
Page 1 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

A gentle introduction to artificial neural networks

Zhongheng Zhang

Department of Critical Care Medicine, Jinhua Municipal Central Hospital, Jinhua Hospital of Zhejiang University, Jinhua 321000, China

Correspondence to: Zhongheng Zhang, MMed. 351#, Mingyue Road, Jinhua 321000, China. Email: zh_zhang1984@hotmail.com.

Author’s introduction: Zhongheng Zhang, MMed. Department of Critical Care Medicine, Jinhua Municipal Central Hospital,
Jinhua Hospital of Zhejiang University. Dr. Zhongheng Zhang is a fellow physician of the Jinhua Municipal Central Hospital.
He graduated from School of Medicine, Zhejiang University in 2009, receiving Master Degree. He has published more than
35 academic papers (science citation indexed) that have been cited for over 200 times. He has been appointed as reviewer for 10
journals, including Journal of Cardiovascular Medicine, Hemodialysis International, Journal of Translational Medicine, Critical Care,
International Journal of Clinical Practice, Journal of Critical Care. His major research interests include hemodynamic monitoring
in sepsis and septic shock, delirium, and outcome study for critically ill patients. He is experienced in data management and
statistical analysis by using R and STATA, big data exploration, systematic review and meta-analysis.

Zhongheng Zhang, MMed.

Abstract: Artificial neural network (ANN) is a flexible and powerful machine learning technique. However, it

is under utilized in clinical medicine because of its technical challenges. The article introduces some basic ideas

behind ANN and shows how to build ANN using R in a step-by-step framework. In topology and function, ANN is

in analogue to the human brain. There are input and output signals transmitting from input to output nodes. Input

signals are weighted before reaching output nodes according to their respective importance. Then the combined

signal is processed by activation function. I simulated a simple example to illustrate how to build a simple ANN

model using nnet() function. This function allows for one hidden layer with varying number of units in that layer.

The basic structure of ANN can be visualized with plug-in plot.nnet() function. The plot function is powerful

that it allows for varieties of adjustment to the appearance of the neural networks. Prediction with ANN can be

performed with predict() function, similar to that of conventional generalized linear models. Finally, the prediction

power of ANN is examined using confusion matrix and average accuracy. It appears that ANN is slightly better than

conventional linear model.

Keywords: Machine learning; R; neural networks; recursive partitioning; conditional inference; random forests

Submitted Feb 25, 2016. Accepted for publication Mar 21, 2016.

doi: 10.21037/atm.2016.06.20

View this article at: http://dx.doi.org/10.21037/atm.2016.06.20

Big-data Clinical Trial Column

Zhang. A gentle introduction to artificial neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

Page 2 of 6

Introduction

Artificial neural networks (ANN) mimic human brain in
processing input signals and transform them into output
signals (1). It provides powerful modeling algorithm that
allows for non-linearity between feature variables and
output signals. ANN is a kind of non-parametric modeling
technique, which is suitable for complex phenomenon that
investigators do not know underlying functions. In other
words, ANN is able to learn from data without specific
function assumptions. The article firstly provides some basic
knowledge on ANN, and then shows how to conduct ANN
modeling with simulated data. Predicting performance of
the ANN is compared to that of generalized linear model.

Understanding ANN

ANN works in a very similar way to human brain. In
structure, human brain is made up of neurons and there
are approximately 85 billion neurons in human brain (2).
The dendrites of a neuron receive input signals from
environmental stimulation or up-stream neurons. Signal
is processed in the cell body and transmits along axon to
the output terminal. The output signal may be received by
down-stream neurons or by the function organs such as
muscles to make reaction. A single artificial neuron works
in a similar way. Feature variables, also known as predictors,
input variables and covariates, are input signals that provide
information for pattern recognition. Each feature variable is
weighted according to its importance (3). This work is done
by dendrites in the biological nervous system. The weighted
signals are summed and processed by activation function.
The signal processing procedure can be mathematically
expressed as:

()1
y() n

i i
i

x w x
=

= Φ ⋅∑
where y is the output signal, Φ() is the activation function,
x is input variables and w is weight assigned to each input
variables. Suppose there are n input variables. To better
understand ANN, it can be compared to the regression
model. Each input variable is in analogue to the predictors
of a regression model. Weight is actually the coefficient of
each predictor.

