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Abstract: Cox proportional hazards model is a semi-parametric model that leaves its baseline hazard function 

unspecified. The rationale to use Cox proportional hazards model is that (I) the underlying form of hazard function 

is stringent and unrealistic, and (II) researchers are only interested in estimation of how the hazard changes 

with covariate (relative hazard). Cox regression model can be easily fit with coxph() function in survival package. 

Stratified Cox model may be used for covariate that violates the proportional hazards assumption. The relative 

importance of covariates in population can be examined with the rankhazard package in R. Hazard ratio curves 

for continuous covariates can be visualized using smoothHR package. This curve helps to better understand the 

effects that each continuous covariate has on the outcome. Population attributable fraction is a classic quantity in 

epidemiology to evaluate the impact of risk factor on the occurrence of event in the population. In survival analysis, 

the adjusted/unadjusted attributable fraction can be plotted against survival time to obtain attributable fraction 

function.
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Introduction

A fully parametric hazard function describes the basic 
underlying distribution of survival time and how that 
distribution changes as a function of covariates. If we 
want to describe the circuit life span in continuous renal 
replacement therapy as a function of serum ionized 
calcium and pH value, a fully parametric hazard function 
is required. However, if we want to see whether circuit 
life span is longer under acidosis (pH<7.35) when 
compared with that under normal condition, a complete 
description of survival time is of secondary importance 
to a description of how serum pH value modifies the 
survival time (1). A full description of survival time requires 
assumption of underlying mathematical model, which may 
be unnecessarily stringent and unrealistic. Survival time 
model that leaves its dependence on time unspecified but 
has a fully parametric regression structure is called semi-
parametric regression. 

The general form of hazard function is written as: 

0( , , ) ( , )h t x h r xβ β=  	 [1]

where 0h  reflects how hazard function changes with survival 
time, and ( , )r x β  characterizes how hazard function changes 
with covariates. Cox has proposed exponential function for 
r(), and the hazard function is written as:

0( , , ) xh t x h e ββ =  	 [2]

when x changed from x0 to x1, the hazard ratio is

1
1 0

0

( )01
1 0

0 0

( )( , , )( , , )
( , , ) ( )

x
x x

x

h t eh t xHR t x x e
h t x h t e

β
β

β

β
β

−= = =




	 [3]

In the literature, the model is termed Cox proportional 
hazard model (2). Researchers are interested in the 
parameter β, which is interpreted as changing rate of hazard 
when the covariate changed by (x1 − x0) unit. Note that the 
baseline hazard function 0 ( )h t  remains unknown, that is why 
the model is called semi-parametric model (3). 

Cox proportional hazard model

Ovarian cancer survival data (ovarian) is used to illustrate 
fitting a Cox proportional hazard model. The study 
investigated survival in a randomized trial comparing two 
treatments for ovarian cancer (4). 

> library(survival)

> cph.ovarian<-coxph(Surv(futime, fustat)~rx+age , 
ovarian)

> summary(cph.ovarian)

Call:

coxph(formula = Surv(futime, fustat) ~ rx + age, data = 
ovarian)

 n= 26, number of events= 12 

coef exp(coef) se(coef) z Pr(>|z|)

rx -0.80397 0.44755 0.63205 -1.272 0.20337

age 0.14733 1.15873 0.04615 3.193 0.00141**

---

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper 
.95

rx 0.4475 2.234 0.1297 1.545

age 1.1587 0.863 1.0585 1.268

Concordance= 0.798 (se = 0.091 )

Rsquare= 0.457 (max possible= 0.932 )

Likelihood ratio test= 15.89 on 2 df, p=0.0003551

Wald test      = 13.47 on 2 df, p=0.00119

Score (logrank) test = 18.56 on 2 df, p=9.341e-05

The fitting Cox regression model appears pretty easy 
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with only one line of R code. The function Surv() creates a 
survival object. Right side of “~” symbol lists covariates and 
they are connected with “+” operator. The last argument 
specifies the dataset containing covariates. Coxph() returns 
an object of class coxph, containing parameters and statistics 
we are interested in. the summary() function gives a 
general glimpse of the content of coxph object. There are 
26 observations and 12 of them have the event of interest. 
The next table shows the coefficients of corresponding 
covariates. Exponentiation of coefficient gives the hazard 
ratio. Age is significantly associated with hazard and hazard 
increases by 1.16 times with each year increase in age. 
Variable age is denoted by double “*” symbols, suggesting a 
statistical significance with P<0.01. 

