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Abstract: Suspected acute myocardial infarction (AMI) is one of the leading causes of admission to the 

emergency departments in Western countries but also an increasing cause in many other nations. The diagnosis 

of AMI involves the evaluation of clinical signs and symptoms, electrocardiographic assessment, and measurement 

of cardiac circulating biomarkers. In the last sixty years, the use of laboratory markers has changed considerably. 

Early biomarkers assessment has entailed testing for total enzyme activity of aspartate aminotransferase (AST), 

lactate dehydrogenase (LDH) and creatine kinase (CK). Advances in electrophoresis allowed the identification of 

more cardio-specific isoenzymes of both CK and LDH, thus leading to the introduction of the CK-MB and LDH-

1 activity assays. Soon thereafter, the development of immunoassays, as well as technical advances in automation, 

allowed the measurements of the CK-MB in mass rather than in activity and myoglobin. Currently, cardiac 

troponins have the highest sensitivity and specificity for myocardial necrosis and represent the biochemical gold 

standard for diagnosing AMI. This review provides a chronology of the major events which marked the evolution 

of cardiac biomarkers testing and the development of the relative assays from the first introduction of AST in the 

1950s to the last high sensitivity troponin immunoassays in the 2010s.
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Introduction

Despite the large efforts of the scientific community, 
cardiovascular disease (CVD) remains the main cause of 
death within industrialized nations as well as an increasing 
cause of death and morbidity in many developing countries 
(1,2). Between CVDs, the acute coronary syndrome (ACS) 
represents the most common cause of emergency hospital 
admission in Western countries (3,4), being associated with 
the highest mortality and morbidity (5). 

Historically,  ACS has included unstable angina 
(UA), non-ST-segment elevation myocardial infarction 
(NSTEMI), and ST-segment elevation myocardial 

infarction (STEMI) (5). 
Since ACS requires immediate hospital admission and 

the prognosis is directly associated with timely initiation 
of revascularization, missed, misdiagnosis or late diagnosis 
may have unfavorable clinical implications. The triage and 
management of patients with chest pain should be based 
on clear and well-defined pathways. Moreover, early ACS 
diagnosis reduces complications and long-term risk of 
recurrence, finally decreasing the economic burden posed 
on the health care system as a whole (6,7).

Despite the great efforts, the biochemical diagnostic 
approach to ACS remains one of most difficult and 
controversial medical challenges (8). Ideally, a biochemical 
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marker of myocardial ischemia should have a considerable 
concentration in the myocardium, absence from non-
myocardial tissue and normal serum, rapid release into 
the blood at the time of ischemia, a relationship to the 
extent of injury and persistence in the blood for a sufficient 
length of time to provide a diagnostic window. In addition, 
the test should be rapid, easy to perform and relatively  
inexpensive (9). At present, cardiac troponins are the only 
accepted biomarkers for diagnosing myocardial injury and 
acute myocardial infarction (AMI) (10). The increasing 
focus on biochemical markers during the last five decades 
[from amino transferases and lactate dehydrogenase (LDH) 
to cardiac troponins] (11), has led to the identification of a 
near-perfect biochemical marker (12,13). 

1954: aspartate aminotransferase (AST) 

In 1954, serum glutamic oxaloacetic transaminase (SGOT), 
now called AST, has been identified as the very first 
biochemical marker for diagnosis of AMI (14,15). The first 
method was originally based on paper chromatography 
and was hence extremely time-consuming. In the same 
year, a medical student, Arthur Karmen, developed a more 
rapid and practical spectrophotometric method to measure 
enzyme activity (16).

Years later, Henry et al. (17) improved the technique 
originally introduced by Karmen. In the reaction, the 
oxaloacetate produced by the transaminase serves as 
substrate for malate dehydrogenase by which it is reduced 
to malate in the presence of dihydronicotinamide-adenine 
dinucleotide (NADH), which is simultaneously oxidized. 
The reaction was monitored by a spectrophotometer as 
decrease in light absorption at 340 nm. The AST method 
was then standardized and adapted for use on many 
automatic analyzers (18).

