the tabulation of predicted and observed classes are
as follows:

> table<-table(test.label,pred)

> table

pred

test.label 1 2 3

1 29 0 0

2 2 6 2

3 0 1 10

The relative observed agreement can be calculated as

[6]() (29 6 10) / 50 0.9P A = + + =

the kNN algorithm predicts 1, 2 and 3 for 31, 7, and
12 times. Thus, the probability that kNN says for 1, 2
and 3 are 0.62, 0.14 and 0.24, respectively. Similarly, the
probabilities that 1, 2 and 3 are observed are 0.58, 0.2 and
0.22, respectively. Then, the probability that both classifier
say 1, 2 and 3 are 0.62×0.58=0.3596, 0.14×0.2=0.028 and
0.24×0.22=0.0528. The overall probability of random
agreement is:

[7]() 0.3596 0.028 0.0528 0.4404P E = + + =

and the kappa statistic is:

[8]
() ()

()
0.9 0.4404 0.82

1 1 0.4404
P A P E

kappa
P E
− −

= = ≈
− −

Fortunately, the calculation can be performed by cohen.
kappa() function in the psych package. I present the
calculation process here for readers to better understand the
concept of kappa.

> install.packages("psych")

Zhang. Introduction to machine learning: k-nearest neighbors

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Page 6 of 7

> library(psych)

> cohen.kappa(x=cbind(test.label,pred))

Call: cohen.kappa1(x = x, w = w, n.obs = n.obs, alpha =
alpha)

Cohen Kappa and Weighted Kappa correlation coeffi-
cients and confidence boundaries

lower estimate upper

unweighted kappa 0.68 0.82 0.96

weighted kappa 0.87 0.93 0.99

Number of subjects = 50

Tuning k for kNN

The parameter k is important in kNN algorithm. In the
last section I would like to tune k values and examine
the change of the diagnostic accuracy of the kNN
model. Custom-made R function is helpful in simplify
the calculation process. Here I write a function named
“accuracyCal” to calculate a series of average accuracies.
There is only one argument for the function. That is the
maximum number of k you would like to examine. There
is for loop with in the function that calculates accuracy
repeatedly from one to N. When you run the function,
the results may not exactly the same for each time. That

is because the knn() function breaks ties at random.
To explain, if we have 4 nearest neighbors and two are
classified as A and 2 are classified as B, then A and B are
randomly chosen as predicted result.

> accuracyCal<-function(N) {

 accuracy<-1

 for (x in 1:N) {

 pred<-knn(train=train,test=test,cl=train.
label,k=x)

 table<- table(test.label,pred)

 tp1<-table[1,1]

 tp2<-table[2,2]

 tp3<-table[3,3]

 tn1<-table[2,2]+table[2,3]+table[3,2]+table[3,3]

 tn2<-table[1,1]+table[1,3]+table[3,1]+table[3,3]

 tn3<-table[1,1]+table[1,2]+table[2,1]+table[2,2]

 fn1<-table[1,2]+table[1,3]

 fn2<-table[2,1]+table[2,3]

 fn3<-table[3,1]+table[3,2]

 fp1<-table[2,1]+table[3,1]

 fp2<-table[1,2]+table[3,2]

 fp3<-table[1,3]+table[2,3]

 accuracy<-c(accuracy, (((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3)

 }

 return(accuracy[-1])

 }

The following code creates a visual display of the
results. An inset plot is created to better visualize how
accuracy changes within the k range between 5 and 20. The
subplot() function contained in TeachingDemos package is
helpful in drawing such an inset. It is interesting to adjust
graph parameters to make the figure a better appearance
(Figure 3). The figure shows that the average accuracy is
highest at k=15. At a large k value (150 for example), all
observations in the training dataset are included and all
observations in the test dataset are assigned to the class with
the largest number of subjects in the training dataset. This
is of course not the result we want.

> install.packages("TeachingDemos")

0.7

0.8

0.9

0 50 100 150
k values

A
ve

ra
ge

 a
cc

ur
ac

y
A

ve
ra

ge
 a

cc
ur

ac
y

0.
88

0.
90

0.
92

0.
94

0.
96

k values
0 50 100 150

0.9

0.8

0.7

Figure 3 Graphical presentation of average accuracy with different k
values. The inset zooms in at k range between 0 and 30.

Annals of Translational Medicine, Vol 4, No 11 June 2016 Page 7 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(11):218atm.amegroups.com

Cite this article as: Zhang Z. Introduction to machine
learning: k-nearest neighbors. Ann Transl Med 2016;4(11):218.
doi: 10.21037/atm.2016.03.37

> library(TeachingDemos)

> qplot(seq(1:150),accuracyCal(150),xlab="k
values",ylab="Average accuracy",geom = c("point",
"smooth"))

> subplot(

 plot(seq(1:30),accuracyCal(30), col=2,xlab='',
ylab='',cex.axis=0.8),

 x=grconvertX(c(0,0.75), from='npc'),

 y=grconvertY(c(0,0.45), from='npc'),

 type='fig', pars=list(mar=c(0,0,1.5,1.5)+0.1))

Summary

The article introduces some basic ideas underlying the kNN
algorithm. The dataset should be prepared before running
the knn() function in R. After prediction of outcome with
kNN algorithm, the diagnostic performance of the model
should be checked. Average accuracy is the most widely
used statistic to reflect the performance kNN algorithm.
Factors such as k value, distance calculation and choice of
appropriate predictors all have significant impact on the
model performance.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to
declare.

References

1.	 Short RD, Fukunaga K. The optimal distance measure
for nearest neighbor classification. IEEE Transactions on
Information Theory 1981;27:622-7.

2.	 Weinberger KQ, Saul LK. Distance metric learning for
large margin nearest neighbor classification. The Journal
of Machine Learning Research 2009;10:207-44.

3.	 Cost S, Salzberg S. A weighted nearest neighbor algorithm
for learning with symbolic features. Machine Learning
1993;10:57-78.

4.	 Breiman L. Random forests. Machine Learning.
2001;45:5-32.

5.	 Zhang Z. Too much covariates in a multivariable model
may cause the problem of overfitting. J Thorac Dis
2014;6:E196-7.

6.	 Lantz B. Machine learning with R. 2nd ed. Birmingham:
Packt Publishing; 2015:1.

7.	 Venables WN, Ripley BD. Modern applied statistics with
S-PLUS. 3rd ed. New York: Springer; 2001.

8.	 Hernandez-Torruco J, Canul-Reich J, Frausto-Solis J, et al.
Towards a predictive model for Guillain-Barré syndrome.
Conf Proc IEEE Eng Med Biol Soc 2015;2015:7234-7.

9.	 Linden A. Measuring diagnostic and predictive accuracy
in disease management: an introduction to receiver
operating characteristic (ROC) analysis. J Eval Clin Pract
2006;12:132-9.

10.	 Hand DJ, Till RJ. A simple generalisation of the area
under the ROC curve for multiple class classification
problems. Machine Learning 2001;45:171-86.

11.	 Thompson JR. Estimating equations for kappa statistics.
Stat Med 2001;20:2895-906.

