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Abstract: In the last forty years the pancreatic cancer treatment has made advances, however; still novel drugs 

are needed. It is known that the five year survival rate remains around 5%. The best treatment option still remains 

surgery, if patients are diagnosed early. In the last decade the biology of pancreatic cancer has been vastly explored 

and novel agents such as; tyrosine kinase agents, or vaccines have been added as a treatment perspective. The big 

challenge is now to translate this knowledge in better outcomes for patients. In this current review we will present 

information from pancreatic cancer diagnosis to molecular pathways and treatment options; current and future.
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Introduction

It is known that pancreatic cancer (PC) is a lethal disease 
with a 5-year survival rate of 1.2–6% encompassing the 
pancreatic ductal adenocarcinoma that accounts for 85–95% 
of all pancreatic malignancies (1,2). Current data indicate 
that it is the seventh and fourth leading cause of cancer-
related death worldwide. In the near future by 2030 it will 
become the second leading cause in the United States (3). 
During the past 30 years the incidence of pancreatic cancer 
has increased in developed countries, along with an increase 
in mortality rates. Increased mortality rates are observed 
in both sexes (4-7). Current statistical data indicate that 
there is an increased need for efficient and well-tolerated 
treatment options in pancreatic cancer. Below we will 
present current treatment options and the molecular 
pathways currently investigated. Also, we will provide all 

novel clinical trials and agents under development that may 
provide a rationale for future investigations.

Clinical presentation, signs, and symptoms

Unfortunately, pancreatic cancer is usually diagnosed at 
advanced stage. The most common early disease symptoms 
are: weight loss, back pain, abdominal pain, nausea and 
vomiting, dyspepsia, new-onset diabetes, bloating,changes 
in bowel habit, lethargy,pruritus, shoulder pain, and 
jaundice (8). In a previous published study, lethargy [OR 
1.42 (1.25–1.62)], back pain [odds ratio (OR) 1.33; (95% CI 
1.18–1.49)], and new-onset diabetes [OR 2.46 (2.16–2.80)] 
were observed features of pancreatic cancers (8). The 
following five symptoms were observed to occur more 
than 6 months before diagnosis: dysphagia, back pain, 
changes in bowel habit, shoulder pain, and lethargy (8). In 
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a previous published study it was observed that lethargy, 
and depression as the first symptoms in about 38–45% of 
patients with pancreatic cancer (9). On another occasion 
a recent review reported nine presenting symptoms in 
patients with advanced pancreatic cancer (10). In this study 
abdominal pain and diabetes, were frequently reported 
in advanced pancreatic cancer (11). Usually in several 
studies up to 25% of the patients report upper abdominal 
discomfort up to six months prior to diagnosis (12).

Current management of pancreatic cancer

Surgical resection

Only 20% of patients will be diagnosed with early 
pancreatic cancer and for these patients, surgical resection 
is the treatment of choice (13,14). However; after complete 
resection adjuvant chemotherapy with gemcitabine or 
5-fluorouracil and/or chemo-radiation has to follow and 
still prognosis remains disappointing (15). In the past years 
randomized controlled trials (16-18) have demonstrated 
increased overall survival (OS) with adjuvant therapy 
and this observation is considered the most important 
advancement in the treatment of pancreatic cancer (13). 
There are also cases were neoadjuvant chemotherapy is 
proposed to improve surgical margins in order for the 
patient to become operable (19-22) (Table 1).

Locally advanced and metastatic disease

The chemotherapy agent gemcitabine or gemcitabine-
based combination chemotherapy has been vastly used and 
is the most acceptable first line treatment for advanced 
pancreatic cancer. However, still the median survival (MS) 
remains approximately 9 mo (13,23,24). In a recent study 
“FOLFIRINOX” (folinic acid, 5-fluorouracil, irinotecan, 
oxaliplatin) an advantage in survival and quality of life 
was observed when compared to gemcitabine alone. In 
specific; this combination significantly improved the OS, 
progression-free survival in pancreatic cancer patients (25). 
Almost the same effectives was observed with nab-paclitaxel 
plus gemcitabine (26). It has been observed that almost 
10% of patients who have received have survived two years, 
which is a rare event in advanced disease (27). However, an 
issue that has to be taken under consideration is the fact that 
these regimens have increased toxicities and therefore they 
have to be administered to patients with good performance 
status (25,26). The care of patients with poor performance 

status or metastatic disease remains palliative, since 
gemcitabine based therapies have limited efficacy, however, 
local therapies can be considered (28).

Targeted therapy

Targeted treatment based on the genome of the tumor has 
revolutionized current cancer treatment. Pharmacogenetics 
seems to be one of the treatment options for pancreatic 
cancer (29). Unfortunately genetically heterogenicity has 
been observed in pancreatic cancer (30), however; there 
are several targeted therapies as treatment options, such 
as; small molecule inhibitors and monoclonal antibodies 
which inhibit constitutively-active cell surface signaling 
molecules. Currently results of phase I–III clinical trials 
presented by Seicean et al. (31) did not present favorable 
results due to the resistance from KRAS2 mutations and 
upregulation of alternate signaling pathways (13,32). Until 
now only the tyrosine kinase inhibitor of epidermal growth 
factor receptor, “erlotinib”, has been approved agent, 
in combination with gemcitabine, and offers increase in 
survival of two weeks (33) (Figure 1).

