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Introduction

One assumption in creating generalized linear model 
(GLM) is linearity in its link function. For example, in 
logistic regression model, covariates are assumed to be 
linearly associated with response variable in logit scale. 
However, it is not always the case and the assumption may 
be wrong. For example, lactate is associated with mortality 
outcome, but the relationship is not linear (1). Quadratic 
or cubic terms can be added to an explanatory variable to 
account for the non-linearity relationship. However, this 

requires subject-matter knowledge to determine the form 
of a variable. In exploratory study, such knowledge is always 
lacking and investigators have to rely on data to determine 
the functional form. Multivariable fractional polynomial 
(MFP) method is such a method that it allows software to 
determine whether an explanatory variable is important for 
the model, and its functional form (2,3). MFP can be used 
when investigators want to preserve continuous nature of 
covariates and suspect that the relationship is non-linear. 
The article aims to describe how to perform MFP methods 
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by using R package. Fundamentals on MFP are also 
provided to make the article more readable. 

Fundamentals on multivariable fractional 
polynomial (MFP)

There are two components in the procedure: (I) backward 
elimination of covariates that are statistically insignificant; 
and (II) iterative examination of the scale of all continuous 
covariates. Therefore, we need two significance levels 
α1, for the exclusion and inclusion of a covariates, and 
α2 for the determination of significance of fractional 
transformation of continuous covariates (4,5). 

The first cycle is to build a multivariable model with all 
potential explanatory covariates (Figure 1). Alternatively, 

variables with P<0.25 or 0.2 in univariable analysis can 
be incorporated into the initial model. This is also the 
starting model for purposeful selection of covariates. 
All dichotomous and design variables are not subject to 
fractional polynomial (FP) transformation and are modeled 
with one degree of freedom. They are tested for their 
contribution to the model by using α1 (e.g., by Wald test). 
Continuous variables are modeled using closed test to 
examine whether they should be kept or removed using α1, 
and whether transformation should be performed using α2 
(Figure 2). The closed test begins by comparing the best-
fitting second-degree fractional polynomial (FP2) with 
null model (Table 1). The term is dropped if the test is non-
significant. Otherwise the best-fitting FP2 is compared with 
the linear term. Linear term is adopted if the test is non-

Figure 1 A simple example illustrating the procedure of multivariable fractional polynomial method. Firstly, predictors are arranged in 
descending order of significance. The most important predictor is assessed by closed test for its inclusion and fractional polynomial (FP) 
function. The procedure proceeds sequentially for all predictors. The second cycle begins by examining the second predictor for its inclusion 
and FP function. Other predictors are kept in their FP form obtained from cycle 1. The procedure concludes when two cycles converge.
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significant. Otherwise we continue to compare the best-
fitting FP2 to the best-fitting FP1. If the test is significant 
the best fitting FP2 is adopted. Otherwise the best-fitting 
FP1 is adopted (6). The second cycle begins with a fit of 
model containing significant covariates, either in original 
or polynomial transformed form. All covariates are then 
examined in descending order of significance for their 
inclusion, exclusion and possible transformation. The 
procedure stops when two consecutive steps contain the 
same covariates with the same FP transformations. 

Working example

In this article, I use the German Breast Cancer Study Group 
(GBSG) database for illustration of MFP method. GBSG 
dataset in the mfp package contains 686 rows and 11 columns.

> library(survival)

> library(mfp)

> data(GBSG)

> str(GBSG)

'data.frame': 686 obs. of  11 variables:

 $ id      : int  1 2 3 4 5 6 7 8 9 10 ...

 $ htreat  : Factor w/ 2 levels "0","1": 1 2 2 2 1 1 2 1 1 1 ...

 $ age     : int  70 56 58 59 73 32 59 65 80 66 ...

 $ menostat: Factor w/ 2 levels "1","2": 2 2 2 2 2 1 2 2 2 2 ...

 $ tumsize : int  21 12 35 17 35 57 8 16 39 18 ...

 $ tumgrad : Factor w/ 3 levels "1","2","3": 2 2 2 2 2 3 2 2 2 2 ...

 $ posnodal: int  3 7 9 4 1 24 2 1 30 7 ...

 $ prm     : int  48 61 52 60 26 0 181 192 0 0 ...

 $ esm     : int  66 77 271 29 65 13 0 25 59 3 ...

 $ rfst    : int  1814 2018 712 1807 772 448 2172 2161 471 2014 ...

 $ cens    : int  1 1 1 1 1 1 0 0 1 0 ...