In ANN topology, input nodes receive feature variables
from raw data and the output node applies activation
function to combined information from input nodes. The
nodes are arranged in layers (3). For example, all input
nodes constitute one layer. If a network only contains
input and output nodes, it is termed single-layer network,

or skip-layer units. Such network is commonly used for
simple classification in which the outcome pattern is
linearly separable. More complex task should be done with
multilayer network that adds one or more hidden layers to
the single-layer network. In our example, we allow for one
hidden layer to be added to the network.

Working example

To illustrate how to build ANN with R, I created a simple
example. The dataset is made of two input variables x1 and
x2, and one output variable y with three levels. The dataset
is generated by the following syntax.

> set.seed(888) # set a seed for replication

> x1<-rnorm(1000,0)

> set.seed(666) # a different seed to allow different x1
and x2 vectors

> x2<-rnorm(1000,0)

> logit1<-2+3*x1+x1^2-4*x2

> logit2<-1.5+2*x1-3*x2^2+x2

> Denominator<- 1+exp(logit1)+exp(logit2) #
denominator for probability calculation

> vProb <- cbind(1/Denominator, exp(logit1)/
Denominator, exp(logit2)/Denominator) #Calculating
the matrix of probabilities for three choices

> mChoices <-t(apply(vProb, 1, rmultinom, n = 1, size
= 1)) # Assigning value 1 to maximum probability and
0 for the rest to get the appropriate choices for the
combinations of x1 and x2

> data<- cbind.data.frame(y = as.factor(apply(mChoices,
1, function(x) which(x==1))), x1,x2) #response variable
y and predictors x1 and x2 are combined together.

To simulate a multinomial outcome variable, we created
two logit functions, namely logit1 and logit2 (4). The three-
level output contains one reference level, and the remaining
two is compared to the reference level. Then the probability
of each level can be computed from input features. Here
quadratic terms of input variable are applied. For each
observation, the level with the largest probability is assigned
value one and the remaining two levels are coded by zero.
The last line combines these variables into a data frame.

To take a look at the dataset, I employ the qplot()
function. If you have not installed ggplot2 package, install it
before running the library() function (5).

Annals of Translational Medicine, Vol 4, No 19 October 2016 Page 3 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

> library(ggplot2)

> qplot(x1,x2,data=data,geom="point",color=y)

Figure 1 plots x1 against x2, which constitutes a two-
dimension feature space. It appears that the three classifications
are not linearly separable, which is as expected because I
constructed output classifications with quadratic terms. In
particular, class 3 is embedded between class 1 and 2.

ANN training and visualization

ANN training can be easily done using the nnet() function.
The original cohort is split into training and test sets.
Because the observations in data are randomly arranged,
the first 700 cases are used as training set and the remaining
300 are used as test set.

> train<-data[1:700,]

> test<-data[701:1000,]

Up to now, the data are well prepared for ANN training.
In most situations, the feature variables should be scaled
before being passed to the nnet() function. However, this
step is not necessary because our feature variables are

created in the same scale.

> annmod<-nnet(train[,-1],train[,1],size=6)

The above code created an object of class “nnet” and
stored with the name of annmod. The first argument of
nnet() function is a data frame of feature variables and the
second argument is a vector of response variable. The size
argument defines the number of units in the hidden layer.

The visualization function of ANN is not included in
the nnet package. Fortunately, there is a function plot.
nnet() that is very powerful in plotting the neural network.
It also allows for customization of the graph with varieties
of options. To install the package into your workspace,
you need to install the devtools package. It contains package
development tools for R.

> install.packages("devtools")

> library(devtools)

> source_url('https://gist.githubusercontent.com/
Peque/41a9e20d6687f2f3108d/raw/85e14f3a292e126f14
54864427e3a189c2fe33f3/nnet_plot_update.r')

The plot.nnet() function runs in the following way.