Cell metabolism in pancreatic cancer 

In order for normal cells to alter their proliferation rate 
several metabolic pathways are reprogrammed (34). 
The increased metabolism of cancer cells is one the 
most important features of this disease that currently is 
being targeted as treatment (35). Cancer cells adapt their 
metabolic needs based on their environment. Recent studies 
have enlighten several metabolic routes and signaling 
pathways that control tumor progression (36). The most 
important pathways are considered the following: glutamine 
regulatory enzymes, Ras signaling, lipid metabolism and 
autophagy (37-39). Pancreatic cancer as most cancer types 
are characterized by a high increase in glucose uptake and 
metabolism (40) and high glycolytic rates the so called 
“Warburg effect”. Moreover; it is known that cancer 
cells compared to normal cells have specific metabolic 
dependencies, they have increased need of the amino acid 
glutamine (41). Kras is responsible for reprogramming 
glutamine metabolism in PDAC (42). Targeting the 
Warburg effect has shown that the p53 status of PDAC 
determined the response to inhibitors of the enzyme lactate 
dehydrogenase-A (43). Recently it has been investigated 
and observed that cancer cells not only fuel from glucose 
and glutamine but also these cells utilize amino acids as well 
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as lipids and protein (44). It has been observed that early 
breakdown of proteins and subsequent increase in plasma 
levels of branched-chain amino acids are early events in 
pancreatic cancer progression as of course observed in 
other cancer types (45). In a recent published work it was 

suggested that mitochondrial respiration is another potential 
functional target to manage pancreatic cancer (46). In the 
study by Viale et al. it was revealed that tumors can relapse 
2–4 months after Kras mutation withdrawal. However, it was 
observed that after Kras mutation extinction, they found a 

Table 1 Pancreatic cancer staging (criteria defining tumour resectability status according to NCCN guidelines, version 2.2015)

Resectability status arterial involvement venous involvement

Resectable

No contact with coeliac axis (CA), superior mesenteric artery (SMA), or common hepatic artery (CHA)

No contact with the superior mesenteric vein (SMV), or portal vein (PV) or _180_ contact without vein contour irregularity

Borderline resectable

Pancreatic head/uncinate process

Solid tumour in contact with CHA without extension to CA or hepatic artery bifurcation allowing for safe and complete resection and 
reconstruction

Solid tumour contact with the SMA of _180_

Presence of variant arterial anatomy (ex: accessory right hepatic artery.) and the presence and degree of tumour contact should be 
noted if present as it may affect surgical planning

Pancreatic body/tail

Solid tumour contact _180_ with the CA

Solid tumour contact >180_ with the CA without involvement of the aorta and with intact and uninvolved gastroduodenal artery (some 
members prefer this criteria to be in the unresectable category)

Solid tumour in contact >180_ with the SMV or PV, or in contact _180_ with contour irregularity of the vein or thrombosis of the vein but 
with suitable vessels proximal and distal to the site of involvement allowing for safe and complete resection and vein reconstruction

Solid tumour contact with the inferior vena cava (IVC)

Unresectable _distant metastasis

Head/uncinate process

Solid tumour contact with SMA >180_

Solid tumour contact with the CA >180_

Solid tumour contact with the first jejunal SMA branch

Body and tail

Solid tumour contact >180_ with the SMA or CA

Solid tumour contact with the CA and aortic involvement

Head/uncinate process

Unreconstructible SMV/PV due to tumor involvement or occlusion (can be due to tumor or bland thrombus)

Contact with most of the proximal draining jejunal branch into the SMV

Body and tail

Unreconstructible SMV/PV due to tumour involvement or occlusion (can be due to tumour burden)

Abbreviations: CA, coeliac axis; SMA, superior mesenteric artery; CHA, common hepatic artery; SMV, superior mesenteric vein; PV, portal 
vein; IVC, inferior vena cava.



Kosmidis et al. Pancreatic cancer

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(9):165atm.amegroups.com

Page 4 of 17

sub-population of surviving cells that which did not depend 
on Kras and anabolic glucose metabolism as the primary 
tumor but they had a strong reliance on mitochondrial 
energy production (46). Based on this observation it is 
suggested that in order to eliminate pancreatic tumors and 
prevent disease relapse we should target both populations, 
with inhibitors of glucose and mitochondrial metabolism. 
Mitochondrial metabolism regulation will be the next 
treatment option for pancreatic cancer. In pancreatic 
cancer high levels of autophagy are observed due to a 
transcriptional program that regulates lysosome biogenesis 
and nutrient scavenging (47,48). Blockage of autophagy 
in pancreatic cancer was achieved with genetic inhibition 
and drug administration both in vitro and in vivo (48,49). 
However, it has been observed that tumor progression in 
pancreatic cancer is genotype-dependent and autophagy 
blockage is not the best treatment option (50). Nevertheless, 
it is still not established whether p53 status affects PDAC 
response to autophagy inhibition (51). In pancreatic cancer 
micropinocytosis of protein and lysophospholipids as 
source of fatty acids has been observed as a food source. 
Macropinocytosis is a process where extracellular fluids 
through specialized vesicles named macropinosomes 
are inserted into the cells. It has been observed that 
Ras proteins regulate this process by which cancer cells 

