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Abstract: Survival analysis in the presence of competing risks imposes additional challenges for clinical 
investigators in that hazard function (the rate) has no one-to-one link to the cumulative incidence function 
(CIF, the risk). CIF is of particular interest and can be estimated non-parametrically with the use cuminc() 
function. This function also allows for group comparison and visualization of estimated CIF. The effect of 
covariates on cause-specific hazard can be explored using conventional Cox proportional hazard model by 
treating competing events as censoring. However, the effect on hazard cannot be directly linked to the effect 
on CIF because there is no one-to-one correspondence between hazard and cumulative incidence. Fine-
Gray model directly models the covariate effect on CIF and it reports subdistribution hazard ratio (SHR). 
However, SHR only provide information on the ordering of CIF curves at different levels of covariates, it has 
no practical interpretation as HR in the absence of competing risks. Fine-Gray model can be fit with crr() 
function shipped with the cmprsk package. Time-varying covariates are allowed in the crr() function, which 
is specified by cov2 and tf arguments. Predictions and visualization of CIF for subjects with given covariate 
values are allowed for crr object. Alternatively, competing risk models can be fit with riskRegression package by 
employing different link functions between covariates and outcomes. The assumption of proportionality can 
be checked by testing statistical significance of interaction terms involving failure time. Schoenfeld residuals 
provide another way to check model assumption.
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Introduction 

Competing risks arise in clinical research when there are 
more than one possible outcome during follow up for survival 
data, and the occurrence of an outcome of interest can be 
precluded by another. The latter is called the competing 
risk (1-4). In clinical oncology for example, cancer-related 
mortality may be of primary interest, but other causes of 
death can prevent its occurrence and deaths caused by 
reasons other than cancer are typical examples of competing 
risks. In critical care researches, investigators may examine 
different strategies to maintain central venous patency in 
intensive care unit (ICU) (5,6). Patients in different groups 
were followed up for the occurrence of lumen non-patency. 
However, patients may die before the occurrence of lumen 
non-patency. Death can be considered as censoring and 
Cox proportional hazard model may be applied to estimate 
the effect of covariate on hazard. However, the effect on 
hazard cannot be directly liked to cumulative incidence 
function (CIF), thus other modeling methods are required. 
This article will describe different approaches for survival 
analysis in the presence of competing risks. The basic ideas 
of each method will be introduced and detailed R code be 
provided in the main text. I also highlight the interpretation 
of statistical output produced by R code.

Key concepts in survival analysis with and 
without competing risks

Survival data can be characterized by hazard function [ ( )h t ] 
which provides a dynamic description of the instantaneous 
risk of failing given survival until time t. Cumulative 
hazard function [ ( )H t ] is the ( )h t  added over time from 0 
to t. In contrast to ( )h t , ( )H t  has no simple probabilistic 
interpretation. However, a plot of ˆ ( )H t  against t can provide 
useful information in that its local slope approximates 
the ( )h t  (7). Survival function [ ˆ( )S t ] can be estimated non-
parametrically using Kaplan-Meier estimator, and the 
ˆ ( )H t  can be estimated using Nelson-Aalen estimator. In 

the absence of competing risks, there is a one-to-one 
correspondence between S(t) and H(t):

( )( ) H tS t e−= 	 [1]

and the CIF is one minus the survival function:

( )( ) 1 H tF t e−= − 	 [2]

However, in the presence of competing risks, the CIF 
cannot be directly linked to the hazard function. Let 1 
denote the event of interest and 2 denote the competing 
risk event. Then cumulative incidence for event of interest 
can be written as (8):

1 10
( ) ( ) ( )

t
F t S s h s ds= ⋅ ⋅∫ 	 [3]

where 1 2( ) ( )( ) H s H sS s e− −=  is the survival function at time 
s and is determined by the both event of interest and 
competing event. Therefore, there is no one-to-one 
correspondence between cumulative incidence [ 1( )F t ] and 
cause-specific hazard [ 1( )h s ]. Cumulative incidence derived 
from Kaplan-Meier estimator is always larger than that 
obtained by counting for competing risks. In Kaplan-
Meier estimation, an individual is removed from the risk set 
when the individual experiences competing event. Within 
competing risk framework, the individual is an event in the 
calculation of overall survival probability. Therefore, the 
overall survival [ ( )S s ] of any event is lower when competing 
risks are considered. When event 2 is considered as non-
informative censoring in Kaplan-Meier estimator the 
overall survival will be larger ( 1 1 2( ) ( ) ( )H S H S H Se e− − −≥ ). If hazard 
is considered as the rate, cumulative incidence is the risk in 
epidemiology terms. In competing risk analysis, individuals 
experiencing the competing risk event have zero probability 
of experiencing the event of interest. In contrast, the naïve 
Kaplan-Meier approach assumes that these individuals 
would experience the same probability of event of interest 
in pure theory (non-informative censoring). Thus, the latter 
overestimates the cumulative incidence of the event of 
interest. 