> plot.nnet(annmod, alpha.val = 0.5, pos.col='green',neg.
col='red')

The first argument of the function is an object of “nnet”.
Transparency of connections is determined by the alpha.val
argument whose value ranges between 0 and 1. The color
of positive connections is determined by pos.col argument
and here I make it green. Similarly, the negative connections
are depicted with red color. Figure 2 is the ANN plot
showing nodes and connections of the network. There are
two input nodes named I1 and I2, transmitting information
from feature variables x1 and x2. Weights are assigned to
each of the connections between input nodes and hidden
nodes. The green and red colors represent the positive
and negative weights, respectively. B1 is the bias applied to
hidden neurons. Finally, signals are transmitted to the output
neurons which are denoted by O1 through O3. Similarly,
there are weights and bias applied to the output neurons.

Prediction with ANN

Training of the ANN is only the first step of our task. More

Figure 1 Distribution of observations in the two-dimension
feature space. Classifications are denoted with dot colors. The
three classifications are not linearly separable, which is as expected
because output classifications are constructed with quadratic terms.

2

0

–2

–2 0 2

1
2
3

y

x2

x1

Zhang. A gentle introduction to artificial neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

Page 4 of 6

important work is prediction on future observations with
the trained model. Like prediction with other models, the
predict() function works well with ANN. The first argument
is an object of “nnet”. The second argument is a data frame
containing feature variables. Because the response variable
in our example is a factor variable with three levels, the type
of output is “class”.

> pred<-predict(annmod,test[,-1],type="class")
> table(test[,1],pred)
 pred

1 2 3
1 44 12 11
2 7 163 13
3 12 17 21

To examine the predictive accuracy of the ANN model, I
created a confusion matrix as shown in the output of table()
function (6). The diagonal of the matrix shows correctly
classified numbers. Alternatively, the classification of ANN
model can be evaluated using average accuracy (7). I write a
function called accuracyCal() to perform the calculation in
the following syntax.

> accuracyCal<-function(N) {

 accuracy<-1
 for (x in 1:N) {
 annmod<-nnet(y~., data=train,
size=x,trace=FALSE,maxit=200)
 pred<-predict(annmod,test[,-1],type="class")
 table<- table(test[,1],pred)
 if (ncol(table)==3) {
 table<-table
 }
 else {
 table<-cbind(table,c(0,0,0))
 }
 tp1<-table[1,1]
 tp2<-table[2,2]
 tp3<-table[3,3]
 tn1<-table[2,2]+table[2,3]+table[3,2]+table[3,3]
 tn2<-table[1,1]+table[1,3]+table[3,1]+table[3,3]
 tn3<-table[1,1]+table[1,2]+table[2,1]+table[2,2]
 fn1<-table[1,2]+table[1,3]
 fn2<-table[2,1]+table[2,3]
 fn3<-table[3,1]+table[3,2]
 fp1<-table[2,1]+table[3,1]
 fp2<-table[1,2]+table[3,2]
 fp3<-table[1,3]+table[2,3]
 accuracy<-c(accuracy, (((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3)
 }
 return(accuracy[-1])
 }

With this function we can easily calculate a series of
average accuracy by varying the number of units in the
hidden layer. In the following syntax, a number of 30 is
passed to the function, which in turn returns a series of
average accuracies for ANN with the number of hidden
layer units ranging from 1 to 30. Visualization of how
average accuracy varies with the size parameter can be
performed with generic plot() function.

> accuracySeri<-accuracyCal(30)
> plot(accuracySeri,type="b",xlab="Number of units in
the hidden layer.",ylab="Average Accuracy")

Figure 3 plots average accuracy against number of units
in hidden layer. It appears that the accuracy reaches its
largest value when the number of units is between 5 to 10.

I1

I2

x1

x2

H1

H2

H3

H4

H5

H6

O1

O2

O3

1

2

3

B1 B2

Figure 2 Artificial neural networks plot showing nodes and
connections of the network. There are two input nodes named
I1 and I2, transmitting information from feature variables x1 and
x2. The green and red colors represent the positive and negative
weights, respectively. B1 is the bias applied to hidden neurons.

Annals of Translational Medicine, Vol 4, No 19 October 2016 Page 5 of 6

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

Comparison with generalized linear model

The same task can be done with generalized linear model.
For classification of outcome variable with three levels, the
multinomial logistic regression model is a choice. The function
multinom() shipped with nnet package can do the work.