internalize extracellular proteins, glutamine still remains 
the most valuable amino acid (52,53). Moreover; Ras-
dependent mechanism of scavenging of fatty acid has been 
shown in pancreatic cancer cells (54). It has been observed 
that due to the high demand of fatty acids by cancer cells, 
these cells have found mechanisms of fatty acid supply, such 
as the uptake of extracellular lipids, in order to face cancer 
growth requirements. Until now there was an increasing 
interest in glucose metabolism and aerobic glycolysis, 
however; it is becoming clearly evident that the alteration of 
lipid metabolism is critical for cancer cell metabolism (55). 
Enzymes involved in lipogenesis and lipolysis have been 
found overexpressed in pancreatic cancer, in particular 
fatty acid synthase (FASN) that catalyses the final steps of 
fatty acid synthesis and ATP citrate lyase (39). It has been 
observed that elevated levels of FASN protein in cancer cells 
and in serum of pancreatic cancer patients are associated 
with poor prognosis (39). In cancer cells hyper activation 
of lipogenesis is observed and characterized by an increase 
in the degree of lipid saturation compared with non-
lipogenic tumors (56). Therefore, the rise in saturated and 
monounsaturated lipids in cancer cell membranes increases 
the resistance to oxidative stress, since polyunsaturated 
lipids are more susceptible to lipid peroxidation. Pancreatic 
cancer cells use alternative routes to lipogenesis in order to 
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obtain fatty acids, primarily through uptake of extracellular 
lipids derived from diet, liver synthesis or released by the 
adipose tissue. Moreover; current evidences suggest that 
pancreatic cancer is highly dependent on cholesterol (57). 
It has been observed that the elevated requirement of 
cholesterol by pancreatic cancer cells can be supplied by 
de novo synthesis, receptor mediated uptake of cholesterol-
rich low-density-lipoproteins (LDL) by the LDL receptor 
(LDLR), or by hydrolysis of cholesteryl ethers (CE) that 
accumulate in specific lipid droplets (LDs) that are thought 
to act as storage of triacylglycerol and CE (57). It has been 
observed that cholesterol uptake, is activated in tumors (57). 
Interestingly an increase in the amount of cholesterol and 
overexpression of the low-density lipoprotein receptor 
(LDLR) in pancreatic tumor cells is observed (57). Based 
on this observation LDLR has been proposed as a novel 
metabolic target to limit pancreatic cancer progression. It 
has been previously observed in pancreatic tumor cells that 
shRNA silencing of LDLR reduces considerably cholesterol 
uptake and alters its distribution, decreases tumor cell 
proliferation, and limits the activation of ERK1/2 survival 
pathway. Moreover; with cholesterol uptake blockage the 
effect of chemotherapy on pancreatic cancer regression to 
chemotherapeutic agents is increased. It has been observed 
that high LDLR expression in pancreatic cancer is not 
associated with tumor stage, however; it has been shown to 
correlate to a higher risk of disease recurrence. Based on 
these findings it is suggested that pancreatic cancer cells are 
highly dependent on cholesterol uptake, and that either this 
process or LDLR is a promising metabolic target to use 
in combination with chemotherapy. Lipid metabolism in 
pancreatic cancer is that pancreatic cancer cells do not rely 
solely in de novo synthesis of lipids but also utilize circulating 
and diet derived lipids. Therefore it can be said that high 
dietary intake and obesity is a risk factor in pancreatic cancer.

Pancreatic cancer and its precursors 

Pancreatic cancer is usually diagnosed at late disease and 
therefore it has a poor prognosis with a mortality rate 
almost equaling to the incidence rate (58,59). Therefore 
tools for early disease are in need. Moreover; deciphering 
the factors important for pancreatic cancer progression will 
help to identify novel treatment options as mentioned in the 
previous paragraphs. It has been observed that pancreatic 
cancer can develop from three established precursor 
lesions (60): (I) intraductal papillary mucinous neoplasm 
(IPMN); (II) pancreatic intraepithelial neoplasia (PanIN) 

