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Abstract: From February 2015, low-dose computed tomography (LDCT) screening entered the armamentarium 

of diagnostic tools broadly available to individuals at high-risk of developing lung cancer. While a huge number of 

pulmonary nodules are identified, only a small fraction turns out to be early lung cancers. The majority of them 

constitute a variety of benign lesions. Although it entails a burden of the diagnostic work-up, the undisputable 

benefit emerges from: (I) lung cancer diagnosis at earlier stages (stage shift); (II) additional findings enabling the 

implementation of a preventive action beyond the realm of thoracic oncology. This review presents how to utilize 

the risk factors from distinct categories such as epidemiology, radiology and biomarkers to target the fraction of 

population, which may benefit most from the introduced screening modality.
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Introduction

Since February 2015 lung cancer screening by low-dose 
computed tomography (LDCT) in high-risk individuals is 
covered by the US health insurance. This considerable step 
ahead towards a reduction of lung cancer mortality in the 
future, has its roots in the National Lung Screening Trial 
(NLST) results (1). The implementation of the NLST 
protocol—three LDCT scans in the consecutive years post 
enrolment followed by four years of follow-up, has yielded 
cancer-related mortality reduction exceeding 20% (1).  
However, the 20% yield of mortality reduction has been 
used as an argument in the ongoing debate regarding 
LDCT screening efficiency and necessity (2-5). While 
a stimulating discussion must always be the component 
of the decision-making process leading to incorporation 

of novel modalities into large scale clinical practice, it is 
worth clarifying one issue. The interpretation of mortality 
reduction equated to saving one out of five lives of screenees 
is totally misleading. The NLST has never been aimed to 
measure the extent of lives saving during the continuous 
screening. Rather, it had been designed to show, as a proof 
of concept, with the sufficient statistical power and limited 
financial resources, that LDCT screening is capable of 
reducing lung cancer mortality (1,6,7). Therefore, there is 
nothing essentially inconsistent between the 20% reduction 
of mortality reported in NLST and the 88% survival rate in 
stage I lung cancer documented in the International Early 
Lung Cancer Action Project (I-ELCAP), in which screening 
has not been limited to the definite number of rounds (8-10). 
Using a mortality reduction modeling technique it has been 
shown the decrease of mortality in NY-ELCAP cohort may 
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have reached 45.6% (11). Moreover, a re-analysis of the 
dataset and statistical calculation demonstrated the mortality 
reduction in the NLST could have amounted to more than 
20%, would the CT examination had been extended to four 
years of follow-up (12,13). Of note, lung cancer mortality in 
the New York State (NYS) cohort, comprising individuals 
from NY-ELCAP and ELCAP, compared to the unscreened 
cohorts of the American Cancer Society Cancer Prevention 
Study II (CPS II) and the Beta-Carotene and Retinol 
Efficacy Trial (CARET), showed a reduction in mortality 
by 36% and 64%, respectively (14). The study employed 
standardized mortality ratio among the cohorts of screened 
(NYS) or unscreened (CPS II, CARET) former and current 
smokers. Interestingly, a decrease in mortality after two 
LDCT rounds started in the fourth year of screening, 
reaching a maximum after six to eight years (14). This time-
course revealing a beneficial outcome in the long-term 
perspective seems to be of utmost importance. However, 
attempts to draw ad hoc conclusions from the trials already 
implemented or terminated should be avoided.

Having put aside the general consideration regarding 
the ability of LDCT to save lives, the issue arises of its low 
efficacy to select individuals with lung cancer. In fact, the 
vast majority of pulmonary nodules detected are identified 
as benign (1,15-17). This, in turn, gives rise to a high 
number of false positive results, which, on the one hand, 
compromises specificity and positive predictive value (PPV) 
of LDCT screening, on the other, entails the burden of a 
costly diagnostic work-up (3,18). Keeping in mind that any 
screening, by definition, is offered to healthy, asymptomatic 
candidates, not surprisingly, any invasive diagnostic 
procedure carried out on them should be regarded as 
an utmost need. Therefore a lot of effort has recently 
been made to limit the number of false positive results 
either by risk factors assessment or risk prediction models 
implementation or advanced image analysis.