AST increases in blood 3–4 hours after AMI, reaches 
the maximum value in blood in 15–28 hours and returns 
to normal values within 5 days (19). However, despite the 
high sensitivity for AMI, AST is a non-specific biomarker 
of cardiac tissue, wherein its activity can also increase in 
several other conditions including hepatic congestion 
secondary to congestive heart failure, myocarditis, electrical 
cardioversion, pericarditis, tachyarrhythmias, pulmonary 
embolism, and shock (20).

AST exists in human tissues as two distinct isoenzymes, 
one located in the cytoplasm (c-AST), and the other 
in mitochondria (m-AST), which differ in amino acid 
composition and immunochemical and kinetic properties (21).  

In particular, m-AST is infrequently enhanced after 
myocardial injury (22,23), increases later and apparently 
provides different biological information compared to 
c-AST (24). Rabkin et al. observed in their study performed 
on 15 AMI patients evaluated with invasive hemodynamic 
measurements, that m-AST correlated significantly with the 
hemodynamic assessment of left ventricular dysfunction of 
myocardial necrosis (23).

1955: lactate dehydrogenase (LDH) 

Hill and Levi were the first to demonstrate the presence 
of LDH in human blood serum (25), and one year later 
Wróblewski and LaDue observed an increase in LDH 
activity in serum of patients with AMI (26,27). Ulmer et al. 
confirmed this observation in a study population of 22 AMI 
patients (28).

Since LDH is present in nearly all human tissues, LDH 
isoenzymes, either as a-hydroxybutyrate dehydrogenase 
(HBD) or lactate dehydrogenase isoenzyme 1 activities 
(LDH-1), were described as possible biomarkers of 
AMI (29,30) by providing more organ specificity than 
total LDH activity (19). Moreover, LDH-1 activity can 
be corrected for in vivo or in vitro hemolysis by measuring 
the ratio of LDH isoenzymes 1 and 2: the ratio is over 1.0 
in AMI patients, whereas it remains below 1.0 in samples of 
patients with hemolysis (31).

LDH and its isoenzyme LDH-1 increase in blood  
5–10 hours after AMI, reach the maximum value in blood in 
60–144 hours and return to normal values in 12 days (19). 

1960: creatine kinase (CK) total enzyme activity

The first spectrophotometric method for assessment 
of creatine phosphokinase was developed in 1955 by  
Oliver (32). Tanzer et al. then developed an enzymatic 
method for creatine and CK determination, characterized 
by greater specificity and sensitivity than the previous (33).

The assay for CK total enzyme activity was finally 
optimized by Rosalki  in 1967 (34),  by modifying 
the Kornberg ATP assay (35). Interestingly, Rosalki 
developed this method during a dinner and wrote it on 
the back of the menu card. This method required the 
addition of creatine phosphate, ADP, and a thiol, and the 
combination of all reagents in individual gelatin capsules. 
The modern fully automated clinical chemistry analyzers 
use now the same basic reagents, only slightly modified 
and optimized (36).
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It was only in 1960 that the CK activity was shown to be 
a potential biomarker of cardiac muscle injury (37).

Since CK appears in blood 3–9 hours after an AMI, 
reaches the maximum value in blood in 10–20 hours and 
returns to normal values in approximately 72 hours (19), 
the sensitivity of this biomarker is very high when blood is 
collected early after the onset of disease. Sorensen reported 
a sensitivity of 98% in the AMI diagnosis when blood was 
collected within 72 hours after the onset of disease (38). 
Moreover, he also demonstrated that patients with high 
CK activity measurement in the third day had a worse 
prognosis. 

Years later, it was shown that total CK activity may be 
related to the extent of myocardial infarction and prognosis 
(39,40). On the other hand, this biomarker is characterized 
by low specificity, since its activity increases considerably in 
liver, biliary tract, kidneys and skeletal muscles diseases.

1972: creatine kinase MB isoenzyme (CK-MB) 
activity

The enzyme CK i s  pre sent  in  humans  in  three 
isoenzymes BB, MM and MB, the name of which 
originates from the various combination of the M 
(i.e., muscle) and brain (i.e., brain) isoforms. The CK-
MB isoenzyme, which is normally undetectable or very 
low in the blood, increases in both heart and skeletal 
diseases by showing highest concentration in cardiac 
muscle (~22% of the total CK content of myocardium 
compared to ~1–3% in the skeletal  muscle)  (41).  
Several studies confirmed that CK-MB subforms provide a 
reliable and specific diagnosis with high accuracy in the first 
hours of onset of cardiac symptoms (42-44). 

