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Chronotype (also referred to as morningness-eveningness 
or diurnal preference) is the tendency to be an early “lark” 
(alert and preferring to be active early in the day) or a late 
“owl” (alert and preferring to be active later in the day). 
Chronotype shows considerable interindividual variation 
and is the most frequently measured circadian rhythm 
trait. This trait can be evaluated in an individual via the 
completion of a self-reported questionnaire, such as the 
Horne-Östberg Morningness-Eveningness Questionnaire (1) 
or the Munich Chronotype Questionnaire (2). These are 
the most commonly utilized measures of circadian phase 
preference (3,4). 

There are well-established and robust individual 
differences in circadian rhythms, including in chronotype 
and its extreme clinical variants, namely primary circadian 
rhythm sleep disorders (3,4). A number of twin studies, 
which allow the assessment of the relative contributions 
of genetics and environment, demonstrate chronotype has 
substantial heritability of about 40–60% (5). The genetic 
underpinnings of individual differences in the circadian 
system and chronotype have been investigated in humans 
mostly using candidate gene approaches, in part due to 
smaller sample sizes (3,4). These studies—albeit with some 
inconsistent findings likely due to sample sizes—collectively 
underscore the involvement of various key core circadian 
genes involved in chronotype and its extremes (3,4).

Both heritability and candidate gene studies of 
chronotype successfully laid the groundwork for genome-
wide association (GWA) studies. These are genome-
wide, systematic, comprehensive and unbiased approaches 
to identify genes and genomic variants associated with a 

human trait or disease using population samples. While 
numerous GWA studies in adults have been conducted for 
mood disorders and medical conditions (6), and for sleep 
duration and quality and for sleep disorders (7), the ability 
to conduct GWA studies of chronotype has remained 
elusive. However, with the advent of personalized genetic 
platforms available to the general population, the large 
sample sizes required for such studies are now possible to 
obtain, opening the door to such investigations.

The recent article by Hu and colleagues (8) in Nature 
Communications  is the first GWAS of self-reported 
chronotype, yielding new insights for circadian biology. 
It capitalizes on personalized genetic platforms and 
gene test technology, allowing the authors access to a 
remarkable sample size of 89, 283 individuals from the 
customer database of 23andMe Inc. This study found 15 
genetic variants were significantly associated with self-
reported morningness, 7 which were near well-defined 
circadian genes, including PER2 and PER3, which have 
known associations to chronotype (9-11), and RGS16, VIP, 
HCRTR2, RASD1, and FBXL3. There was also a significant 
genetic correlation between chronotype and self-rated 
depression, replicating prior findings showing these factors 
share a significant amount of their underlying genetic 
variance (12). In addition, chronotype was associated with 
body mass index (BMI), whereby morning chronotypes 
were less prevalent in the higher BMI groups, replicating 
another study in adults (13). While intriguing, Mendelian 
randomization analysis failed to find causal relationships, 
highlighting the need for replication of these results. 

One month after the publication of Hu et al.’s study (8), 
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another GWA study investigating chronotype was published 
using the UK Biobank cohort of 100,420 individuals, the 
largest sample to date (14). Lane and colleagues (14) 
identified 12 new genetic loci associated with self-
reported chronotype, including variants near four genes 
with known roles in circadian rhythms: PER2, APH1A, 
FBXL13 and RGS16. Notably, 8 of the 15 reported gene 
loci from Hu et al.’s study (8) were replicated, with all 15 
loci showing a consistent direction of effect. In addition, 
genetic correlation analysis revealed relationships between 
chronotype and schizophrenia, educational attainment and 
BMI, though replication of these findings is needed since 
two of these relationships did not show causality.

A third GWA study for chronotype by Jones et al. (15) 
was recently posted on a preprint server (and has not yet 
been peer-reviewed) using 128,666 individuals from the 
UK Biobank cohort. The authors found 16 variants were 
associated with self-reported chronotype including variants 
near two known circadian genes, RGS16 and PER2; both 
of these were also detected in the Hu et al. and Lane et al. 
studies (8,14), thereby underscoring their role in circadian 
chronotype. The authors replicated their own findings 
using both the UK Biobank and the same self-reported 
chronotype dataset from the Hu et al. study (8). They found 
13 chronotype signals remained significant in this meta-
analysis, with 11 remaining significant in the same direction 
in the 23andMe dataset alone. 

The Hu et al. study (8) used two questions rather than a 
standardized questionnaire (1,2) to determine chronotype, 
which is a phenotypic aspect of circadian rhythmicity in 
humans. Despite this apparent weakness, the authors’ 
results were consistent with studies using standardized 
questionnaires in terms of the relationships between age 
and chronotype and gender and chronotype (16), and their 
results were remarkably replicated in Lane et al.’s (14) 
and Jones et al.’s (15) studies (both which used only one 
question), suggesting an entire questionnaire may not be 
necessary for assessing chronotype. 

It would be of significant interest to determine whether 
Hu et al.’s findings (as well as those of the other two GWA 
studies) generalize to African Americans, given robust 
differences between African Americans and Caucasians in 
basic properties of the circadian clock that contribute to 
morningness-eveningness, including endogenous period 
(tau) and the magnitude of phase advances and delays (17). 
Similarly, whether the results generalize to other ethnic 
populations beyond those of European ancestry, such 
as Asian groups who show noticeable allelic variation 

differences in circadian genes associated with chronotype 
and its clinical extremes (18,19), remains to be examined in 
future studies. 

GWA studies such as the one by Hu et al. (8) have 
notable advantages and disadvantages (7,20). GWA studies 
generate large amounts of genetic data and are well-
powered to detect common variants associated with a trait 
such as chronotype. However, they fail to account for all 
of the heritability associated with a trait; they rarely detect 
the causal variant(s) linking heredity genotypes to trait 
phenotypes; and because of required rigorous corrections 
for multiple testing, the high statistical cut-off points can 
produce unduly high rates of false negatives (7). Therefore, 
GWAS used in conjunction with other next generation 
techniques such as targeted and exome sequencing, and 
also with established methods such as candidate gene 
studies among others (7), will be required to fully elucidate 
and validate the functional variants underlying human 
chronotype.
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