and the cystic lesions; and (III) mucinous cystic neoplasm 
(MCN). The majority of pancreatic cancer is thought to 
arise from PanINs and less frequently from IPMN, whereas 
MCNs are rare (61). There is indirect evidence for PanINs 
as precursors for pancreatic cancer, which is largely based 
on the fact that pancreatic cancer is often associated with 
advanced PanIN, and both share common tumor promoting 
genetic alterations. On the other hand, cystic lesions can 
directly be identified as the origin for PDA on histological 
examination and imaging techniques such as MRI scan or 
endoscopic ultrasound (EUS). Due to more frequent and 
better diagnostic imaging as well as physicians’ awareness, 
IPMN lesions are increasingly identified in the pancreas, 
the ideal management of these patients is still an ongoing 
debate (62). It has been observed that pancreatic cancer 
that is associated with IPMNs has a much more favorable 
prognosis than pancreatic cancer that arises from PanINs 
(63-65). A possible explanation could be different genetic 
mutations during evolution of pancreatic cancer from its 
precursors. It has been observed that KRAS mutation occurs 
nearly universally during PanIN initiation (66), KRAS is 
less frequently mutated in IPMNs (67,68). IPMNs but not 
PanINs frequently harbor mutations in GNAS and RNF43 
(69-71). Moreover; common genetic alterations in both 
precursors are found in TP53 and CDKN2A [reviewed by 
Xiao (72) and Gnoni et al. (61)]. Furthermore; the different 
biology of PanIN and IPMN-associated with pancreatic 
cancer could be the different cellular origin of the 
precursors. Recent evidence from genetically engineered 
mouse models (GEMM) revealed that the cellular origin of 
PanINs and IPMNs might be different (73-75).

Targeted therapy in PDAC

Epidermal growth factor receptor (EGFR) pathway 
inhibitors

Epidermal  growth  f ac tor  receptor  (EGFR)  i s  a 
transmembrane receptor member of the ErbB family with 
a tyrosine kinase domain that is activated by many ligands 
including epidermal growth factor (EGF), amphiregulin, 
epiregulin, tumor growth factor-α (TGF-α), heparin-
binding EGF, betacellulin and neuregulin. EGFR is 
involved in cell cycle regulation, adhesion, differentiation 
and cell survival, through activation of the Ras/MAP kinase, 
Janus kinase/Stat, phospholipase C/protein kinase C and 
phosphatidylinositol 3’-kinase (PI3K)/Akt pathways. In 
previous studies it was observed that EGFR is overexpressed 
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in up to 90% of pancreatic cancer samples. Based on 
this findings tyrosine kinase inhibitorstargeting EGFR 
have been considered a promising therapeutic agent (76). 
Eroltinib is a tyrosine kinase inhibitor (TKI) molecule 
that competes with ATP for binding to the kinase domain, 
thereby blocking downstream signal transduction of EGFR. 
A large phase III trial, enrolling 569 chemotherapy naïve 
patients with locally advanced or metastatic pancreatic 
adenocarcinoma randomized to receive gemcitabine 
plus placebo or gemcitabine plus erlotinib 100–150 mg 
daily was performed. The median overall survival (mOS) 
and progression free survival (PFS) were modestly, but 
statistically significantly, improved in the combination arm, 
6.24 vs. 5.91 mo (P=0.038) and 3.75 vs. 3.55 mo (P=0.004), 
respectively (33). Both EGFR status nor KRAS status 
analysed in the subgroup of patients treated with erlotinib 
was associated with survival benefit in patients receiving the 
combination schedule (77).

For now erlotinib has been approved by the FDA in 
combination with gemcitabine as a first-line treatment 
for advanced pancreatic adenocarcinoma. Cetuximab is 
a monoclonal antibody binding the extracellular domain 
of epidermal growth factor receptor. Unfortunately the 
encouraging results in a phase I trial, were not observed again 
in subsequent studies (gemcitabine-based chemotherapy) 
failed to demonstrate any survival benefit (78,79). Gefitinib; 
another tyrosine kinase inhibitor of ATP binding to the 
intracellular kinase domain of EGFR, in combination with 
gemcitabine in inoperable or metastatic pancreatic cancer 
patients was administered in a phase II trial. The combination 
demonstrated promising activity with a mOS and PFS in the 
combination arm of 7.3 and 4.1 mo, respectively, however; 
other evidence supporting a role of gefitinib in pancreatic 
adenocarcinoma treatment is lacking (80). HER-2, which 
is another ErbB family of transmembrane tyrosine kinase 
receptors which has been observed overexpressed in 11% of 
pancreatic adenocarcinoma cases. It has been observed that 
HER2-positive status is correlated with shorter survival (81). 
Trastuzumab plus gemcitabine was tested in 34 metastatic 
pancreatic cancer patients with HER-2 overexpression as 
determined by immunohistochemistry, and partial responses 
were observed in 6% of cases (82). Harder et al. (83) in a 
multicentre phase II study, investigated the efficacy and 
toxicity of the HER2 antibody, trastuzumab, plus capecitabine 
in patients with pancreatic cancer and HER2 overexpression, 
however; this study did not present favourable results to 
either PFS or OS compared with standard chemotherapy. 
Lapatinib another HER-2 inhibitor was approved by 

the FDA and clinical trials have been initiated to test the 
effect of this inhibitor combined with chemotherapy in 
pancreatic carcinoma. Lapatinib was tested in combination 
with capecitabine as a second-line treatment in advanced 
pancreatic cancer with promising initial results. However; 
more studies are needed to evaluate the real effectiveness 
and role of this molecule in the treatment of pancreatic 
adenocarcinoma (84). Nimotuzumab, another anti-EGFR 
monoclonal antibody, showed promising results (85). In the 
study by Strumberg et al. (86) a phase II trial showed PFS 
after 1 year of 10.3% and median overall survival of 18.1 wk 
with a tolerable toxicity profile. Currently afatinib; another 
TKI of EGFR, HER2 and HER4, is under evaluation in an 
ongoing phase II trial (87,88).