The variable id is to identify unique patient. Hormonal 
therapy (htreat) is a factor with two levels of no [0] and yes 
[1]. Menopausal status (menostat) is also a factor at two levels 
premenopausal [1] and postmenopausal [2]. Tumor size 
(tumsize) is a continuous variable measured in millimeter. 
Tumor grade (tumgrad) is an ordered factor at levels 1<2<3. 
Number of positive nodes (posnodal) is a continuous variable 
with integer values. Progesterone receptor (prm) is an 
integer variable measured in fmol. Estrogen receptor (esm) 
is an integer variable measured in fmol. Recurrence free 
survival time (rfst) is measured in days. Censoring indicator 
(cens) is an integer with 0 indicates censored and 1 for event. 

Table 1 Illustration of fractional polynomial terms

Groups Notations m Examples

Linear lin. x

First-degree FP FP1 1 x2; x3; x0.5; x-2

Second-degree FP FP2 2 x+x2; x0.5+x2; x-0.5+x2; x0.5+x-2

Third-degree FP FP3 3 x0.5+x2+x-1; x-0.5+x2+x

FP of a certain degree contains numerous terms, depending 
on the number of powers allowed. By convention, powers are 
selected from the collection (–2, –1, –0.5, 0, 0.5, 1, 2, 3), where 0 
denotes the log transformation. FP3 is usually not needed, and I 
present it here for better understanding of fractional polynomial 
term. FP2 is the most complex and it is compared to the null 
model. If FP2 is not better than null by statistical test, linear and 
FP1 of the variable are unlikely to be important to the model. 
Therefore, the variable is excluded from the model. FP, fractional 
polynomial.

Figure 2 Closed test algorithm for choosing a fractional polynomial 
model with maximum permitted degree of 2 for a single continuous 
predictor. The first step is to determine whether a predictor should 
be included in a model. That is to compare models with and without 
FP2. If FP2 model is not better than null model, the predictor 
is dropped. Otherwise, we continue to compare FP2 with linear 
model. If FP2 is not better than linear one, we choose linear model. 
Otherwise, we continue to compare FP2 with FP1. If FP2 is not 
better than FP1, the FP1 model is chosen. Otherwise the FP2 model 
is chosen. FP, fractional polynomial.
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Illustration of multivariable fractional polynomial (MFP) 
method

The GBSG dataset is a survival data and I construct the model 
with survival function. The Surv() function creates a survival 
object with the time and event as arguments. To make the model 
simple, only age and prm are selected for FP transformation. 
FP2 terms are allowed for prm and only FP1 is allowed for 
age. By default argument, FP2 is allowed for tumsize. The 
remaining variables htreat and tumgrad are linear because they 
are categorical. The model is built with Cox proportional hazard 
model by assigning “family = cox”. “verbose=TRUE” is to show 
variable selection details in output. 

> model<-mfp(Surv(rfst, cens) ~ fp(age, df = 2, select = 0.05)+fp(prm, 

df = 4, select = 0.05)+htreat+fp(tumsize)+tumgrad, family = cox, 

data = GBSG,verbose=TRUE)

Variable Deviance Power(s)

------------------------------------------------

Cycle  1

 prm 

3530.308

3505.751 1

3497.597 0.5

3495.593 0    0

 tumsize

3511.629 

3497.597 1

3495.599 −0.5

3493.696 −1    3

 tumgrad2

3505.159 

3497.597 1

 tumgrad3

3504.295 

3497.597 1

 htreat1

3504.472 

3497.597 1

 age

3497.698 

3497.597 1

3494.907 −2

Cycle  2

 prm 

 3530.344 

 3505.865 1

 3497.698 0.5

 3495.679 0   0

 tumsize

 3511.69  

 3497.698 1

 3495.647 -0.5

 3493.746 -1    3

 tumgrad2

 3505.254 

 3497.698 1

 tumgrad3

 3504.36  

 3497.698 1

 htreat1

 3504.525 

 3497.698 1

Tansformation

shift scale

prm 1 100

tumsize 0 10

tumgrad2 0 1

tumgrad3 0 1

htreat1 0 1

age 0 100

Fractional polynomials

df.initial select alpha df.final power1 power2

prm 4 0.05 0.05 2 0.5 .

tumsize 4 1.00 0.05 1 1 .

tumgrad2 1 1.00 0.05 1 1 .

tumgrad3 1 1.00 0.05 1 1 .

htreat1 1 1.00 0.05 1 1 .

age 2 0.05 0.05 0 . .

Transformations of covariates:

formula

age <NA>

prm I(((prm+1)/100)^0.5)

htreat htreat

tumsize I((tumsize/10)^1)

tumgrad tumgrad

Deviance table:

Resid. Dev
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Null model 3576.209

Linear model 3505.751

Final model 3497.698

The first cycle begins by including all covariates into 
the model and their FP functions are examined. The best-
ftting FP functions are shown in the output. For example, 
the power of best-fitting FP1 is 0.5 for prm, and the powers 
of best-fitting FP2 are -1 and 3 for tumsize. The statistical 
test is performed internally and not shown in the output. 
In cycle 2, age is dropped because the FP1 function is 
not significantly different from the null model (deviance: 
3,494.907 vs. 3,497.698). Cycle 2 is the last cycle where the 
model converges. Transformation of each variable is shown. 
The variable prm is shifted by 1 and divided by 100 before 
FP transformation. FP functions of each variable remained 
in the model are shown in the output. Age is dropped. 
All variables are entered in linear form except that prm is 
transformed by FP1 with the power of 0.5. One can see P 
values of closed test procedure by the following code. 