Low-dose computed tomography (LDCT) 
screening landscape based on the I-ELCAP, 
NLST and NELSON results

During the last two decades the learning curve of 
the LDCT screening intricacies has essentially been 
warranted by three trials. The I-ELCAP, which is a 
single-arm observational study, in 2000–2013 recruited 
62,124 participants aged 40–90 years, with a high-risk of 
lung cancer being active smokers, second-hand smokers 
or having a history of occupational exposure (19). In 

2006 based on the analysis of 31,567 individuals under 
screening, it was reported that 85% of diagnosed cancers 
were in clinical stage I and the estimated 10-year survival 
rate in this group was 88% (9). Unfortunately, as in all 
non-randomized trials, the biases associated with selection, 
lead time, length time and overdiagnosis could not be 
eliminated and mortality data were not in hand. This has 
prompted the need for randomized clinical trial designed 
to test the capability of LDCT as a regimen reducing 
lung cancer related mortality. Between 2002 and 2004 
NLST enrolled 53,454 individuals, aged 55 to 74 years 
with at least 30 pack-years smoking history. They were 
randomized either to the low-dose CT or the chest X-ray 
group and followed-up until 2009. Lung cancer incidence 
was 13% higher in the LDCT group and relative mortality 
was reduced by 20% in comparison to the radiography 
group (1). The European randomized trial NELSON 
(acronym from Dutch: Dutch-Belgian Lung Cancer 
Screening Trial) accrued between 2004 and 2006 a total of 
15,822 participants, aged 50–75 having smoking history 
of 15 pack-years or more. They were randomly assigned 
to the low-dose CT group or the control group (no 
screen). It was estimated that with this size of sample, a 
25% mortality reduction could be demonstrated ten years 
after randomization (20,21). The results are due to be 
published in 2016. They are especially awaited in Europe, 
since the distinct LDCT intervention targets considerably 
dissimilar high-risk lung cancer population in terms of 
ethnicity, social habits, environmental exposures and 
genetic background in comparison to the United States 
population. Even though the LDCT screening landscape 
is shaped by three major trials, it is far from being uniform 
and unequivocal. 

One of the trials, the non-randomized I-ELCAP 
presents a beneficial lung cancer stage shift resulting in a 
high curability and survival rate. The randomized NLST 
demonstrates a measurable decrease in mortality related 
to lung cancer, while the randomized NELSON trial 
remains an open question until its results are published. 
Additionally, one should be aware that each of the trials 
targets a diverse population characterized by unique 
demographic variables, uses distinct eligibility criteria with 
respect to age and smoking history, employs dissimilar 
definition of positive screening result (1,9,20-23). For 
instance a non-calcified pulmonary nodule is identified 
as a positive if measured diameter is larger than 5 mm, 
equal or larger than 4 mm or larger than 10 mm (volume 
exceeding 500 mm3) in the I-ELCAP (9), NLST (1)  
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and NELSON (20) trial, respectively. Those interested in 
the details of the screening trials eligibility criteria, positive 
results definition and algorithms, are encouraged to peruse 
a vast number of recently published reviews (3,24-29).

Evidence-based screening work-up yields low 
false positivity rate

In the United States a program of low-dose CT screening 
covered by health insurance has been launched, while in the 
European Union, awaiting, hopefully conclusive, NELSON 
trial results, a set of recommendations has recently been 
published (30).