The KRAS pathway and downstream signalling cascade 
inhibitors

Current information regarding KRAS mutations indicated 
that KRAS activating mutations are present in 70% to 90% 
of pancreatic cancer. K-Ras is a GTPase protein belonging 
to the Ras protein family. This protein has oncogenic 
activity, and promotes activation of proliferation and inhibits 
apoptosis through the RAF/MEK/ERK and PIK3/AKT 
pathways. It is known that K-Ras pathway is very difficult to 
target, and currently there are no inhibitors that can actually 
block this pathway in clinical practice (89). In a preclinical 
study it was observed that that farnesylation is an important 
post-translational modification required for Ras activation, 
allowing the protein to be attached to the plasma membrane 
for signal transduction (90). Although farnesyl-transferase 
inhibitors, particularly tipifarnib, presented anti-proliferative 
activity in pancreatic tumour cell lines, it failed to improve 
overall survival either as a single agent or in combination 
with gemcitabine in a phase III trial (91,92). Therefore it is 
suggested for now to block targets downstream of KRAS, 
such as the protein kinase MEK. Therefore selumetinib an 
oral small molecule that inhibits MEK1/2 was produced. 
This agent was administered in a phase II trial, where patients 
were randomized to receive single-agent capecitabine 
or selumetinib as a second-line treatment for advanced 
pancreatic cancer. The selumetinib arm showed a median 
overall survival of 5.4 vs. 5.0 mo in the capecitabine arm, but 
this result was not statistically significant (93). Trametinib, 
another MEK1/2 inhibitor, has been tested in pancreatic 
cancer in combination with gemcitabine against a regimen 
of gemcitabine plus placebo in a phase II randomized 
multicentre study. However; again no significant advantages 
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were demonstrated in terms of overall survival or PFS (94). 
Rigosertib, a first-in-class Ras mimetic and small molecule 
inhibitor of multiple signalling pathways, including polo-
like kinase 1 and phosphoinositide 3-kinase (PI3K), was 
administered in combination with gemcitabine in patients 
with treatment-naïve metastatic pancreatic adenocarcinoma 
in a phase II/III randomized study. In the combination 
regimen no improved of survival or response was observed, 
as recently presented at the 2015 ASCO Annual Meeting (95). 
Research in this field is continuing. 

IGFR pathway inhibitors

Insulin like growth factor 1 receptor (IGFR-1) is another 
possible target for pancreatic cancer, which is highly 
expressed in pancreatic cells. It has been observed that upon 
ligand binding, it activates several pathways involved in 
cell proliferation and cell survival such as the PIK3/AKT 
pathway (96). Moreover, other agents such as; monoclonal 
antibodies against IGFR (cixutumumab, ganitumab) were 
evaluated in pancreatic cancer treatment, however; they 
failed to show a statically significant survival benefit (97). 
In a phase III trial assessing ganitumab in combination with 
gemcitabine, the study closed early based on a pre-planned 
futility analysis. The median overall survival was 7.1 mo in 
the maximum dose ganitumab arm vs. 7.2 mo in the placebo 
arm (HR 0.97, P=0.397) (98).

Angiogenesis pathway inhibitors

Neo-angiogenesis is known to be an essential metastatization 
and tumor progression mechanism. Vascular endothelial 
growth factor (VEGF) is known to stimulate proliferation 
of endothelial cells and it has been observed to be 
overexpressed in human pancreatic cancer. However; current 
data indicate that neo-angiogenesis inhibitors, particularly 
VEGF inhibitors, have not presented favorable overall 
survival in combination with gemcitabine in advanced 
pancreatic cancer. In two phase III trials that tested the 
efficacy of bevacizumab in association with gemcitabine 
alone, or gemcitabine plus erlotinib, did not confirm 
previous findings (99,100). A new recombinant fusion 
protein, aflibercept which has extracellular portions of 
VEGFR-1 and VEGFR-2, which binds VEGF-A, VEGF-B 
and placental growth factors 1 and 2 thereby inhibiting 
VEGF-ligand-dependent signaling (101) processes, was 
observed to suppress tumor growth in pancreatic cell 
lines and xenografts. However; in a phase III study adding 

aflibercept to gemcitabine did not improve OS in metastatic 
pancreatic cancer patients (102). Similarly sorafenib, an 
oral multikinase inhibitor of Raf-kinase, VEGF-R2/-R3 
and PDGFR-β, and axitinib, an anti-angiogenesis agent did 
not present any statistically significant efficacy in advanced 
pancreatic adenocarcinoma (103,104). Currently there are 
phase II studies combining chemotherapy with promising 
new anti-angiogenic molecular agents, such as TL-118, 
which is a nonsteroidal anti-inflammatory oral medication, 
or necuparanib, which is re-engineered from heparin with 
possible anti-tumor activity. The results of these studies will 
be published soon (105,106).

