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Big-data Clinical Trial Column

Statistical description for survival data
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Abstract: Statistical description is always the first step in data analysis. It gives investigator a general impression 

of the data at hand. Traditionally, data are described as central tendency and deviation. However, this framework 

does not fit to the survival data (also termed time-to-event data). Such data type contains two components. One 

is the survival time and the other is the status. Researchers are usually interested in the probability of event at a 

given survival time point. Hazard function, cumulative hazard function and survival function are commonly used to 

describe survival data. Survival function can be estimated using Kaplan-Meier estimator, which is also the default 

method in most statistical packages. Alternatively, Nelson-Aalen estimator is available to estimate survival function. 

Survival functions of subgroups can be compared using log-rank test. Furthermore, the article also introduces how 

to describe time-to-event data with parametric modeling. 
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Introduction

Survival analysis encompasses a wide variety of methods 
for analyzing time-to-event data. In biomedicine, the 
event of interest may include death, visit to emergency 
room, myocardial infarction, stroke and intensive care 
unit (ICU) readmission. The response variable is time. If 
there is no censoring, traditional regression model can be 
used to deal with survival data. However, the presence of 
censoring introduces bias in estimation of survival time 
distribution. Furthermore, survival data are typically non-
negative and positively skewed. Therefore, survival data 
should be managed with specially designed methods. 
Instead of focusing on the time (how long) a subject can 
survive, survival analysis examines the probability of an 
event at survival time “t” given subjects who are under 
observation at that survival time. By considering only 
subjects who are under observation, survival times and 
survival probability can be estimated without bias given 
that subjects under observation are representative of the 
whole study population. A prerequisite assumption is that 
the censoring mechanism is unrelated to survival time. One 
scenario that violates this assumption is that when clinical 
condition deteriorates (e.g., indicating shortened survival 
time), subjects are more likely to quit a study and they are 
lost to follow-up. Such censoring is related to survival time. 
As a result, survival time of subjects who withdraw the study 
is shorter than those who are still under observation. This is 
called informative censoring in statistical term.

Here I will not go further into discussion of details and 
mathematical equation on survival analysis. Instead, I would 
like to show how survival analysis is performed in R and 
principles will be introduced with illustrating example. The 
first article of this theme focuses on statistical description of 
survival data.

Working example 

The lung dataset (NCCTG Lung Cancer Data) contained 
in survival package is employed as working example. This is 
a dataset containing right-censored survival data.

> library(survival)

> str(lung)

'data.frame':	 228 obs. of  10 variables:

 $ inst     : num  3 3 3 5 1 12 7 11 1 7 ...

 $ time     : num  306 455 1010 210 883 ...

 $ status   : num  2 2 1 2 2 1 2 2 2 2 ...

 $ age      : num  74 68 56 57 60 74 68 71 53 61 ...

 $ sex      : num  1 1 1 1 1 1 2 2 1 1 ...

 $ ph.ecog  : num  1 0 0 1 0 1 2 2 1 2 ...

 $ ph.karno : num  90 90 90 90 100 50 70 60 70 70 ...

 $ pat.karno: num  100 90 90 60 90 80 60 80 80 70 ...

 $ meal.cal : num  1175 1225 NA 1150 NA ...

 $ wt.loss  : num  NA 15 15 11 0 0 10 1 16 34 ...

The dataset contains 228 observations of 10 variables. 
Institution code (inst) is used to mark different institutions 
from which patients come. Survival time (time) is 
measured in days. Censoring status (status) is coded 1 for 
censored and 2 for dead. Age (age) is measured in years. 
Male and female sexes are coded as 1 and 2, respectively. 
ECOG performance  score  (ph.ecog) ,  Karnofsky 
performance score rated by physicians (ph.karno) and 
patients (pat.karno) are also recorded. The last two 
variables are calories consumed at meals (meal.cal) and 
weight loss in last six months (wt.loss).

In real world setting, interval censoring can occur when 
periodic assessments are used to assess if the event of interest 
has occurred. In this situation, the survival time until an 
event of interest occurs is not known precisely. Instead, we 
only have knowledge that the event of interest falls into a 
particular interval (1,2). The heart dataset (Stanford Heart 
Transplant data) is a prototype of interval data.