In 1972, Roe et al. developed a zone electrophoresis 
method for the identification and quantitation in serum 
or plasma of the CK-MB isoenzyme (45). Successively 
this biomarker was measured by anion-exchange column 
chromatography (46) and in 1976, Roberts et al. developed 
a radioimmunoassay (RIA) for CK isoenzymes (47).

The assays for measuring the enzymatic activity of CK-
MB isoenzyme represented important advances, especially 
in terms of improved specificity (48). 

In 1979, the World Health Organization (WHO) 
included in the criteria for AMI diagnosis the demonstration 
of typical rise or fall patterns of CK, CK-MB, LDH, or 
AST activities (49).

However, several preanalytical or analytical variables (i.e., 
prolonged storage or inadequate preservation, inhibitors 

or interference from other enzymes or drugs, pH and ionic 
concentrations used in the analyses and assay temperature) 
may influence the CK-MB activity (50-54). Moreover, the 
evidence that the activity of CK-MB can be considerably 
enhanced in many skeletal muscle disorders and that its 
concentration is characterized by a relatively slow release 
from the injured muscle cell, lead to way to additional 
research aimed to identified more reliable biomarkers.

1978: myoglobin

Myoglobin is a small (17.8 kDa) globular oxygen-carrying 
protein found in heart and striated skeletal muscle, with 
an almost identical amino acid sequence (55). It is a 
cytoplasmatic protein with a low molecular size and it is 
rapidly released after myocardial injury. It appears in blood 
1–3 hours after AMI, reaches the maximum value in blood 
in 4–7 hours and returns to normal values after 1–1.5 days 
(19,56). However, because of rapid clearance from blood, 
myoglobin may “miss” late-presenting patients, and it is 
less cardiospecific than CK-MB (57).

Myoglobin concentration increases in skeletal muscular 
dystrophy, trauma, inflammation (myositis) or in presence 
of acute or chronic renal failure. Moreover, increased 
myoglobin levels can occur after muscle injections or 
strenuous exercise and in presence of various toxins and 
drugs (58).

The first method to detect myoglobin in serum was a RIA 
developed in 1978 (59,60). However this method was time-
consuming and not useful for STAT analysis. Following 
the development of latex-enhanced immunoassays (61), 
myoglobin was introduced in the emergency department 
setting for identification of AMI (62). An automated non-
isotopic immunoassay was also successively developed (63).

Despite myoglobin has been for long considered as the 
best marker for ruling out AMI in the emergency room 
from 3 to 6 hours after the onset of cardiac symptoms, 
the negative predictive value (NPV) reaches only 89%, at  
best (64).

On the other hand, since myoglobin is rapidly cleared 
from plasma after coronary reperfusion, it has been 
demonstrated that this biomarker may allow the earliest and 
best discrimination between reperfusion or no reperfusion 
in patients treated with intravenous thrombolytic therapy 
(65,66). Moreover, rapid kinetic of myoglobin is important 
for detecting re-infarction in patients with post-infarction 
angina when troponins are still elevated, or lese during 
revascularization procedures (67).
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1985: CK-MB mass

The introduction of immunologic determination of CK-
MB mass (i.e., protein concentration) was an important 
innovation, which virtually replaced the traditional 
enzymatic assay. The first “mass” immunoassay for CK-MB 
was developed in the 1985 (68) and was found to be much 
more sensitive than the measurement of enzymatic activity. 
One year later, Vaidya et al. developed a monoclonal 
antibody named “Conan MB” (in honor of a movie 
featuring the story of a barbarian warrior) directed against 
the CK-MB (69). This antibody was successively paired 
with an antibody to the B subunit of CK-MB. This two-site 
mass immunoassay is that currently used by all automated 
immunoassay instrumentation.

CK-MB mass measurement has the advantage to be 
more stable than the enzyme activity after storage and 
appears to be more sensitive, by increasing in plasma and 
serum more rapidly than CK or CK-MB activity (70,71). 
However, it is not sufficiently rapid when compared to 
myoglobin in the early diagnosis of AMI, mostly in the first 
6 hours after symptom onset (72). As for the enzymatic 
activity, the mass value of CK-MB also increases in many 
conditions other than AMI (73).