A positive result in LDCT screening is defined as a 
non-calcified solitary pulmonary nodule (SPN), with the 
specified diameter or volume. In fact, spheroidal lesions 
of augmented attenuation in lung parenchyma (i.e., SPN), 
measuring 2 mm or less, can be found in most of CT scans 
of adult persons (31). For baseline screening positive results 
were reported in 11–51 % of participants of the major 
trials, depending on the study protocol and algorithm. 
Among those detected nodules 1.1–2.0% were identified 
as early lung cancers, thereby categorizing the remaining 
90–96% as the false positive results (1,9,17,32,33). One 
exception is the NELSON study, in which due to a unique 
classifying protocol (non-inclusion into positive results 
indeterminate nodules having a volume of 50–500 mm3, 
requiring a repeat screen), a total of positive results is 
equal to 2%, yet false positive results amount to 59.4% 
(20,21). Inevitably, a high false positive rate (1-specificity) 
is the major disadvantage of any screening modality. False 
positive results lead to unnecessary diagnostic work-up 
with the use of invasive procedures, which have side-effects, 
may induce complications (e.g., chest tube insertion due 
to pneumothorax caused by CT-guided lung biopsy) and 
increase patients’ anxiety (29). Ideally, a screening modality 
should operate in a digital 0-or-1 mode but this would entail 
one hundred percent specificity and sensitivity of a test. In 
reality test performance is much lower and can be enhanced 
either by an improvement of the particular method or by 
combining several methods/predictors to achieve a better 
final outcome. Risk prediction or stratification models are 
constructed to facilitate targeting a subpopulation which 
may benefit most from the screening procedure.

Recently, the following ways to diminish the rate of false 
positive results in the low-dose CT screening have been 
studied:

(I) Image analysis, i.e., assessing precisely a nodule 

dimension(s)/volume or extracting from a nodule 
CT image the set of features, which are likely to 
indicate malignancy;

(II) Risk factors assessment—a useful approach, 
facilitating the selection of individuals at-risk of 
lung cancer in whom screening is most beneficial, 
given that financial resources are limited and 
therefore a population screening ruled out;

(III) Lung cancer prediction models—a sophisticated, 
labor-consuming method, in which a pre-specified 
set of factors is included in the regression equation, 
constituting a cohesive tool for the formerly 
validated population to target beneficiaries in a 
cost-effective way.

Image analysis of a pulmonary nodule

It has extensively been documented the survival time 
of patients in whom lung cancer has been resected, 
dramatically decreases with the increasing dimensions 
of the lesion (29,34-36). Importantly, for tumors with a 
diameter <1.0 cm, 5-year survival rate has been reported to 
be 100% (30,35). Likewise, the NLST data demonstrated 
a 7-fold increase in the percentage of detected lung cancers 
between SPN range 7–10 mm and 11–20 mm (1.7% and 
11.9%, respectively) (1,33). To combine a nodule diameter 
and morphology with its malignancy likelihood, a new 
tool of image analysis has been proposed by the American 
College of Radiology (ACR), namely the Lung CT 
Screening Reporting and Data System (Lung-RADSTM) 
(37,38). It is based on I-ELCAP, NELSON and NLST 
data and represents a tentative compromise among experts. 
The system combines a nodule morphology (solid, part-
solid, ground glass) with its average diameter (orthogonals, 
as opposed to the longest axial diameter in the NLST) 
and establishes nodule categories into negative and non-
actionable (annual screening in 12 months), indeterminate 
(yet requiring LDCT within 6 months) and suspicious (three 
subcategories demanding CT in 3 months or PET, tissue 
sampling etc.). The diameter of a positive nodule (result) 
was elevated in comparison to I-ELCAP and NLST to equal 
or larger than 6 mm for solid and part-solid nodules and to 
equal or larger than 20 mm in case of ground glass nodules 
(37,38). These alterations have resulted in a considerably 
improved performance of LDCT screening. Lung-
RADS used to analyze the NLST data, for the baseline 
screen, yielded false positive rate of 12.8% compared 
to 26.6% in accordance with the NLST criteria (39).  