The effect of covariates on hazard rate can be estimated 
using COX proportional hazard regression model. The 
exponentiation of the coefficient gives the hazard ratio 
(HR) which is the ratio of rate in epidemiology. Because 
hazard function has a one-to-one correspondence to 
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the cumulative incidence, the HR also reflects the risk 
(cumulative incidence) of the study population. However, 
this relationship does not exist in the presence of competing 
risks. Although the cause-specific hazard regression model 
represents the impact of covariates on the cause-specific 
hazard, it does not necessarily reflect the impact on the 
cumulative incidence. Because clinicians or investigators 
may be interested in both rate and risk, the impact of 
covariates on both quantities can be reported side-by-
side in an article (2). The Fine-Gray model was developed 
to link covariates to cumulative incidence. The statistics 
derived from Fine-Gray model are subdistribution hazard 
ratio (SHR) which is actually not equivalent to the HR 
in conventional framework (9). I will illustrate it in the 
following examples. 

Worked example

The worked example is contained in the riskRegression 
package. A total of 205 patients with melanoma had 
undergone surgical operation and were followed up until 
the end of 1977. The dataset can be loaded and viewed in 
the following way. 

> install.packages("riskRegression")
> library(riskRegression)
> data(Melanoma)
> str(Melanoma)
'data.frame':	 205 obs. of 11 variables:
 $ time  : int 10 30 35 99 185 204 210 232 232 279 ...
 $ status : num 2 2 0 2 1 1 1 1 2 1 ...
 $ event : Factor w/ 3 levels "censored","death.malignant.
melanoma",..: 3 3 1 3 2 2 2 2 3 2 ...
 $ invasion: Factor w/ 3 levels "level.0","level.1",..: 2 1 2 1 3 3 
3 3 2 1 ...
 $ ici   : int 2 0 2 2 2 2 2 2 3 2 ...
 $ epicel : Factor w/ 2 levels "not present",..: 2 1 1 1 2 1 2 1 1 
1 ...
 $ ulcer : Factor w/ 2 levels "not present",..: 2 1 1 1 2 2 2 2 2 2 ...
 $ thick : num 6.76 0.65 1.34 2.9 12.08 ...
 $ sex   : Factor w/ 2 levels "Female","Male": 2 2 2 1 2 2 2 2 1 1 
...
 $ age   : int 76 56 41 71 52 28 77 49 60 68 ...
 $ logthick: num 1.911 -0.431 0.293 1.065 2.492 ...

There are 11 variables. The time (time) was measured in 
days from operation. Status assumes numeric values with 0= 
censored; 1= died from melanoma and 2= died from other 
causes. Event is in accordance with status but is converted 
to a factor variable with three levels. Other variables are risk 
factors under investigation including invasion, inflammatory 

cell infiltration (ici), ulcer, thick, sex, age and tumor 
thickness on log scale (logthick). 

Non-parametric comparison of CIFs

CIFs for different causes of failure can be employed for 
statistical description of survival data with competing risks. 
This task can be done with Kaplan-Meier (KM) estimator 
in situations without competing risks. However, the KM 
method may give biased estimates because it takes the 
competing risk events as censored. Thus, CIFs for different 
causes of failure provide additional insights into the survival 
data at hand. The cuminc() function shipped with the 
cmprsk package can estimate the CIFs for different causes of 
failure and allows comparisons between groups. 

> library(cmprsk)
> cif<-cuminc(ftime = Melanoma$time, fstatus = 
Melanoma$status, group=Melanoma$sex)
> plot(cif,col=1:4,xlab="Days")

The arguments specifying an CIF in cuminc() is similar 
to that in crr() function. The first argument is a failure time 
variable, and the second one takes a variable with distinct 
code for different causes of failure. The group argument 
takes a variable specifying distinct groups. In the example, 
patients were divided into groups by sex. The estimated CIFs 
can be visualized with generic function plot(). Figure 1 shows 
that male patients have higher risk of death from melanoma 
and other causes than the female. The difference appears 
larger for failure from melanoma versus failure from other 
causes. To perform formal statistical test for the difference 
between groups, modified χ2 statistic can be used (10).