> model$pvalues

p.null p.lin p.FP power2power4.1power4.2

prm 5.442815e-

07

0.0170453 0.36435370.5 0 0

tumsize 1.265929e-

03

0.2667106 0.3865315-0.5 -1 3

tumgrad25.980843e-

03

NA NA NA NA NA

tumgrad39.851749e-

03

NA NA NA NA NA

htreat1 8.978825e-

03

NA NA NA NA NA

age 2.477346e-

01

0.1009907 NA -2.0 NA NA

In the output, p.null corresponds to the test of inclusion 
(e.g., comparing best-fitting FP2 against null model); p.lin 
is the P value for the test of nonlinearity (comparing best-
fitting FP2 against linear model) and p.FP is the test of 
simplification by comparing first degree (FP1) and second 
degree (FP2) transformations. The best-fitting FP1 power 
(power2) and best-fitting FP2 powers (power4.1 and 
power4.2) are also shown. The numbers 2 and 4 describe 
the corresponding degrees of freedom. 

Next, users are interested in estimated coefficients for 
each transformed variable.

> model$fit

Call:

coxph(formula = Surv(rfst, cens) ~ I(((prm + 1)/100)^0.5) + 

I((tumsize/10)^1) + tumgrad + htreat, data = GBSG)

coef exp(coef) se(coef) z p

I(((prm+1)/100)^0.5) -0.6003 0.5487 0.1145 -5.24 1.6e-07

I((tumsize/10)^1) 0.1442 1.1552 0.0364 3.97 7.3e-05

tumgrad2 0.6342 1.8856 0.2503 2.53 0.011

tumgrad3 0.6700 1.9543 0.2737 2.45 0.014

htreat1 -0.3237 0.7235 0.1261 -2.57 0.010

Likelihood ratio test=78.5  on 5 df, p=1.67e-15

n= 686, number of events= 299 

In the output of “model$fit”, one can see the final model 
is called by coxph() function. The coefficient for each 
transformed variable is shown in the table. Exponentiation 
of coefficient is the hazard ratio. The transformed 
variable is sometimes obscure to subject-matter audience. 
Visualization of how hazard ratio changes with variable of 
FP function is interesting. 

> library(visreg)

> visual<-coxph(formula = Surv(rfst, cens) ~ I(((prm + 1)/100)^0.5) 

+ I((tumsize/10)^1) + tumgrad + htreat, data = GBSG)

> visreg(visual,"prm", ylab="log(Hazard ratio)" )

For the purpose of visualization of fitted regression 
model, I employ the visreg package. The visreg() function 
cannot directly receive returned object from mfp() and I 
refit the Cox model in the form exactly the same to that 
obtained from mfp(). Then the new model can be visualized 
using visreg() function (Figure 3). Sometimes, users are 
interested in visualization of survival curves at fixed 
covariates. For example, we can plot survival curves for 
patients with and without hormone therapy, given that the 
tumor size is 20 mm, progesterone receptor is 30 fmol, and 
tumor grade is 2 (Figure 4). 

> plot(survfit(model$fit, newdata=data.frame(prm=30,tumsize=20,t

umgrad="2",htreat=c("1","0"))), col=c("red","green"),xlab = "Days", 

ylab="Survival")

> legend(600, .2, c("treat", "control"), lty = 1,col=c("red","green"))

The survfit() function creates survival curves from 
previously fitted Cox model, here it is model$fit. The 
argument newdata specifies values of covariates to be 
plotted. The function legend() is used to add legend to 
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make the plot more readable. 

Summary

The article introduces how to perform MFP method by 
using mfp() function. Users can define which variable is 
subject to FP transformation and in what degree. The 
procedure firstly arranges potential predictors in order of 
decreasing significance (increasing P value). The purpose 
is to consider the relatively important variables before 

unimportant ones. Secondly, predictors are considered 
consecutively for their best-fitting FP function. The closed 
test algorithm is employed to choose a best-fitting FP 
function. Predictors of interest can be visualized by using 
visreg() function. Visualization of continuous predictors 
is important because coefficients of high-order terms are 
difficult to understand for subject-matter audience. 
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Figure 4 Survival curves for patients with and without hormone 
therapy, given that the tumor size is 20 mm, progesterone receptor 
is 30 fmol, and tumor grade is 2. 

Figure 3 Visualization of non-linear model. Note that the variable 
prm is not linearly associated with log(hzazrd ratio).
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