Adamek et al. Risk factors in CT screening

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(8):151atm.amegroups.com

Page 4 of 12

It was even more marked in the incidence screens, reaching 
a 4-fold decrease (5.3% vs. 21.8% for Lung-RADS and 
NLST criteria, respectively). Consequently, the PPV of 
Lung-RADS was 6.9%, whereas for NLST 3.8%, with still 
an observable improvement for the annual screens (39). The 
usefulness of ACR Lung-RADS has been demonstrated in 
another screened cohort, increasing the PPV by a factor 
of 2.5% to 17.3% (40). Not surprisingly, this standardized, 
comprehensive and clinical decision-oriented system 
has been proposed to be widely implemented in a semi-
automated mode in order to properly handle a mounting 
number of CT examinations in the following years 
(41,42). Undoubtedly, the knowledge accumulated from 
the analysis of the I-ELCAP, NLST and NELSON data 
including patients’ clinical outcome, enabled to refine a 
nodule size criterion. Both, I-ELCAP and NLST data 
have been re-analyzed to find out how would CT screening 
precision and workflow be changed, were the alternative 
nodule sizes be used. With regard to the I-ELCAP using a 
nodule threshold sizes of 6.0, 7.0, 8.0 and 9.0 mm, would 
yield positive results in 10.2%, 7.1%, 5.1% and 4.0%, 
respectively (43). This would substantially diminish the 
annual scans number. The unnecessary work-up could be 
reduced by 36%, 56%, 68% and 75%, respectively (43). 
Originally, in the NLST each non-calcified pulmonary 
nodule of 4 mm or larger was classified as a positive result, 
which totaled to 26.6% of positive baseline screens (1). 
Again, applying the alternative sizes of solid or part-solid 
nodules of 6.0, 7.0, 8.0 and 9.0 mm in the baseline screen, 
a corresponding reduction of positive results amounts to 
10.5%, 7.2%, 5.3% and 4.1% , and proportional decrease 
of additional CT scans would have been 33.8%, 54.7%, 
66.6% and 73.8%, respectively (44). However, one should 
be aware a maneuver of declining positive, i.e., demanding 
work-up, number of nodules, is inextricably linked to 
the delay of diagnosis and treatment in some patients. 
Recently reported analysis of the I-ELCAP data, detected 
in 57,496 baseline screenings followed by 64,677 annual 
repeat screens, 2,392 and 485 ground-glass nodules (GGN), 
respectively, of which altogether 84 were identified as  
adenocarcinomas (45). The median transition time from 
GGN to part-solid was 25 months and surgery was curative 
in 100% of cases. In conclusion, GGN may safely be 
followed in a 12-month screen, regardless of the size (45). 
The NELSON trial utilized more stringent inclusion 
criteria than in the NLST and displayed the lower rate of 
false positives. However, it was noted that the elongated 
gaps between sequential CT screens to 2 and 2.5 years, 

resulted in a higher percentage of stage III cancer in 
the third round and increased percentage of stage IV in 
the fourth round (3.9% vs. 13.3% in third and fourth 
round, respectively) (46). To compensate for this effect 
the recommended range for indeterminate nodules was 
narrowed from 100 to 300 mm3, whereas the positive screen 
result was set up to the volume larger than 300 mm3 (47).

Very recently an image analysis has been proposed to 
extract a data set of the attenuation coefficient patterns, 
residing within a pulmonary nodule CT scan. It is based 
on a precise mathematical algorithm analyzing the nodule 
heterogeneity and statistics (voxel intensities, texture 
features, spatio-frequency sub-band statistics) as well 
as nodule morphology (size, shape, surface features). 
Altogether more than five hundreds features is put into 
a single nodule characteristics. When these features of 
a nodule were combined with the patient’s clinical data, 
including smoking history, pack years, nodule location 
etc., it was demonstrated to yield receiver operating 
characteristic under area curve (ROC AUC) of 0.87 and 
the false positive rate of 18%. The corresponding values 
for clinical data only yielded 0.80 and 44%, respectively (R. 
Bhagalia et al. Abstract 1019; The World Congress on Lung 
Cancer 2015). 

In order to combine an effort aimed at standardization 
of the LDCT screening in terms of image acquisition, 
processing and analyzing with the use of an accessible 
technical and scientific resources, the Quantitative 
Imaging Biomarker Alliance (QIBA) has been launched, a 
multidisciplinary consortium, which is focused on the task 
of extracting a maximally reliable data from an image (48).