Embryonic pathway inhibitors

The Hedgehog signaling is known to have a critical role 
in cell proliferation and survival during the embryonic 
development. In normal pancreatic cells this pathway is 
silenced, however; pathological activation is observed in 
many solid tumors. In pancreatic cancer this signaling 
pathway is found overexpressed. Hedgehog binds to the 
extracellular receptor Patched, which, in the absence of 
Hedgehog, suppresses activation of the G-protein-coupled 
receptor Smoothened and upregulates glioma associated 
oncogene homolog1 transcriptional activity (107). In the 
study by Bailey et al. (108) it was observed that Sonic 
hedgehog (SHH) was detected in precursor lesions and 
in pancreatic cancer tumor samples which contributed 
to the formation of the desmoplastic reaction. This 
characteristic of pancreatic cancer limits the effective 
delivery of anticancer agents to pancreatic cancer cells. 
Genetically engineered mouse models demonstrated a 
depletion of tumor matrix from Sonic hedgehog SHH 
pathway inhibition this treatment option could be the 
strategy in pancreatic cancer therapy (109). Currently, 
vismodegib (GDC-0449), an oral small-molecule inhibitor 
targeting Smoothened (110), is administered in an open 
phase II trials in combination with gemcitabine in advanced 
cancer, in combination with gemcitabine and nab-paclitaxel 
in metastatic settings. Current results provide favorable 
outcome (111), and as a single agent in neoadjuvant settings 
followed by surgery (112-114). The Smoothened inhibitor 
saridegib (IPI-926) was administered in combination 
with gemcitabine against gemcitabine plus placebo in a 
randomized, double-blind, placebo-controlled phase II trial. 
In this trial patients with metastatic disease were enrolled. 
The study was terminated due to early decreased of patient 
survival in the saridegib arm (115). Hedgehog inhibitors are 



Kosmidis et al. Pancreatic cancer

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(9):165atm.amegroups.com

Page 8 of 17

currently an active research field, and the results of several 
clinical trials are under way (116). Notch signaling is another 
embryonic pathway crucial for pancreatic organogenesis, 
this pathway is silenced after pancreas development, 
however; it is active only in a stem cell subgroup. This 
pathway has been observed to be upregulated pancreatic 
cancer and promotes tumourigenesis. Binding of Notch 
ligand to its receptor promotes a cascade of proteolytic 
cleavages, mediated by γ-secretase. The activated form 
ICN (intra cellular notch) forms part of a transcription 
complex that, after translocating to the nucleus, regulates 
transcription of several genes involved in proliferation and 
differentiation of cells. It has been observed that interacts 
with other pathways such as Hedgehog, KRAS and NF-
κB signaling (117,118). The selective inhibitor RO4929097 
of the γ-secretase enzyme has anti-tumor activity in 
preclinical studies (119). In a recent phase II single-arm trial 
RO4929097 was assessed, enrolling 18 previously treated 
advanced pancreatic cancer patients. The treatment was well 
tolerated; the median survival was 4.1 mo, and the median 
progression-free survival was 1.5 mo (120). Encouraging 
clinical results were observed testing demcizumab, an anti-
Delta-like ligand 4 antibody, plus gemcitabine and nab-
paclitaxel in advanced PDAC in a phase b trial. However; 
more studies are in need to confirm these preliminary 
data (121).

Poly ADP-ribose polymerase (PARP) inhibitors

Mutations that affect breast cancer pathway components, 
and especially the tumor suppressor gene breast cancer-2 
(BRCA2) gene, which is associated with hereditary 
predisposition to breast, ovarian and pancreatic cancer 
are known to promote deficiency in DNA damage repair 
mechanisms and also induce genome instability (122). 
Poly ADP-ribose polymerase (PARP) is a nuclear enzyme 
recruited to repair cell DNA damage, patients with defects 
in the homologous DNA recombination pathway may 
benefit from the use of PARP inhibitors. This treatment 
can be applied as monotherapy or in combination with 
radiation or other chemotherapeutic agents. Clinical trials 
testing poly ADP ribose polymerase (PARP) inhibitors are 
currently under development phase (123-125).