The index of concordance (Concordance =0.798 in our 
example) is a “global” index for validating the predictive 
ability of a survival model. It is the fraction of pairs in the 
data, where the observation with the higher survival time has 
the higher probability of survival predicted by your model. 
Concordance is equivalent to the area under the ROC curve 
in logistic regression model. A value of 1 indicates perfect 
agreement, and a value of 0.5 is an agreement that the 
model is no better than chance. In other generalized linear 
models, R-square represents the proportion of variation 
that can be explained by the model (5). However, the 
R-square in Cox model also depends on the proportion of 
censored values. In other words, a perfectly adequate model 
may have a low R-square due to high large of censored data. 
Mathematical details of R-square in Cox regression model 
have been well described (6-10). The likelihood ratio test 
explores the difference between model with and without 
covariates. In the example, this statistic follows a Chi-
square distribution with 2 degrees of freedom and thus can 
be used to obtain P value. Score test can be interpreted in a 
similar way that the model containing variables rx and age is 
significantly better than null model. 

Stratification

The stratified Cox proportional hazard model allows the 
forms of underlying hazard function to vary across levels of 
stratification variable. The general form of stratified Cox 
model is written as: 

( , ) ( ) x
jh t X Z j h t e β= =  	 [4]

where j is the number of levels in Z. The covariate Z is 
adjusted for without estimating its effect. Someone may ask 

the question: why not incorporate Z as a covariate instead 
of using it as a stratification factor? The reason is that the 
predictor may not satisfy proportional hazards assumption 
and it can be very complex to model hazard ratio for that 
predictor as a function of time. Furthermore, stratification 
allows for graphical checks of the proportional hazards 
assumption. A drawback of stratification is that stratifying 
unnecessarily (proportional hazard assumption is met) 
reduces estimation efficacy. 

> cph.ovarian.str<-coxph(Surv(futime, 
fustat)~rx+strata(age>60), ovarian)

> summary(cph.ovarian.str)

Call:

coxph(formula = Surv(futime, fustat) ~ rx + strata(age > 
60), 

  data = ovarian)

 n= 26, number of events= 12 

coef exp(coef) se(coef) z Pr(>|z|)

rx -0.4300 0.6505 0.6003 -0.716 0.474

exp(coef) exp(-coef) lower .95 upper .95

rx 0.6505 1.537 0.2006 2.11

Concordance= 0.585 (se = 0.115 )

Rsquare= 0.02 (max possible= 0.846 )

Likelihood ratio test= 0.52 on 1 df, p=0.4707

Wald test      = 0.51 on 1 df, p=0.4738

Score (logrank) test = 0.52 on 1 df, p=0.4709

The output of stratified Cox model is similar to the 
previous one. However, coefficient for age is not estimated 
because it is now used as stratification factor. Instead, two 
coefficients are estimated for variable rx, showing that 
the treatment effects are beneficial for young women and 
it is harmful for those aged over 60 years. One may wish 
to graphically examine the fitted model. Survival curves 
of patients with and without treatment stratified by age 
are depicted. In the survfit() function, a data frame with 
the same variable names as those that appear in the coxph 
formula is specified. The curve(s) produced corresponds to 
a cohort whose covariates equal to the values in newdata. If 
a covariate is not specified, the mean of the covariate used 
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in the coxph fit is used. The following example specifies 
patients with and without treatment (rx=1 and 2). 

> strata.fit<-survfit(cph.ovarian.str,newdata=data.
frame(rx=c(1,2)))

> summary(strata.fit)

Call: survfit(formula = cph.ovarian.str, newdata = data.
frame(rx = c(1, 

  2)))

        age > 60=FALSE 

time n.risk n.event survival1 survival2

329 19 1 0.936 0.958

431 16 1 0.866 0.911

464 14 1 0.790 0.858

475 13 1 0.716 0.805

563 12 1 0.645 0.752

638 11 1 0.576 0.699

        age > 60=TRUE 

time n.risk n.event survival1 survival2

59 7 1 0.853 0.902

115 6 1 0.707 0.798

156 5 1 0.560 0.686

268 4 1 0.414 0.563

353 3 1 0.268 0.424

365 2 1 0.146 0.286

The output shows survival curves of treated and untreated 
patients, stratified by age group. The first column is survival 
time. The last two columns display estimated survival 
probabilities stratified by treatment group. The result can 
also be visualized with the following syntax (Figure 1).