> model.lin<-multinom(y~.,train)

> pred.lin<-predict(model.lin,test[,-1])

> table<-table(test[,1],pred.lin)

> table

 pred.lin

1 2 3

1 51 14 2

2 12 168 3

3 17 31 2

The confusion matrix shows that the predictive
performance of generalized linear model is not significantly
poorer than ANN. Next we continue to calculate the
average accuracy.

> tp1<-table[1,1]
> tp2<-table[2,2]
> tp3<-table[3,3]
> tn1<-table[2,2]+table[2,3]+table[3,2]+table[3,3]
> tn2<-table[1,1]+table[1,3]+table[3,1]+table[3,3]

> tn3<-table[1,1]+table[1,2]+table[2,1]+table[2,2]
> fn1<-table[1,2]+table[1,3]
> fn2<-table[2,1]+table[2,3]
> fn3<-table[3,1]+table[3,2]
> fp1<-table[2,1]+table[3,1]
> fp2<-table[1,2]+table[3,2]
> fp3<-table[1,3]+table[2,3]
> accuracy<-(((tp1+tn1)/
(tp1+fn1+fp1+tn1))+((tp2+tn2)/
(tp2+fn2+fp2+tn2))+((tp3+tn3)/(tp3+fn3+fp3+tn3)))/3
> accuracy
[1] 0.8244444

The average accuracy is 0.82, which is slightly lower than
that obtained by ANN with size equal to 6.

Summary

The article introduces some basic ideas behind ANN. It is
in analogue to the human brain. There are input and output
signals in ANN. Input signals are weighted before reaching
output nodes according to their respective importance.
Then the combined signal is processed by activation
function. I simulated a simple example to illustrate how
to build a simple ANN model using nnet() function. This
function allows for one hidden layer with varying number
of units in that layer. The basic structure of ANN can
be visualized with plug-in plot.nnet() function. The plot
function is powerful that it allows for varieties of adjustment
to the appearance of the neural networks. Prediction with
ANN can be performed with predict() function, similar to
prediction with conventional models. Finally, the prediction
power of ANN is examined using confusion matrix and
average accuracy. It appears that ANN is slightly better
than conventional linear model.

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to
declare.

References

1. Wesolowski M, Suchacz B. Artificial neural networks:

Figure 3 Plotting average accuracy against number of units in
hidden layer. It appears that the accuracy reaches its largest value
when the number of units is between 5 to 10.

0 5 10 15 20 25 30

0.
81

0.
82

0.
83

0.
84

0.
85

Number of units in the hidden layer.

A
ve

ra
ge

 A
cc

ur
ac

y

0.85

0.84

0.83

0.82

0.81

0 5 10 15 20 25 30

A
ve

ra
ge

 a
cc

ur
ac

y

Number of units in the hidden layer

Zhang. A gentle introduction to artificial neural networks

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(19):370atm.amegroups.com

Page 6 of 6

theoretical background and pharmaceutical applications: a
review. J AOAC Int 2012;95:652-68.

2. Lantz B, editor. Machine learning with R. 2nd ed.
Birmingham: Packt Publishing, 2015:1.

3. Haykin SO, editor. Neural networks and learning
machines. 3rd ed. New Jersey: Prentice Hall, 2008.

4. Hosmer DW Jr, Lemeshow S, Sturdivant RX, editors. Applied
logistic regression. 3rd ed. Hoboken, NJ: Wiley, 2013:1.

5. Wickham H, editor. ggplot2: elegant graphics for data
analysis. New York: Springer-Verlag, 2009.

6. Stehman SV. Selecting and interpreting measures of
thematic classification accuracy. Remote Sensing of
Environment 1997;62:77-89.

7. Hernandez-Torruco J, Canul-Reich J, Frausto-Solis J, et al.
Towards a predictive model for Guillain-Barré syndrome.
Conf Proc IEEE Eng Med Biol Soc 2015;2015:7234-7.

Cite this article as: Zhang Z. A gentle introduction to artificial
neural networks. Ann Transl Med 2016;4(19):370. doi: 10.21037/
atm.2016.06.20