Risk factors (predictors) assessment

Lung cancer risk factors comprise a various classes of 
phenomena and features related to demographics, morbidity 
or environmental/occupational exposure, which are known 
to coincide, coexist or to increase the risk of lung cancer 
occurrence in an individual person. 

A necessity of a risk factor usage is the consequence of 
economical constraints, which make the LDCT screening 
not affordable to the whole population (6,49-53), as 
opposed to breast, prostate and colorectal cancer.

Therefore the LDCT screening is directed to a fraction 
of population in high risk of lung cancer development. 

Two modes of employing risk factors to increase 
true positive rate, i.e., sensitivity, may be distinguished: 
incorporating one or many of them into the process of 
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enrollment or utilizing a risk prediction model, in a form of 
the mathematical tool (a regression equation), allowing to 
target the most beneficiary portion of the population under 
investigation. Therefore candidates of the LDCT screening 
programs must fulfill two conditions to be eligible: they 
should be in age of 50 or more and should have had a 
history of smoking of at least 30 pack-years, unless other 
risk factors are identified (1,9,29).

Predictors (risk factors), which serve to assess the lung 
cancer risk or constitute the components to build the lung 
cancer risk prediction models, can be categorized into the 
following groups:

(I) Clinical/epidemiological (smoking history, age, 
family history, spirometry, COPD, emphysema);

(II) Radiological (SPN features: diameter/volume, 
spiculation, lobulation, location in a lung lobe, 
relation to pulmonary fissures, calcification pattern; 
parameters derived by mathematically advanced 
image analysis);

(III) Biochemical/genomic/epigenomic (protein and 
genomic validated clusters);

(IV) Others: sputum cytology (cell-CT analysis), exhaled 
breath analysis.

Cigarette smoke is an indisputable risk factor of lung 
cancer. It has been demonstrated in major prospective 
studies that there is a quantitative relationship between 
the lung cancer development and the extent of exposure to 
tobacco smoke (54-57). A cumulative exposure to smoke 
in pack-years (PY) can be misleading, since the lung 
cancer incidence increases by a factor of 4.5 in correlation 
with smoking duration, in comparison to a factor of 1.5 
in correlation with daily consumption. Nevertheless, the 
exposure to cigarette smoke expressed in PY, as a major 
culprit of lung cancer, has been included to all, apart from 
Japanese, single-arm and randomized trials for LDCT 
screening (1,17,29). The exact number of pack-years ranges 
from 15 for NELSON to 30 in the NLST or guidelines 
issued in the past years by a various organizations like the 
American Association for Thoracic Surgery (AATS), the 
American College of Chest Physicians (ACCP) and The 
National Comprehensive Cancer Network (NCCN) (29). 
Importantly, the AATS and NCCN recommendations 
lower a cumulative PY exposure to 20, if additional risk 
factors such as chronic obstructive pulmonary disease 
(COPD) with forced expiratory volume in 1s of 70% or 
less than predicted, pulmonary fibrosis, environmental, 
occupational exposures (silica, heavy metals, beryllium, 
asbestos), any prior cancer or lung cancer family history, has 

been identified (29,58). Quite recently, it has been shown, 
analyzing a sub-cohort of 30+ pack-years former smokers 
in the Prostate, Lung, Colorectal and Ovarian trial, that the 
lung cancer risk decreases gradually in years since quitting 
(YSQ), as demonstrated in diminishing hazard ratio for the 
stratified groups (59). This can underpin establishing a YSQ 
cut-off point in the LDCT programs.