> plot(strata.fit,xlab="Survival time",ylab="Survival",lty=
c(1,1,2,2),col=c(1,2,1,2))

> legend(850,0.2,legend=c("rx=1,age<60","rx=2,age
<60","rx=1,age>60","rx=2,age>60"),col=c(1,2,1,2),lty
=c(1,1,2,2))

Visualization of relative importance of covariates

The interpretation of fitted Cox proportional hazards 
model depends on regression coefficients, significance level 
and prevalence of covariate patterns. Also, subject-matter 
audience may be interested in the importance of covariates 
in study population. In other words, the importance of a 
covariate is determined not only by coefficient but also by its 
distribution in a population. Karvanen and Harrell proposed 
the relative-hazard plot to visualize relative importance 
of covariates in proportional hazards model (11). The 
basic idea is to rank the covariate values and plot relative 
hazard against ranks. The relative hazard is scaled to the 
reference hazard. Reference hazard is related to the median 
of covariates. From this definition, it is obvious that the 
relative hazard can vary depending on the distribution of 
covariate values in a population. Rank-hazard plot can be 
created using rankhazardplot() function. Let’s first install 
the package and load it onto the workspace. In order to 
make comparisons of relative importance for all covariates, 
a full model including all available covariates is built. 

> library(rankhazard)

> install.packages("rankhazard")

> cph.full<-coxph(Surv(futime, fustat)~rx+age+resid.
ds+ecog.ps , ovarian,x=TRUE)

> rankhazardplot(cph.full,data=ovarian)

Y-axis range: 0.106 9.06 

 

Relative hazards for each covariate: 

Min. 1st Qu. Median 3rd Qu. Max.

Figure 1 Comparison of survival probability of treated and 
untreated patients, stratified by age group.
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rx 0.633 0.633 1.11 1.58 1.58

age 0.106 0.434 1.00 2.03 9.06

resid.ds 0.438 0.438 1.00 1.00 1.00

ecog.ps 1.000 1.000 1.00 1.40 1.40

The output of function rankhazardplot() shows the 
Y-axis range. Covariates are scaled to an interval of 
[0,1]. By default, the minimum, first quartile, median, 
third quartile and maximum values of each covariate 
are reported. Figure 2 shows that treatment is the most 
important determinant of survival at young age, but 
becomes less important for old age. Similar to the concept 
of population attributable fraction that the importance of 
a risk factor is influenced by its prevalence (12), the X-axis 
of relative-hazard plot displays scaled covariates for the 
ranking of their relative importance.  

Test the proportional hazards assumption

Interpretation and use of Cox proportional hazards model 
depends on the proportional hazards assumption. Log-
hazard function of proportional hazards model takes the 

form

( ) ( )0, ,In h t x In h t xβ β= +        	 [5]

This function contains log of the baseline hazard 
function ( )0In h t    and linear predictor x β . x and β are 
highlighted in bold to represent vectors. The proportional 
hazard assumption dictates the baseline model as a function 
of time, not of the covariates. Suppose the covariate x has 
two levels. A plot of log-hazard over time will produce two 
continuous curve, one for x=0, ( )0In h t   , and the other for 
x=1, ( )0In h t x β+    . The difference between the two curves 
at any time points is β. If log-hazard functions produced 
by different levels of a given covariate are not equidistant 
over time, the proportional hazards assumption is violated. 
Grambsch and Therneau proposed one easily performed 
test and an associated graph to examine the critical 
assumption (13). 

> cox.zph(cph.ovarian)

rho chisq P

rx 0.2072 0.518 0.472

age -0.0918 0.113 0.736

GLOBAL NA 0.729 0.695

The cox.zph() function directly performed test for 
proportional hazards assumption. The output is a table 
containing rho, Chi-square and P value. Rho is the 
correlation coefficient between transformed survival time 
and the scaled Schoenfeld residuals. The correlation 
coefficient follows a chi-square distribution and the 
statistic is present in the second column. A P value is given 
for each covariate. A significant P value indicates that 
the proportional hazards assumption is violated for that 
covariate. For the global test there is no correlation and NA 
is entered into the cell. 