> cif$Tests
stat pv df

1 5.8140209 0.0158989 1
2 0.8543656 0.3553203 1

The first column of the output shows χ2 statistic for 
between-group test, and the second column shows the 
respective P values. Male patients are more likely to die 
from melanoma than the female (P=0.016), but there is no 
significant difference in mortality risk from other causes for 
male versus female patients (P=0.36). 

Cause-specific hazard regression

Cause-specific hazard regression model can be fit with 
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Cox regression by treating failures from the cause of 
interest as events and failure from other causes as censored 
observation. The effect of covariates on cause-specific 
hazard can be estimated with COX proportional hazard 
regression. The model is fit with coxph() function in the 
survival package. 

> csh<-coxph(Surv(time,status==1)~sex+age+invasion,data=
Melanoma)
> summary(csh)
Call:
coxph(formula = Surv(time, status == 1) ~ sex + age + 
invasion, 
  data = Melanoma)

 n= 205, number of events= 57 

coef exp(coef)se(coef) z Pr(>|z|)
sexMale 0.663383 1.941349 0.2663202.4910.012741*
age 0.009823 1.009871 0.0083391.1780.238840
invasionlevel.11.037168 2.821217 0.3282413.1600.001579**
invasionlevel.21.403225 4.068300 0.3807443.6850.000228***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef)exp(-
coef)

lower 
.95

lower .95

sexMale 1.941 0.5151 1.1519 3.272
age 1.010 0.9902 0.9935  1.027
invasionlevel.12.821 0.3545 1.4826  5.368

invasionlevel.24.068 0.2458 1.9290  8.580
Concordance= 0.7 (se = 0.04 )
Rsquare= 0.122 (max possible= 0.937 )
Likelihood ratio test= 26.7 on 4 df, p=2.288e-05
Wald test      = 24.39 on 4 df, p=6.68e-05
Score (logrank) test = 26.85 on 4 df, p=2.13e-05

The first argument of the coxph() function takes an 
object of class Surv, where the “status==1” indicates that 
only status value of 1 is considered as event and other 
values are considered as censored. The summary output 
shows the coefficients and corresponding HR. The last five 
lines display statistics for the fitness of the model. Detailed 
interpretation of these statistics can be found in my previous 
tutorial paper. 

Alternatively, the task can be performed using CSC() 
function contained in the riskRegression package. 

> install.packages("riskRegression")
> library(prodlim)
> library(riskRegression)
> CSH<-CSC(Hist(time,status)~sex+age+invasion,data=Me
lanoma)
> summary(CSH)

The summary output is quite similar to that produced by 
coxph() function except that CSC() function automatically 
produces cause-specific hazard models for both types of 
events (cause 1 and 2). With the fitted regression model, 
one can predict individual risk with given covariates. For 
example, I want to predict the risk of a male patient aged  
50 years old and has invasion level 2. 

> library(pec)
> pec:::predictEventProb(CSH,cause=1,newdata=data.
frame(age=50, invasion=factor("level.2", levels=levels(Mela
noma$invasion)), sex=factor("Male",levels=levels(Melanom
a$sex))),time=c(1000,2000,3000))

[,1] [,2] [,3]
[1,] 0.3146673 0.5288262 0.6722392

The output shows that the cumulative incidences of death 
from melanoma at time points of 1,000, 2,000, 3,000 days are 
0.31, 0.53 and 0.67, respectively. 

Subdistribution hazards (SHs) model

SHs model is also known as Fine-Gray model. It is a Cox 
proportional regression model but the cumulative incidence 
is associated with SHs. The motivation for Fine-Gray 

Figure 1 Non-parametric estimates of cumulative incidence 
functions for deaths from melanoma (status==1) and other causes 
(status==2). Each outcome is compared between male and female 
patients. 
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model is that the effect of a covariate on cause-specific 
hazard function may be quite different from that on CIF. 
In other words, a covariate may have strong influence on 
cause-specific hazard function, but have no effect on CIF (9).  
The difference between cause-specific hazard and 
subdistribution is that the competing risk events are treated 
differently. The former considers competing risk events as 
non-informative censoring, whereas the latter takes into 
account the informative censoring nature of the competing 
risk events (1). 