mTOR and PI3K/Akt pathway inhibitors

It is known that after activation, Ras can phosphorylate 
PI3K, which in turn activates Akt, a serine/threonine 

kinase. Signal transduction by activated PI3K/Akt plays a 
role in tumor cell proliferation, metabolism and survival. 
This occurs through several downstream targets, such 
as; the mammalian target of rapamycin (mTOR) (126). 
Currently there are trials testing PI3K/AKT axis inhibitors 
in advanced pancreatic cancer patients after encouraging 
preclinical model results (127). There are several PI3K/
AKT axis inhibitors being tested such as: RX-0201, an 
Akt antisense oligonucleotide tested in a phase II study 
plus gemcitabine; BKM120, a PI3K inhibitor tested in 
combination with the mFOLFOX-6 schedule; and BEZ235, 
a combined inhibitor of PI3K and mTOR assessed in 
a phase study in combination with the MEK inhibitor 
MEK162 (128-130). In the study by Wolpin et al. (131) 
everolimus, an oral mTOR inhibitor, was administered as 
monotherapy in 33 gemcitabine-refractory pancreatic cancer 
patients. The PFS and OS observed were 1.8 and 4.5 mo, 
respectively. In a recent published phase II study (single arm) 
where everolimus was tested in combination with capecitabine 
the median OS was 8.9 mo and PFS was 3.6 mo (132). In the 
recent future we are anticipating the results of a phase I/II 
study testing everolimus in combination with gemcitabine 
in advanced settings and the results of a phase II trial testing 
temsirolimus (mTOR inhibitor) (133,134).

Tumor stroma inhibitors

In pancreatic cancers a dynamic compartment (stroma) 
has been observed to be critically involved in tumor 
formation, progression and metastatic process. Stroma 
microenvironment and consisting elements are considered 
a treatment target in addition to previously described 
trials evaluating Hedgehog signaling inhibitors (135). 
Currently a phase II trial is recruiting patients I order 
to administer PEGPH20, a pegylated formulation of 
recombinant hyaluronidase. The study design is to enrol 
untreated patients with metastatic disease in order to 
receive a combination of PEGPH20, nab-naclitaxel 
and gemcitabine or a combination of nabpaclitaxel and 
gemcitabine (136,137). Moreover; it has been observed that 
that inhibition of platelet derived growth factor receptor 
(PDGFR), could be a possible treatment target. This 
receptor is expressed in stromal cells and has a critical role 
in recruiting pericytes and in interstitial fluid pressure 
in the tumor stroma. The importance of this pathway 
was suggested by preclinical studies using an orthotopic 
pancreatic tumor mouse model (138). TKI258, a PDGFR 
inhibitor, is currently under evaluation in a phase I dose 
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assessment for advanced pancreatic cancer patients (139). 
Moreover; matrix metalloproteinases (MMPs) are a family 
of proteolytic enzymes responsible for the degradation 
of connective tissue proteins. Matrix metalloproteinase 
proteins aberrant expression is observed in pancreatic 
adenocarcinoma. Marimastat has been previously tested. 
However; the results of a phase III trial which used 
marimastat with gemcitabine in patients with advanced 
pancreatic cancer did not present favorable results (140). 

Oncolytic virotherapy

It has been suggested that viruses could be a strategic tool for 
targeting tumors. This is due to the observation that viruses 
activate similar pathways as tumors, and viral infections 
activate both the innate and adaptive immune responses (75). 
It has been observed that tumors create a niche of innate and 
adaptive immune suppression, which not only protect the 
tumor from the host immune system. Additionally, it limits 
its ability to respond to viral infection (141). In early case 
reports tumor regression was observed following a naturally 
occurring viral infection (142). The propose strategy 
suggests that tumor-targeted oncolytic viruses (TOVs) 
could selectively infect, replicate in, and lyse tumor cells, 
sparing healthy, normal tissues. There are two approaches 
for tumor-targeted oncolytic viruses the inherently tumor-
selective, i.e., are naturally nonpathogenic to humans and 
sensitive to antiviral signaling (143) or secondly to depend 
on oncogenic signaling pathways such as constitutively-
activated Ras (144,145). TOVs can also be genetically 
engineered to be tumor-selective. In order to achieve this 
deletions of genes are required for replication in normal 
tissues.(144) Deletion could involve deletion of thymidine 
kinase UL23 gene in herpes simplex virus (HSV)-1 (146) 
or thymidine kinase and vaccinia growth factor (VGF) for 
vaccinia virus (VV) (147). In recently published literature, 
gene silencing by RNA interference technology to achieve 
tumor selectivity has also been utilized (145). Furthermore; 
another strategy used is to involve the insertion of a tumor-
specific promoter (148,149), by doing this the expression 
of a gene necessary for viral replication in order to restrict 
its replication in tumor cells is overexpressed (145). 
TOVs can also be engineered to express cell surface 
receptors unique to tumor cells (150,151), which allow 
specific tropism (145). TOVs can designed to express 
immunomodulatory transgenes (144). In contrast to the 
pharmacokinetics of the usual drug administration, the 
therapeutic dose of TOVs increases with time as the virus 