Another pivotal risk factor for screening eligibility criteria 
is a participant’s age. In fact, this is the question at what 
age LDCT screening should be initiated and terminated to 
minimize harms and maximize benefits for a target cohort. 
Because only 5–10% of lung cancers in smokers occur below 
the age of 50 (57), the lower cut-off point, in the majority 
of trials, is set at the age of 50 (1,29). Yet, establishing 
the upper age cut-off level for screenees represents more 
complex issue. On the one hand, a life expectancy and 
comorbidities (respiratory and cardiovascular system) of an 
individual in the older age should be taken into account, on 
the other, 50% of all lung cancers occur in patients older 
than 65 (57). Although in the LDCT screening guidelines, 
the upper cut-off point has been fixed to 74 or 79 years 
of age, it is recommended to assess a participant’s overall 
performance status to exclude those who are not candidates 
for an invasive diagnostic intervention or surgery, due to 
poor general health, inoperability status or documented 
refusal to undergo surgery. Generally, individuals who 
cannot achieve metabolic equivalent (MET) of 4 or 5, i.e., 
cannot rake leaves, wash a car or are not able to climb two 
flights of steps without stopping (60,61), should not be 
included into screening as having no prospective capacity 
for any intervention if found to have a positive result.

Low-dose CT is capable of detecting emphysema 
(62,63), which is a component of COPD. Even better 
characterization of individual COPD can be achieved by 
evaluating the extent of air-trapping and bronchial wall 
thickening (64). A combination of these components give 
rise to the distinct, clinically diagnosed, COPD phenotypes, 
with chronic bronchitis predominance (“blue bloater”) 
or emphysema predominance (“pink puffer”). Both, lung 
cancer and COPD are tobacco-related diseases. COPD as 
a consequence of respiratory system exposure to cigarette 
smoke, constitutes the result of disturbed pulmonary 
ventilation (airflow obstruction) and perfusion. These 
disturbances, in turn, are elicited by a chronic inflammatory 
process in the airways evoked by the toxic fumes inhalation. 
Not surprisingly, emphysema and COPD are identified as 
the independent lung cancer risk factors and incorporated 
to the risk assessment calculators and lung cancer risk 
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prediction models (65-68). In the Danish Lung Cancer 
Screening Trial, lung cancer was associated with emphysema 
on baseline screen and later screens with the corresponding 
odds ratio equal to 1.8 and 2.6, respectively (69).  
Moreover, odds ratio was 5.1 linking lung cancer to 
interstitial abnormalities (69). Based on the review of 62,124 
baseline LDCT scans of current, former and never-smokers, 
it was demonstrated the lung cancer prevalence for current 
smokers without emphysema was 1.1%, as compared to 
2.3% for those with emphysema (odds ratio 1.8) (19).  
Thus, emphysema can be viewed as an independent 
predictor of the lung cancer prevalence.

The radiological features of pulmonary nodules, among 
them those, which are regarded to be the risk factors, were, 
to some extent, discussed in one of the previous paragraphs 
describing image analysis of a pulmonary nodule.

An urgent need to limit the number of false positive 
results in the LDCT screening stimulates an investigational 
effort in the field of biomarkers. They can be identified in a 
biological material, such as tissue, cells and biological fluids 
(blood, urine, exhaled breath condensate, sputum).

A majority of biomarkers is associated with (70-77):
(I) Genetic changes and gene expression alterations 

(gene or gene expression signature or profile in 
bronchial epithelium, sputum-derived cells or 
peripheral blood cells);

(II) Changes of level and/or composition of non-coding 
RNAs (microRNA) in sputum plasma or serum;

(III) Epigenetic changes, i.e., modified pattern of DNA 
methylation of particular genes in sputum, plasma 
or bronchial aspirates; 

(IV) Detection of altered protein panel or proteomic 
profile in plasma, serum or bronchial biopsies;

(V) Detection of autoantibodies or tumor-associated 
antigens in serum;

(VI) Identification of volatile organic compounds profile 
in exhaled breath condensate.