The Fine-Gray model can be fit using FGR() function 
shipped with riskRegression package. This function calls 
another function crr() from the cmprsk package. 

> SH <- FGR(Hist(time,status)~sex+age+invasion,data=Mela
noma)
Argument cause missing. Analyse cause: 1
> SH

Right-censored response of a competing.risks model

No.Observations: 205 

Pattern:
     
Cause event right.censored
1 57 0
2 14 0
unknown 0 134

Fine-Gray model: analysis of cause 1 

Competing Risks Regression

Call:
FGR(formula = Hist(time, status) ~ sex + age + invasion, data 
= Melanoma, 
  cause = 1)

coef exp(coef)se(coef)z p-value
sexMale 0.62762 1.87 0.27170 2.310 0.0210
age 0.00565 1.01 0.00913 0.619 0.5400
invasionlevel.1 1.04909 2.86 0.34040 3.082 0.0021
invasionlevel.2 1.37802 3.97 0.40137 3.433 0.0006

exp(coef) exp(-
coef)

2.5% 97.5%

sexMale 1.87 0.534 1.100 3.19
age 1.01 0.994 0.988 1.02
invasionlevel.1 2.86 0.350 1.465 5.56
invasionlevel.2 3.97 0.252 1.806 8.71

Num. cases = 205

Pseudo Log-likelihood = -274 
Pseudo likelihood ratio test = 24.6 on 4 df,

Convergence: TRUE 

As you can see, the estimated coefficient for cause 1 
deviates a little from that obtained from cause-specific 
hazard model (HR: 1.87 vs. 1.94), reflecting different 
assumptions for the competing risks. The numerical 
values derived from Fine-Gray model have no simple 
interpretation, but it reflects the ordering of cumulative 
incidence curves (7,9). The cause-specific hazard is the rate 
of cause 1 failure per time unit for patients who are still 
alive. However, the cause 1 SH is the rate of cause 1 failure 
per time unit for patients who are either alive or have 
already failed from cause 2. In other words, patients who 
fail from other causes are still in the risk set (8). 

The Fine-Gray model can be fit with the crr() function 
in the cmprsk package. The function arguments are different 
from that in FGR() function. Although the use of model 
formula is not supported, the model.matrix function can be 
used to generate suitable matrices of covariates from factors. 

> cov<-model.matrix(~sex+age+invasion,data=Melanoma)
[,-1]
> crr.model<-crr(Melanoma$time,Melanoma$status,cov1=c
ov)

Model prediction

The fitted Fine-Gray model can be used to predict new 
observations with given combinations of covariates. In the 
following example, a new dataset containing three patients 
are given. Covariates of age, sex and invasion levels are 
defined for them.

> newdata<-data.frame(sex=factor(c("Male","Male","Femal
e"),levels=levels(Melanoma$sex)),age=c(50,31,29),invasion
=factor(c("level.2","level.1","level.2"), levels=levels(Melano
ma$invasion)))
> newdata

sex age invasion
1 Male 50 level.2
2 Male 31 level.1
3 Female 29 level.2

Characteristics of these three patients are displayed in 
the above output. The data frame need to be transformed 
to matrix and factor variables be transformed to dummy 
variables. The predict() function applied to crr object 
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requires the columns of cov be in line with that in the 
original call to crr() function. Because both sex and invasion 
are factor variables, they need to be transformed to dummy 
variables with model.matrix() function. Alternatively, a 
custom-made function named factor2ind() written by 
Scrucca and colleagues can be useful (11). 

> dummy.new<-model.matrix(~sex+age+invasion,data=ne
wdata)[,-1]
> dummy.new

sexMale age invasionlevel.1 invasionlevel.2
1 1 50 0 1
2 1 31 1 0
3 0 29 0 1

The above output is exactly what we want. Variable 
sex was coded 1 for male and 0 for female. Invasion was 
transformed to two 0/1 variables. Age is a continuous 
variable and remains unchanged. 

> pred<-predict(crr.model,dummy.new)
> plot(pred,lty=1:3,col=1:3,xlab="Failure time 
(days)",ylab="Cumulative incidence function")
> legend("topleft",c("Male,age=50,invasion2","Male,age=3
1,invasion1","Female,age=29,invasion2"),lty=1:3,col=1:3)

An object of crr class is passed to the predict() function, 
followed by a matrix containing covariate combinations. 
The predict() function returns a matrix (not shown) with 

the unique cause =1 failure times in the first column, and 
the other columns giving the estimated subdistribution 
function corresponding to the covariate combinations at 
each failure time. The generic function plot() can be applied 
to draw CIF for each observation (Figure 2). 