replicates and spreads to neighboring cells (144). Again 
as every virus particle carries a therapeutic gene, each 
viral progeny will also carry the transgene, in this mode it 
enhances the therapeutic effect (152). TOVs have the ability 
to directly lyse infected malignant cells and cause acute 
tumor debulking. However; another major advantage, is the 
ability of the virus to spread and potentiate an inflammatory 
response that allows the destruction of a tumor. This 
feature distinguishes TOVs from vaccines or immune 
adjuvants (153). Moreover; another unique feature of 
TOVs is to target silmutaneously multiple cellular pathways 
and therefore the risk of tumor resistance development 
is low (144). Another observation suggested that TOVs 
act synergistically with conventional chemotherapy and 
radiation (154-156). The first TOV to undergo a clinical 
trial was ONYX-015 (dl1520), an adenovirus deficient in 
the E1B gene (157). The gene product E1B-55 kDa protein 
was originally thought to sequester p53, inactivating it and 
as a result, allowing replication in a cell (158). In the 
study by O’Shea et al. (159) later determined that it was 
for the differential viral RNA export between normal 
and cancer cells which accounts for ONYX-015’s tumor-
selectivity. Until now the first approved oncolytic virus 
to date is H101 (Oncorine; Shanghair Sunway Biotech, 
Shanghai, China), which was approved for combination 
with chemotherapy in China in 2005 for the treatment of 
head and neck cancers (157).

Discussion

The exploration of the genome of pancreatic cancer is 
currently the best therapeutic strategy as it has important 
clinical relevance. However; current efforts to understand 
the tumor genome profile and identify efficient targeted 
therapies have not presented favorable results. Several 
targeted agents which have been mentioned in the previous 
sections, almost all have failed to demonstrate efficacy 
in late phase clinical trials. Until now only the tyrosine 
kinase inhibitor erlotinib has been approved by the FDA 
for advanced pancreatic cancer treatment, however; 
the improvement of overall survival was barely 2 weeks 
compared with gemcitabine alone (33). Pancreatic cancer 
has extreme genomic heterogeneity and this is the most 
important reason which blocks the identification of new 
actionable molecular targets or to testing existing biological 
therapies which have already been approved for human 
use for other cancers. Since targeted agent administration 
as a single agent has not presented favorable results, 
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multitargeted agents multitargeted agents or molecular 
agent combinations are in the development phase in 
order to inhibit more than one pathway simultaneously 
and to prevent or evade resistance. The majority of trials 
until now have combined target agents with gemcitabine, 
but actually, the first-line schedules are represented by 
FOLFIRINOX or gemcitabine plus Nabpaclitaxel. It is 
suggested that greater efficacy may be obtained from the 
combination of target agents with those chemotherapeutic 
drugs. Furthermore, in most studies in which molecular or 
chemotherapeutic agents in pancreatic cancer were tested, 
patients from unselected population were enrolled to treat. 
In the past three years, 116 trials specific for pancreatic 
cancer systemic therapy were registered of which only about 
8% applied criteria to select a patient subset based upon 
molecular biomarkers (160). In order to stratify patients, the 
Australian Pancreatic Cancer Genome Initiative has started 
a pilot study to evaluate the feasibility of assessing a more 
stratified approach in the management of pancreatic cancer 
through predefined actionable molecular phenotypes. 
Patients are enrolled in this trial, called IMPaCT 
(Individualised Molecular Pancreatic Cancer Therapy). 
Firstly, a preliminary phenotype screening in performed in 
order to compare the use of gemcitabine in an unselected 
population to a stratified approach. The major target of the 
study is to create a tailored approach to pancreatic cancer 
treatment, as this seems to be the major challenge for the 
future of pancreatic cancer treatment (161,162). Moreover; 
based on the advancements of biotechnology, biological 
agents can find application in cancer treatment by tumor-
targeted delivery of cytotoxic drugs. In the study by Ahn 
et al. (162) a developed antibody fragment was installed 
in polymeric micelles via maleimide-thiol conjugation for 
selective delivery of platinum drugs to pancreatic tumors. It 
was observed that this antibody-drug conjugate significantly 
suppressed the growth of pancreatic tumor xenografts. This 
technology advancement, which has activity in vitro and 
in a mouse model, could be a promising future strategy in 
pancreatic cancer therapy not only as a systematic therapy, 
but also as a local treatment (28,162). In conclusion, the 
lack of efficacy of targeted therapy in PDAC represents a 
challenge for the future, and more efforts are needed in 
order to make pancreatic cancer a curable disease. Future 
steps include the development of novel conjugates for 
efficient drug delivery, further exploration of the pancreatic 
genome and extensive evaluate of combination therapeutic 
strategies with non-specific cyto-toxic agents and targeted 
agents in order to maximize clinical benefit (7). The ability 

of TOVs to stimulate inflammation, deliver genes and 
immunomodulatory agents as well as reduce tumor burden 
by direct cell lysis, could be a novel therapeutic approach, 
however; more trials are in need. Probably this treatment 
approach could be used simultaneously with non-specific 
cyto-toxic agents or as an adjuvant treatment. Again local 
therapies could be considered to reduce tumor burden.
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