> head(heart)

start stop event age year surgery transplant id

1 0 50 1 -17.155373 0.1232033 0 0 1

2 0 6 1 3.835729 0.2546201 0 0 2

3 0 1 0 6.297057 0.2655715 0 0 3

4 1 16 1 6.297057 0.2655715 0 1 3

5 0 36 0 -7.737166 0.4900753 0 0 4

6 36 39 1 -7.737166 0.4900753 0 1 4

The start and stop variables represent the entry and exit 
time for an observation period. Note that one subject can 
take two rows. Age can take negative values because it is 
centered at 48. 

Declaring a survival data

Survival analysis requires to create a survival object using 
Surv() function. That is equal to declaring a survival data. 
Survival object is frequently used as response variable in a 
model formula. 
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> lung.sur<-Surv(lung$time, lung$status)

> heart.sur<-Surv(heart$start, heart$stop, heart$event)

The lung.sur and heart.sur are objects of class Surv. The 
Surv() takes the general form:

Surv(time, time2, event,

    type=c('right', 'left', 'interval', 'counting', 'interval2', 'mstate'),

    origin=0)

If there are two unnamed arguments as shown in the first 
line, they will match time and event in that order. If there 
are three unnamed arguments as that in the second line 
they match time, time 2 and event. The type argument can 
usually be omitted. 

Nonparametric modeling 

Distribution of time-to-event data can be estimated with 
nonparametric methods such as Kaplan-Meier. The survfit() 
function can perform this task.

> lung.fit<-survfit(lung.sur~1)

> plot(lung.fit,xlab="Days",ylab="Proportion of subjects")

The first argument of survfit() is a formula with the 
response variable (Surv class object) on the left of the 
“~” operator. The number “1” on the right indicates a 
single survival curve. The default type of survival curve 
is estimated using Kaplan-Meier method. If an object of 
class “survfit” is passed to the generic function plot(), a 
survival curve is plotted together with estimated confidence 
interval (CI) (Figure 1). The default CI is 95%, and it can 
be customized using conf.int argument in survfit() function. 
The cross symbol in the figure represents censored 
observations.

The summary statistics including cumulative survival 
probability, standard error and 95% CI can be displayed 
with the following code. 

> summary(lung.fit)

Call: survfit(formula = lung.sur ~ 1)

time n.risk n.event survival std.err l o w e r  

95% CI

u p p e r 

95% CI

5 228 1 0.9956 0.00438 0.9871 1.000

11 227 3 0.9825 0.00869 0.9656 1.000

12 224 1 0.9781 0.00970 0.9592 0.997

(omitted to save space)

791 9 1 0.0783 0.02462 0.0423 0.145

814 7 1 0.0671 0.02351 0.0338 0.133

883 4 1 0.0503 0.02285 0.0207 0.123

A key feature of the survfit.formula is its ability to fit 
survival model by strata. The strata are specified by variables 
on the right of the “~” operator. Factor variables are 
connected using “+” symbol. For instance, we can compare 
survival curves by different ECOG performance scores.

> lung.fit.strata<-survfit(lung.sur~ph.ecog,lung)

> plot(lung.fit.strata, lty = 2:4,col=2:4,xlab="Days",ylab="Propo

rtion of subjects")

> legend(700, .9, c("ph.karno=0", "ph.karno=1","ph.

karno=2","ph.karno=3"), lty = 2:4,col=2:4)

In the above example, a variable ph.ecog is added to the 
right side of “~” operator to make separate survival curves 
for different ECOG performance score levels. You can try 
to add sex variable, which will make 8 (2×4) combinations 

Figure 1 Survival curve plots probability of survival against 
survival time. The dashed lines are lower and upper limits of 95% 
confidence interval (CI). 
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by different values of sex and ECOG performance scores. 
The argument lty and col assign different line types and 

colors to distinguish survival curves. Legend() function is 
used to add annotations (Figure 2).