The prediction and plotting are more convenient 
using functions in riskRegression package. The function 
riskRegression() provides a variety of link functions for 
survival regression model in the presence of competing 
risks (12).

> reg<-riskRegression(Hist(time, status) ~ sex + age + 
invasion, data = Melanoma, cause = 1,link="prop")
> plot(reg,newdata=newdata)

The above graphical output gives CIF for patients with 
characteristics specified in the newdata. The link argument 
controls the link function to be used: “prop” for the 
Fine-Gray regression model, “relative” for the absolute 
risk regression model, and “logistic” for the logistic risk 
regression model.

Model diagnostic

An important assumption of Cox regression model is the 
proportionality, which assumes the subdistribution with 
covariates z is a constant shift on the complementary log-
log scale from a baseline subdistribution function. The 
curves will not cross with each other. Model checking may 
initially be performed by graphical examination of CIFs. 

> checkdata<-data.frame(sex=factor(c("Male","Male","Male
"),levels=levels(Melanoma$sex)),age=c(52,52,52),invasion=
factor(c("level.0","level.1","level.2"), levels=levels(Melanom
a$invasion)))
> plot(reg,newdata=checkdata,lty=1:3,col=1:3)
> text(2000,1,"Covariates sex='Male'; age=52")
> legend("topleft",c("invasion.level0","invasion.
level1","invasion.level2"),lty=1:3,col=1:3)

Figure 3 shows the CIFs at different invasion levels, 
setting age to 52 years and sex to male. There is no evidence 
of violation to the proportionality assumption for the 
variable invasion. Another method to check for proportional 
assumption is to include time dependent covariate in the 
regression model. 

> crr.time<-crr(Melanoma$time,Melanoma$status,cov1=cov,
cov2=cov[,1],tf=function(t) t)
> summary(crr.time)
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Competing Risks Regression

Call:
crr(ftime = Melanoma$time, fstatus = Melanoma$status, cov1 
= cov, 

  cov2 = cov[, 1], tf = function(t) t)

coef exp(coef) se(coef) z p-value
sexMale 1.144721 3.14 0.514436 2.225 0.02600
age 0.005667 1.01 0.009013 0.629 0.53000
invasionlevel.1 1.049050 2.85 0.338726 3.097 0.00200
invasionlevel.2 1.375556 3.96 0.397515 3.460 0.00054
cov[, 1]1*tf1 -0.0004131.00 0.000349 -1.182 0.24000

exp(coef)exp(-coef) 2.5% 97.5%
sexMale 3.14 0.318 1.146 8.61
age 1.01 0.994 0.988 1.02
invasionlevel.1 2.85 0.350 1.470 5.55
invasionlevel.2 3.96 0.253 1.816 8.63
cov[, 1]1*tf1 1.00 1.000 0.999 1.00

Num. cases = 205
Pseudo Log-likelihood = -273 
Pseudo likelihood ratio test = 25.9 on 5 df,

The argument cov2 takes a matrix of covariates that will 
be multiplied by time. The functions of time are specified in 
the tf argument. The function takes a vector of times as an 
argument and returns a matrix. The jth column of the time 
matrix will be multiplied by the jth column of cov2. For 
example, a model of the form 2

0 1 1 2 1 3 1x x t x tβ β β β+ + +  can be 
specified in crr() function by (cov1 = x1, cov2=cbind(x1,x1), 
tf=function(t) cbind(t,t^2)). In the summary output of the 
Fine-Gray model with time-varying covariate, the last term 
shows no statistical significance (P=0.24), indicating the 
effect of sex is time-constant. The riskRegression provides a 
simple resolution to model time-varying covariate. 

> reg.time<-riskRegression(Hist(time, status) ~ sex + age + 
strata(invasion), data = Melanoma, cause = 1,link="prop")
> plotEffects(reg.time,formula=~invasion)

Figure 4 shows the time-dependent effects in Fine-
Gray regression model for mortality. The curve and 
corresponding 95% confidence interval are drawn with 
non-parametric method. It appears that coefficients for 
level 2 vs. 1 are larger during time period from 0 to 1,000 
than that in other times, indicating some slight time 
interactions (12). However, formal statistical test is not 
allowed in this setting. 

The third method for model checking employs 
Schoenfeld residuals.