The above-listed biomarkers belong to a class of 
diagnostic biomarkers. This means they are used to 
determine whether cancer is present in an individual with an 
asymptomatic, detectable disease such as pulmonary nodule 
on a CT scan, as opposed to prognostic biomarkers, which 
can assess the risk of developing lung cancer in individuals 
at risk but with no measurable signs of a disease (70,78). 
The underlying rationale of diagnostic biomarkers based on 
biological fluids, is that molecular alterations within cancer 
cells lead to the synthesis of distinct molecular compounds, 
which, if detected, may signify the presence of cancerous 

transformation in an individual under investigation. Ideally, 
checking one molecular biomarker in a participant of the 
LDCT screening, with identified suspicious nodule, should 
allow making diagnostic or therapeutic decision. However, 
since lung cancer development is a multi-factorial, complex 
process, with only partially unraveled mechanisms, it 
is unlikely to discover a single biomarker with genuine 
decision-making property. Yet, in the recent years, some 
attempts have been made to introduce a cluster of proteins 
or genes as the diagnostic marker. In a retrospective, 
multicenter trial, the classifier comprising five diagnostic 
and six normalization proteins, was applied to plasma 
samples of patients with 141 indeterminate pulmonary 
nodules (79). A negative predictive value (NPV) of the 
classifier for this set of indeterminate nodules, yielded 90%, 
which means it is useful in a malignancy exclusion (79). 
The set of eleven classifying proteins has been derived from 
mass spectrometry studies. Moreover, in a retrospective-
prospective analysis of a study including 475 patients with 
nodules measuring 8–30 mm in diameter, it was shown 
that the use of the classifier would reduce the number of 
surgeries and invasive procedures by more than 30% (80).

Another example of a classifier allowing for a more 
conservative approach in patients with lung cancer suspicion, 
is genomic expression classifier (81). It requires bronchial 
epithelial cells and RNA extraction to assess expression of 
17 genes, which were selected out of 232 genes associated 
with lung cancer development. The classifier comprises 
genes found to be related to three clinical covariates: gender, 
tobacco use and smoking history (81). The usefulness of 
gene expression classifier was proved and validated in the 
Airway Gene Expression in the Diagnosis of Lung Cancer 
(AEGIS 1 and AEGIS 2) trials (82). A total of 639 patients 
were enrolled to both trials. The determined gene expression 
profile from bronchial brushings, yielded a sensitivity of 88% 
and a NPV of 91% (82). The latter is very helpful for the 
decision making in case of a nondiagnostic bronchoscopy 
examination with nodules presented in the CT scan.

Risk prediction models

The vast majority of the discussed risk factors can be 
combined into a regression equation constituting a 
mathematical form of risk prediction model. In this case 
lung cancer mortality is the dependent variable (outcome, 
predicted variable), whereas the selected risk factors 
(predictors), are the independent variables. For a practical 
reason, only some demographic, clinical and radiological 
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predictors are included in the models. As opposed to 
hypothesis testing, in which a significant predictor is 
useful in excluding null hypothesis, in a risk prediction 
model, the predictor can be insignificant, still improving 
prediction and vice versa, a very significant predictor may 
not increase prediction value of the model (83,84). Each 
risk prediction model employs a distinct set of risk factors, 
has different design, covers particular geographical region, 
has requirements for patient contact, requires clinical data 
or biomarker information (83-86). During the last two 
decades many lung cancer models were published, out 
of which, merely a couple are in use (85), although the 
recommendations of the International Society for the Study 
of Lung Cancer are clear: only individuals with the highest 
risk of lung cancer, should be screened. This situation 
stems from the fact that every risk model is complicated 
mathematical tool, requiring pre-specified risk factors, then 
internal and/or external validation. All these steps are time-
consuming and may turn out to be futile if, for example, one 
of the risk factors is inaccessible, since it demands contact 
with a patient or a biomarker reading (85,87,88).

Two pivotal components of a prediction model indicate 
its performance. Discrimination shows the ability to 
classify correctly, while calibration demonstrates if model-
predicted probabilities, correspond to those observed in 
the real cohort, for which the model was created. The most 
often used measure of discrimination is the area under 
the receiver operator characteristic curve (AUC). The 
AUC equal to 0.5 is regarded as a random classification, 
whereas the area between 0.8 to 0.9 represents excellent 
discrimination (85).