In 1986, serum CK-MB mass measurement/total 
CK activity ratio was proposed to identify false-positive 
elevations of CK-MB arising from skeletal muscle (74). 
A ratio of less than 3 is consistent with a skeletal muscle 
source, while ratios greater than 5 are suggestive for a 
cardiac source. Ratios between 3 and 5 represent a gray 
zone. 

In 1990, rapid enzyme immunoassays for direct mass 
measurement of CK-MB mass as μg/L were developed (75,76). 

In the same year Delanghe et al. suggested that these 
immunoassays were less vulnerable to analytical interference 
and that measurement of CK-MB mass concentration is 
better suited for infarct sizing than measurement of catalytic 
activity (77).

1963: the discovery of troponins

The identification, purification, and characterization of 
troponins should be almost entirely attributed to Professor 
Setsuro Ebashi, whose landmark contributions in the 
early 1960s established the molecular basis of the Ca2+-
regulation of muscle contraction. Its first contribution was 
the demonstration that calcium induced the contraction of 
actin and myosin filaments (78). Successively he showed 

that the muscle relaxing component known at that time 
as the “Marsh factor” was actually made by vesicles (79), 
later named sarcoplasmic reticulum, which contained an 
enzyme that used ATP energy to remove calcium from the 
medium by transporting it to their lumen (80). In 1963, he 
also demonstrated the existence of a third factor (besides 
myosin and actin) which conferred calcium sensitivity to  
actomyosin (81). This factor, tentatively named “native 
tropomyosin” because of its similarity with tropomyosin, 
was later shown to be a complex of tropomyosin and a new 
complex of proteins named troponins (82). He proved that 
this complex is the Ca2+-receptive site (83) and proposed the 
correct scheme for the molecular mechanism of regulation 
of contraction and relaxation (84). In the absence of Ca2+, 
the contractile interaction between myosin and actin 
is suppressed by troponin-tropomyosin complex. On 
increasing Ca2+ concentrations, this suppression is removed 
by the binding of Ca2+ to the troponin complex which 
activates the contraction (85). 

Shortly after the discovery of the troponin complex, 
Ohtsuky, a graduate student working in Ebashi laboratory, 
showed, by an electron microscopic study, that it is 
distributed along the thin filament at regular intervals 
of about 400 A (86), thus leading to the construction of a 
model of thin filament as an ordered assembly of troponin, 
tropomyosin and actin (85). 

1971: troponin isoforms 

In 1971, Greaser and Gergely demonstrated that the 
troponin complex actually consists of three components 
which were named TnC, TnI, and TnT on the light of 
their specific properties: Ca2+ binding capacity (TnC), 
inhibition of ATPase activity (TnI) and tropomyosin 
binding respectively (TnT) (87). The existence of the 
three troponin components and the above nomenclature 
was generally accepted in 1972 in occasion of the Cold 
Spring Harbor Symposium on muscle, a meeting which 
would become a hallmark in the history of muscle 
study. In the follow ten years, many researcher groups 
became interested in the study of troponins and the 
knowledge about these proteins increased rapidly. Once 
the amino acid sequences of troponin isoforms was 
finally determined (88,89), it became possible to search 
for the regions of functional significance (90). Such 
findings were then followed by a number of studies of 
fluorescence resonance energy transfer, nucleic magnetic 
resonance and X-ray diffraction which finally led to the 
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definition of the complete structure of troponin (91-93). 
 In the meantime, gene expression studies showed that 
members of the TnC, TnI, and TnT gene families encode 
muscle-types specific isoforms differentially expressed 
in adult fast and slow skeletal muscles as well as in heart 
muscles. These include a fast skeletal and a slow skeletal-
cardiac isoform of TnC (94-96), and a fast skeletal, a slow 
skeletal, and a cardiac isoform of both TnT and TnI (cTnT 
and cTnI). This exquisitely specific pattern of expression 
supported the use of cTnI and cTnT as biomarkers of 
cardiac injury.

Subsequent studies revealed that Mutations in the genes 
that encoding for two human cardiac Tn components, cTnI 
(TNNI3) and cTnT (TNNT2), are often responsible for 
cardiomyopathies (97-99). 