CIs for the Kaplan-Meier estimator

Although the survfit() function allows adjustment of CI for 
Kaplan-Meier estimator, the underlying method is limited. 
Here I introduce the km.ci package for computing pointwise 
and simultaneous CIs for the Kaplan-Meier estimator. Many 
options exist for computing CI. The method argument 
allows assigning a string character including “peto”, 
“linear”, “log”, “loglog”, “rothman”, “grunkemeier”, “hall-
wellner”, “loghall”, “epband” and “logep”. In simulation 
study, Afifi and colleagues found that the Rothman-Wilson 
(“rothman”), log and Arcsin transformation methods 
perform better than other methods (3). Confidence band 
estimation for Kaplan-Meier estimator is an area of active 
research and comprehensive enumeration of these methods 
are out of scope of current article. References are provided 
for interested readers to explore more on this topic (4-8). 
The following example illustrates how to compute CI. 

> install.packages("km.ci")

> library(km.ci)

> a<-km.ci(lung.fit, conf.level=0.95, tl=NA, tu=NA, 

method="loghall")

> plot(a, lty=2, lwd=2)

> lines(lung.fit, lwd=2, lty=1)

> lines(lung.fit, lwd=1, lty=4, conf.int=T)

> linetype<-c(1, 2, 4)

> legend(600, .9, c("Kaplan-Meier", "Hall-Wellner", "Pointwise"), 

lty=(linetype))

The first argument of km.ci() function is an survival 
object. The default level of two-sided CI on survival curve 
is 0.95. Lower (tl) and upper (tu) time boundaries for the 
simultaneous confidence limits can be specified. If they 
are missing as in our case, the smallest and largest event 
times are employed. The Hall-Wellner method is used to 
compute the confidence bands (9). Figure 3 compares CIs 
obtained by different methods. 

Nelson-Aalen estimator of the survivorship 
function

Kaplan-Meier estimator of survival function is the most 
frequently used estimator, partly because it is the default 

Figure 3 Confidence intervals (CI) estimated by different methods. 
The dashed line represents 95% CI estimated by Hall-Wellner 
method. The dash-dot line is estimated by the default method in 
survfit() function. 

Figure 2 Survival curves stratified by ph.ecog variable. Different 
ECOG performance score levels are represented by different line 
types and colors. 
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method in many software packages. Alternatively, survival 
function can be derived from cumulative hazard function. 
Nelson and Aalen have proposed an easily computed 
estimator of cumulative hazard, which is now referred to as 
Nelson-Aalen estimator (10,11). Nelson-Aalen estimator 
can be computed via cox regression using coxph() function 
in R.

> aalen.fit<- survfit(coxph(lung.sur~1), type="aalen")

> summary(aalen.fit)

Call: survfit(formula = coxph(lung.sur ~ 1), type = "aalen")

time n.risk n.event survival std.err lower 

95% CI

upper 

95% CI

5 228 1 0.9956 0.00437 0.9871 1.000

11 227 3 0.9826 0.00865 0.9657 1.000

12 224 1 0.9782 0.00965 0.9594 0.997

(omitted to save space)

791 9 1 0.0824 0.02504 0.0454 0.149

814 7 1 0.0714 0.02398 0.0370 0.138

883 4 1 0.0556 0.02329 0.0245 0.126

> plot(aalen.fit,col=”red”,lwd=1,lty=1)

> lines(lung.fit, lwd=1, lty=1)

> legend(600, .9, c(“Nelson-Aalen”,”Kaplan-Meier”), lty=c(1,1),

col=c(“red”,”black”))

The Nelson-Aalen estimator is designated by type=“aalen” 
argument. Nelson-Aalen estimator of the survival function is 
always greater than or equal to the Kaplan-Meier estimator 
(Figure 4). If the size of the risk sets is large relative to the 
number of events, there will be little practical difference 
between the Nelson-Aalen and the Kaplan-Meier estimators 
of the survival function.

Comparison between survival curves

In research practice, an important work is to test whether two 
survival curves are different based on observed data. In our 
example, we want to explore whether there is enough reason 
to reject the null hypothesis that survival curves for lung 
cancer patients with different ECOG performance scores are 
similar. Function survdiff() calls a family of tests defined by 
parameter rho. With ‘rho =0’ it is equivalent to the log-rank 
or Mantel-Haenszel test, and with ‘rho =1’ it is the Peto & 
Peto modification of the Gehan-Wilcoxon test (12).

> survdiff(lung.sur~ph.ecog,lung)

Call:

survdiff(formula = lung.sur ~ ph.ecog, data = lung)

n=227, 1 observation deleted due to missingness.