> par(mfrow=c(2,2))
> for(j in 1:ncol(crr.model$res)) {
      scatter.smooth(crr.model$uft, crr.model$res[,j],
      main =names(crr.model$coef)[j],
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      xlab = "Failure time",
      ylab ="Schoenfeld residuals")
      }

I plot the Schoenfeld residuals against failure time for 
each covariate. If the proportional assumption is true, 
the residual should have a constant mean across time. A 
scatterplot smoother is added for each covariate to check 
for the assumption (Figure 5). It appears that the invasion 
level 1 has non-constant residuals across time, indicating 
a potential violation to the proportional assumption. To 
formally check the assumption for invasion level 1, we can 
add an interaction term with time.

> crr.time2<-crr(Melanoma$time,Melanoma$status,cov1=c
ov,cov2=cov[,3],tf=function(t) t)
> crr.time3<-crr(Melanoma$time,Melanoma$status,cov1=c
ov,cov2=cbind(cov[,3], cov[,3]),tf=function(t) cbind(t,t^2),)

The model includes an interaction term with linear 
time function, which shows that the interaction term 
(time*invasion level1) is statistically significant (P=0.033). 

Acknowledgements

None.

Footnote

Conflicts of Interest: The author has no conflicts of interest to 
declare.

References

1.	 Satagopan JM, Ben-Porat L, Berwick M, et al. A note 
on competing risks in survival data analysis. Br J Cancer 
2004;91:1229-35.

2.	 Latouche A, Allignol A, Beyersmann J, et al. A competing 
risks analysis should report results on all cause-specific 
hazards and cumulative incidence functions. J Clin 
Epidemiol 2013;66:648-53.

3.	 Bakoyannis G, Touloumi G. Practical methods for 
competing risks data: a review. Stat Methods Med Res 

500 1500 2500

-0.4

0.0

0.2

0.4

sexMale

Failure time

S
ch

oe
nf

el
d 

re
si

du
al

s

500 1500 2500

-40

-20

0

20

40
age

Failure time

S
ch

oe
nf

el
d 

re
si

du
al

s

500 1500 2500

-0.4

0.0

0.2

0.4

0.6

invasionlevel.1

Failure time

S
ch

oe
nf

el
d 

re
si

du
al

s

500 1500 2500

-0.2

0.0

0.2

0.4

0.6

0.8

invasionlevel.2

Failure time

S
ch

oe
nf

el
d 

re
si

du
al

s

Figure 5 Schoenfeld residuals against failure time for each covariate. It is noted that the residuals follows a non-constant distribution across 
failure times, indicating a potential violation to the proportional assumption. 



Annals of Translational Medicine, Vol 5, No 3 February 2017 Page 9 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(3):47atm.amegroups.com

2012;21:257-72. 
4.	 Haller B, Schmidt G, Ulm K. Applying competing risks 

regression models: an overview. Lifetime Data Anal 
2013;19:33-58. 

5.	 Schallom ME, Prentice D, Sona C, et al. Heparin 
or 0.9% sodium chloride to maintain central venous 
catheter patency: a randomized trial. Crit Care Med 
2012;40:1820-6.

6.	 Zhang Z, Pan L, Ni H. Lumen nonpatency in the presence 
of competing risks. Crit Care Med 2012;40:3108; author 
reply 3108-9. 

7.	 Andersen PK, Keiding N. Interpretability and importance 
of functionals in competing risks and multistate models. 
Stat Med 2012;31:1074-88.

8.	 Andersen PK, Geskus RB, de Witte T, et al. Competing 

risks in epidemiology: possibilities and pitfalls. Int J 
Epidemiol 2012;41:861-70. 

9.	 Fine JP, Gray RJ. A proportional hazards model for the 
subdistribution of a competing risk. J Am Stat Assoc 
1999;94:496-509.

10.	 Gray RJ. A class of K-sample tests for comparing the 
cumulative incidence of a competing risk. Ann Stat 
1988;16:1141-54. 

11.	 Scrucca L, Santucci A, Aversa F. Regression modeling of 
competing risk using R: an in depth guide for clinicians. 
Bone Marrow Transplant 2010;45:1388-95.

12.	 Gerds TA, Scheike TH, Andersen PK. Absolute risk 
regression for competing risks: interpretation, link 
functions, and prediction. Stat Med 2012;31:3921-30.

Cite this article as: Zhang Z. Survival analysis in the presence 
of competing risks. Ann Transl Med 2017;5(3):47. doi: 
10.21037/atm.2016.08.62