1987: cTnI assays

In the 1980s, several research groups started to look at 
cardiac troponins as possibly specific cardiac biomarkers. 
Interest in TnI was prompted by the work of Cummins 
who developed the first RIA for the measurement of cTnI 
in serum in 1987 (100). This RIA methodology which 
was based on polyclonal rabbit antiserum, required two 
working days to be performed and had 10 ng/mL as the 
minimum detectable level. In his pioneer study Cummins 
showed that serum cTnI was elevated within 4 to 6 hours in 
patients with AMI, reached a mean peak level of 112 ng/mL  
(range, 20–550 ng/mL) at 18 hours, and remained above 
normal value for up to 8 days following myocardial injury. 
Three years later monoclonal antibodies directed against 
cTnI were described by two independent groups (101,102) 
one of which implemented an enzyme-linked immunoassay 
(ELISA) for quantification of serum cTnI. The assay 
developed by Bodor et al. had a detectable concentration 
of 1.9 μg/L and a working range of up to 100 μg/L. It 
required 3.5 hours to be performed (102). Such cTnI 
assay showed high specificity for cardiac injury even in the 
presence of acute muscle disease, chronic muscle disease, 
chronic renal failure, and after marathon running (103). 
During the following 20 years the cTnI immunoassay 
has been considerably optimized. Current generations of 
commercially available assays have an analytical sensitivity 
almost 100-fold higher (1 vs. 100 ng/L) than that of the 
experimental and commercial assays that were initially 
described. These assays were not fully standardized at this 
time and studies have documented substantial differences 
across methods (104,105). The main factors contributing 

to the quantitative differences between the cTnI methods 
include the lack of commutable reference material and 
difference in the antibody immunoreactivity as well as 
in the antigen used as calibrators (106). The analytical 
characteristics of cTn assays currently on market have been 
recently described by Jarolim (107). 

1989: cTnT assays

The first generation immunoassay has been developed by 
Katus and colleagues in 1989. It was based on an ELISA 
with two antibodies: the capture antibody conjugated 
to biotin (M7) and the detection antibody conjugated 
to horseradish peroxidase (lBIO) (108). This assay, 
automatized in 1992 by its incorporation onto the ES-
analysers (Boehringer Mannheim TM) (109), had two 
problems. The first was due to the assay formulation 
which comprised a completely cardiac-specific capture 
antibody (with <0.5% cross-reaction to skeletal muscle) 
and a detection antibody that was only 78% cardiospecific. 
The 20% cross-reactivity of the second antibody resulted 
in falsely TnT levels in patients with massive skeletal 
muscle damage (rhabdomyolysis). Such problem was soon 
overcome in 1997 with the introduction of the so-called 
‘second generation’ TnT antibodies (M11.7 as capture 
antibody and M7 as detection antibody), which completely 
abolished the non-specific binding to skeletal TnT (110). 
With this second generation assay, the normal range of 
cTnT was between 0 and 0.1 μg/L. The limit of detection 
(LoD) and linearity of this assay were <0.05 and 12 μg/L, 
respectively.

The second problem was related to the platform. 
Although the test on the ES-analyser had been fully 
automated, it was characterized by a turn-around time of 
over 90 minutes with assays run daily, which was hence 
inadequate to fulfil requirements for emergency testing. 
This problem was also overcome by the introduction 
of the Elecsys TM analyzers, on which the turn-around 
time of the cTnT test was comprised between 9 (Elecsys 
1010) and 18 (Elecsys 2010) min. At variance with the 
methodology of the ES analyser the Elecsys analyzers is 
based on electrochemiluminescence immunoassay (ECLIA) 
technology and uses a ruthenium labelled component 
instead of the horseradish peroxidase on the detection 
antibody (111). 

In 1999, the ‘third generation’ troponin T assay has been 
introduced. The difference between the second and the 
third generation is the use of human recombinant cTnT 
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for calibration (third generation) instead of bovine cTnT 
(second generation), which considerably improved the 
assay linearity (112). The fourth-generation cTnT assay, 
introduced in 2007, used fragment antigen-binding (FAB) 
of two cTnT-specific mouse monoclonal antibodies in a 
sandwich format. The antibodies recognized two epitopes 
located in the central part of the cTnT molecule. The 
fourth-generation cTnT assay has a LoD of 10 ng/L and a 
10% coefficient of variation (CV) at 30 ng/L (113). 