N Observed Expected (O-E)^2/E (O-E)^2/V

ph.ecog=0 63 37 54.153 5.4331 8.2119

ph.ecog=1 113 82 83.528 0.0279 0.0573

ph.ecog=2 50 44 26.147 12.1893 14.6491

ph.ecog=3 1 1 0.172 3.9733 4.0040

Chisq= 22 on 3 degrees of freedom, p=6.64e-05

Similar to other survival functions, the first argument of 
survdiff() function is a formula defining the subgroups to 
be compared. The left side of the “~” symbol is a Surv class 
object. If subgroups are defined by combinations of factor 
variables, they can be connected with “+” operator. The 
output table shows the observed and expected number of 
events. The Chi-square statistic for a test of equality shows 
that the probability of observing current distribution of 
survival curves is extremely small. Thus, there is enough 

Figure 4 Comparison of survival curves estimated by Kaplan-
Meier and Nelson-Aalen methods. Nelson-Aalen estimator of the 
survival function is always greater than or equal to the Kaplan-
Meier estimator.
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reason that survival curves are different among subgroups 
with different ECOG performance scores. If there are 
two subgroups to be compared, survdiff() performs log-
rank test. Otherwise, the function implements statistical 
test according to the method proposed by Harrington and 
Fleming (13).

Parametric model 

Another way to describe survival data is to assume a 
mathematical model and then estimate coefficients with 
maximum likelihood method. Parametric modeling is 
more appealing in multivariable regression model. For the 
purpose of statistical description, the intercept only model is 
employed. Full description of parametric modeling will be 
introduced in future articles. Here we only take a glimpse of 
how it works.

> par.wei<-survreg(lung.sur~1,dist="w")

> par.wei

Call:

survreg(formula = lung.sur ~ 1, dist = "w")

Coefficients:

(Intercept) 

   6.034904 

Scale= 0.7593936 

Loglik(model)= -1153.9   Loglik(intercept only)= -1153.9

n= 228 

The parametric survival model is fit with survreg() 
function. The first argument is a formula describing the 
structure of the model. The above code built an intercept-
only model and thus “1” is assigned on the right of the 
“~” symbol. I arbitrarily assumed that T (survival time) 
follows a Weibull distribution and assigned “w” for the dist 
argument. Before taking a close look at the output of par.
wei, we must review parameters of Weibull distribution.

Let T denotes a continuous non-negative random 
variable representing survival time. T follows Weibull 
distribution with parameters lambda (λ) and kappa (κ). The 
hazard function can be written as Eq. [1]: 

1h(t)= tκ κλ κ −
	 [1]

and the survival function can be written as Eq. [2]: 
( )s(t)= t ke λ− 	 [2]

Then the hazard function and survival function can be 
plotted with a few lines of commands. 

> kappa<-par.wei$scale

> lambda<-exp(-par.wei$coeff[1])

> zeit<-seq(from=0,to=1100,length.out=1000)

> s<-exp(-(lambda*zeit)^kappa)

> h<-lambda^kappa *kappa*zeit^(kappa-1)

> par(mfrow=c(2,1))

> plot(zeit,h,xlab="Days",ylab="h(t)")

> plot(zeit,s,xlab="Days",ylab="s(t)")

The upper panel shows that the hazard h(t) decreases 
over time (Figure 5). The lower panel shows the survival 
function, which is comparable to Figure 1. The only 
distinction is that Figure 1 is depicted with nonparametric 
method. 

Summary 

Statistical description is always the first step in data analysis. 
It gives investigator a general impression of the data at 
hand. Traditionally, data are described as central tendency 
and deviation. However, this framework does not fit to the 
survival data (also termed time-to-event data). Such data 
type contains two components. One is the survival time 
and the other is the status. Researchers are interested in the 

Figure 5 Hazard and survival functions fitted by Weibull 
parametric model. 
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probability of event at a given survival time point. Hazard 
function, cumulative hazard function and survival function 
are commonly used to describe survival data. Survival 
function can be estimated using Kaplan-Meier estimator, 
which is also the default method in most statistical packages. 
Alternatively, Nelson-Aalen estimator is available to 
estimate survival function. Survivor functions of subgroups 
can be compared using log-rank test. Furthermore, the 
article also introduces how to describe time-to-event data 
with parametric modeling. 
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