> par(mfrow=c(2,1))

> plot(cox.zph(cph.ovarian))

Before drawing plots, rows and columns of graphical layout 
should be specified. The number of panels is determined 
by the number of covariates. In the example, there are two 
covariates and thus two panels are defined. If there is only 
one pannel in the graphical device, only one covariate can be 
displayed. The Y-axis of the plot is scaled Schoenfeld residuals 
and X-axis is survival time (Figure 3). The proportional hazards 

Figure 2 Rank-hazard plot of proportional hazards model where 
the hazard of ovarian cancer is explained by age (age), residual 
disease (resid.ds), treatment (rx) and ECOG performance status 
(ecog.ps). At the horizontal axis, the minimum, first quartile, 
median, third quartile and maximum values of each covariate are 
reported.
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assumption dictates that the residual should not change with 
survival time. Thus, the smoothed curve should be a flat one. 
Due to limited number of observations in the example, the 
sensitivity of the test can be quite low. 

Hazard ratio curves for continuous predictors

The Cox proportional hazards model assumes that the 
continuous predictors are in linear association with log-
hazard. However, this assumption may not true in reality. 
Visualization of the relationship between continuous 
predictor and hazard ratio helps investigators to check for 
the linearity assumption. Flexible hazard ratio curve can be 
plotted using smoothHR package. 

> install.packages("smoothHR")

> library(splines)

> library(smoothHR)

> hr.plot<- smoothHR(data=ovarian, coxfit=cph.full)

> plot(hr.plot, predictor="age", prob=0, conf.level=0.95)

The smoothHR() function requires data frame containing 
covariates and the fitted Cox regression model. The prob 
argument specifies the reference value of the covariate 
for hazard ratio. The reference value is the minimum of 
the hazard ratio curve for prob=0. The hazard ratio curve 
shows that the age is in linear relation to the log-hazard, 
but the confidence interval is wide due to small number of 
observations (Figure 4). 

Attributable fraction function

Population attributable fraction (PAF) is defined as

( ) ( )
( )

1 1 0
1

P D P D Z
A

P D
= − = =

=
=

	 [6]

where D is the binary disease status and Z is the binary 
exposure indicator (14). PAF is defined as “the reduction 
in incidence that would be achieved if the population had 
been entirely unexposed, compared with its current (actual) 
exposure pattern”, and it aims to evaluate the impact of risk 
factor on the occurrence of event in the population (15). 
Unlike relative risk, PAF considers the prevalence of risk 
factors in the population and thus quantifies the population 
impact of risk factors. PAF can be extended to adjusted 
attributable fraction (AF) which is defined as the reduction 
in incidence if some risk factors are eliminated from the 
population while other risk factors retain their actual levels. 
When AF is expressed as a function of survival time, it is 
called attributable fraction function (16). The package paf in 
R is composed to do the task. 

Figure 4 The hazard ratio curve shows that the age is in linear 
relation to the log-hazard, but the confidence interval is wide due 
to small number of observations. 

Figure 3 Plotting scaled Schoenfeld residuals against survival time 
to examine the proportional hazards assumption. The smoothed 
curve is a flat one for variable age, but there are small curvatures 
for the treatment (rx). 
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> install.packages("paf")

> library(paf)

> par(mfrow=c(1,2))

> paf.adj<-paf(Surv(time, status)~sex+age+ph.
ecog+ph.karno+pat.karno+meal.cal+wt.loss, 
data=lung, cov=c('age'))

> paf.pop<-paf(Surv(time, status)~age, data=lung, 
cov=c('age'))

> plot(paf.pop,ylab="Population attributable fraction 
function")

> plot(paf.adj,ylab="Adjusted attributable fraction 
function")

The lung dataset (NCCTG Lung Cancer Data) is 
employed as worked example (17). Adjusted/unadjusted AF 
functions of a set of covariates are computed based on the 
Cox model. The first argument of paf() function is a formula 
object for the Cox model. Covariates of interest are specified 
in the cov argument and their AF functions are to be plotted 
against survival time. In the example, the variable age is 

investigated for its adjusted and unadjusted (population) 
attributable fraction function. The solid lines pertain to the 
point estimates of attributable fraction function and the 
dashed lines show the 95% confidence limits (Figure 5). It is 
seen from the figure that after adjustment for covariates the 
attributable fraction of age is decreased. 
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