The new high-sensitivity cTnT (hs-cTnT) assay is a 
modification of the fourth-generation assay, which was 
implemented in 2010 (114). In this fifth generation assay 
the biotinylated capture antibody was not changed, whereas 
the detection antibody was genetically re-engineered into 
a mouse-human chimeric detection antibody to reduce the 
susceptibility to interference by heterophilic antibodies. 
The analytical sensitivity was improved by increasing the 
sample volume from 15 to 50 μL, increasing the ruthenium 
concentration of the detection antibody, and lowering 
the background signal through buffer optimization. As a 
result, the analytic performance of the hs-cTnT assay had 
been significantly improved; the LoD was 5 ng/L, the 99th 
percentile cutoff point was 14 ng/L, and the CV was 10% at 
13 ng/L. 

Due to patent issues, cTnT assays are only available 
from one manufacturer (Roche Diagnostic). Therefore, in 
contrast to cTnI, standardization of the cTnT assay is not 
seen as a major problem. The only inconvenience is the 
current coexistence of the less sensitive fourth generation 
assay in the USA and the hs-cTnT assay in most other 
countries, since the hs-cTnT has not been licensed for use 
by the FDA so far. 

2012: diagnostic value of cTn in AMI

According to the international consensus and task force 
definition of AMI established in 2012 (115), the diagnosis 
of AMI is based mainly on evidence of myocardial ischemia, 
along with an elevated value of cardiac biomarkers above 
the 99th percentile and demonstration of an increase or 
decrease over time. 

The continuous improvement of the analytical 
sensitivity and assay precision at the low measuring range 
of cTn assays has ultimately led to the development of the 
so-called “hs” cTn assays which finally satisfy this criterion. 
In order to label a cTn assay as “hs”, the IFCC task force 
suggested that cTn should be measurable in more than 50% 
of healthy subjects, and preferably in more than 95% (116).  

The term ultra-sensitive is conventionally reserved to cTnI 
assay capable to quantify cTn at levels below the lowest 
concentrations seen in healthy subjects (117). The interest 
in this additional sensitivity goes beyond the management 
of patients with suspected MI and is limited to novel 
application of cTn assays such as measuring changes in 
cTn levels after exercise stress testing or after cardiotoxic  
chemotherapy (118). Nowadays, hs-cTn assays are 
considered the biomarkers of choice in the early diagnosis 
of AMI being able to detect cTn release at an earlier 
time point than the previous generations of cTn assays, 
especially in patients with a recent onset of chest pain 
(119-122). Most patients with an AMI, can be reliably 
identified within 3 h after admission, with nearly 100% 
sensitivity and 100% NPV using a hs-cTn assay, which 
indicates that observation time in the emergency 
department may be reduced for rule out of AMI (12). 
However, in patients with 3 h values unchanged, but 
in whom pre-test likelihood of AMI is high, additional 
subsequent sampling (e.g., at 2 or 3 h) may still be 
advisable. 

As predictable,  the improved sensit ivity of the 
new generations immunoassays came along with a 
decreased specificity for AMI. Measurable troponin 
values can now be found in several non-ischemic cardiac 
conditions, including, among the other, atrial fibrillation, 
hypertension, renal and liver disorders, acute or chronic 
pulmonary disease (123) and even severe al lergic  
reactions (124). Therefore, careful clinical assessment, 
serial testing and thoughtful differentiation are required 
to separate AMI from other acute and chronic disorders 
which can be associated with low-level and less harmful 
myocardial injury (125).

Conclusions

The relatively long history of AMI diagnostics has been 
marked by many milestones (Table 1). After more than  
60 years of research we have now come to a point when 
hs-cTN immunoassays should be considered as “the best 
there is”. But, with ongoing technological advances and 
increasing knowledge of the pathophysiology of myocardial 
ischemia, it seems premature to conclude that hs-cTn 
will also be “the best there will ever be”. Many questions 
remain unanswered, mainly concerning the optima cut-offs 
and timing of serial sampling. Hopefully, further studies 
will help refine the clinical use of hs-cTn immunoassays in 
myocardial injury.
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