The Bach model (3,85,89) used prospective follow-up 
data from population of smokers with or without asbestos 
exposure from the Beta-Carotene and Retinol Efficacy Trial 
(CARET). Predictors included age, sex, smoking intensity, 
duration, years since quitting smoking and asbestos 
exposure. The discrimination for this model measured by 
the AUC was equal to 0.72, which indicated a moderate 
discrimination. Hoggart and colleagues adapted the Bach 
model to evaluate the cohort of the European Prospective 
Investigation into Cancer and Nutrition (EPIC) trial (90). 
The five-year risk AUC for current, former and ever-
smokers was close to 0.7 for all categories (90).

Raji and colleagues (91) validated Liverpool Lung 
Project (LLP) cohort, which predicts a 5-year risk of lung 
cancer and included predictors such as asbestos exposure, 
pneumonia, family history of cancer, prior malignancy and 
smoking duration. The validation was done on the three 

external cohorts: two European and one American. The 
resultant AUC ranged from 0.67 to 0.82 for the Liverpool 
cohort (91).

The entirely different approach in terms of number of 
risk factors included and the number of individuals in a 
cohort, was presented by Tammemagi and colleagues (83). 
In two models comprising 70,962 individuals (model 1: 
general population) and 38,254 individuals (model 2: ever-
smokers subcohort) from the Prostate, Lung, Colorectal 
and Ovarian (PLCO) cancer screening trial the following, 
comprehensive set of risk factors were included: age, 
socioeconomic status, body mass index, family history of 
lung cancer, COPD, recent chest X-ray, smoking status 
(never, former, or current), pack-years smoked, and smoking 
duration (83). The model results were: the AUC for never- 
and ever-smokers was 0.84, while for the only smokers model 
of 0.74 (83). In 2013 a refined PLCO model (for smokers 
only) was published (PLCOm2012), in which two predictors 
were added (personal history of cancer and ethnicity) and 
one predictor was excluded (previous CXR) (86). This 
model had an AUC of 0.797. When applied to the NLST 
data, PLCOm2012 showed significantly higher sensitivity, 
better PPV with preserved specificity in comparison 
to the NLST eligibility criteria (86). Undoubtedly, the 
performance of this lung cancer risk prediction model is the 
best of proposed until recently.

Those interested in other risk prediction models 
incorporating a variety of risk factors including biomarker 
data, are encouraged to peruse the lately published reviews 
and research papers (65,86,92-103).

The presented efforts to include risk factors into the 
selection of screenees, building risk prediction models, aims 
at increasing a number of detected early cancer lesions in 
the LDCT screening process and at avoiding unnecessary 
diagnostic work-up, which is always costly and, occasionally, 
even harmful. However, keeping this in mind, one should 
be aware of a numerous benefits offered by the LDCT 
screen, which overreach the sole lung cancer fighting. 
In fact, the recent years have demonstrated how many 
various clinical fields are bridged by the LDCT screening, 
thus predisposing this modality to become a core of the 
preventive medicine.

Here we present the list of currently acknowledged 
applications/benefits of the LDCT screening, which span 
beyond the mortality reduction of lung cancer:

(I) Lung cancer stage shift improving the respectability, 
thus entailing a curability gain (9,29,33);

(II) Detection of a variety of chest and metabolic 
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diseases—coronary heart disease (104-107), interstitial 
lung diseases (69,108,109), COPD/Emphysema 
(62,64,69,109-115), osteoporosis (116,117), 
hypercholesterolemia (118);

(III) Increased rate of smoking cessation in the LDCT 
screening participants (119);

(IV) General health promotion by a habit of the 
regular medical examination, enhancement of self-
surveillance and self-confidence embodied in the 
lifestyle modification aimed at the elimination of 
hazardous behavior;

(V) Shift from the interventional, reparative medicine 
to the preventive medical activity;

(VI) Let us hope that in the years to come, the LDCT 
screening will  prolong survival and reduce 
mortality of individuals suffering from lung cancer. 
Perhaps it will improve general health as well.
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