
Page 1 of 5

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2016;4(Suppl 1):S11atm.amegroups.com

Editorial

Na+ homeostasis by epithelial Na+ channel (ENaC) and Nax channel 
(Nax): cooperation of ENaC and Nax

Yoshinori Marunaka1,2,3, Rie Marunaka1,4, Hongxin Sun1, Toshiro Yamamoto4, Narisato Kanamura4, 
Akiyuki Taruno1

1Department of Molecular Cell Physiology, 2Department of Bio-Ionomics, Kyoto Prefectural University of Medicine Graduate School of Medical 

Science, Kyoto 602-8566, Japan; 3Japan Institute for Food Education and Health, St. Agnes’ University, Kyoto 602-8013, Japan; 4Department of 

Dental Medicine, Kyoto Prefectural University of Medicine Graduate School of Medical Science, Kyoto 602-8566, Japan

Correspondence to: Prof. Yoshinori Marunaka, MD, PhD. Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto 

Prefectural University of Medicine, Kyoto 602-8566, Japan. Email: marunaka@koto.kpu-m.ac.jp.

Submitted Aug 25, 2016. Accepted for publication Aug 29, 2016.

doi: 10.21037/atm.2016.10.42

View this article at: http://dx.doi.org/10.21037/atm.2016.10.42

The body fluid (extracellular fluid: ECF) volume is mainly 
regulated by Na+ uptake (absorption) in the colon (1-3) 
and Na+ reabsorption in the kidney (4-7), and plays various 
important roles in the body functions such as regulation of 
blood pressure. Na+ uptake (absorption) in the colon (1-3) 
and Na+ reabsorption in the kidney (4-7) are conducted by 
epithelial Na+ transport (Na+ transport across epithelial 
cells) via epithelial Na+ channel (ENaC) (8), which was 
cloned from rat distal colon (1,2). The epithelial Na+ 
transport via ENaC is one of the most important factors 
controlling the adequate volume of fluids covering the 
apical surface of alveolar epithelial cells of the lung, 
which is essentially required to keep normal gas exchange 
across alveolar epithelium (9-11) and prevent the body 
from viral and bacterial infection (9-11). ENaC also plays 
an important role in sensing taste (12,13). However, if 
the ENaC-mediated Na+ transport is abnormally up-
regulated, over-volume of body fluid occurs developing 
hypertension, and dryness of airway surface also appears 
like patients of cystic fibrosis (CF) leading to infectious 
diseases in the lung (14-17). In the latter case, ENaC is 
one of the therapeutic targets for CF patients whose lung 
is dry due to a lack or little of Cl- secretion (18,19) caused 
by functional deficiency of cystic fibrosis transmembrane 
conductance regulator (CFTR) Cl− channel (20): i.e., 
as mentioned above, functional ENaCs contribute to 
decrease the amount of fluids covering the airway surface 
of epithelial cells of the lung by reabsorbing Na+, therefore 
partial blockade of functional ENaCs with some ENaC 
blockers prevents the airway surface from dryness. Thus, 

the Na+ homeostasis based on regulation of epithelial 
Na+ transport via ENaCs shows essentially important 
physiological action on various body functions. Further, 
partial blockade of functional ENaCs with some ENaC 
blockers can show antihypertensive action by diminishing 
Na+ reabsorption in cortical collecting ducts of the kidney. 
Indeed, spironolactone, an aldosterone antagonist, is used 
for anti-hypertensive drug (21-23) keeping K+ unlike loop 
antidiuretic drugs such as furosemide (24).

The epithelial Na+ transport consists of two steps: (I) 
the entry step of Na+ from the luminal (air) space into 
the intracellular space via ENaC located on the apical 
membrane (1,2,25), and (II) the extrusion step of Na+ from 
the intracellular space to the interstitial space (facing blood 
vessels) via the Na+,K+-ATPase located on the basolateral 
membrane (26,27). The ENaC-mediated Na+ entry step 
is recognized to be the rate-limiting step of the epithelial 
Na+ transport (27). Based on this fact, the body has many 
intrinsic factors such as aldosterone, vasopressin (antidiuretic 
hormone), insulin, growth factors and osmotic stress that 
regulate synthesis, localization and activity of ENaCs 
(25,26,28-38). Although ENaC is one of the most essential 
targets for control of blood pressure, the Na+,K+-ATPase is 
also an important target for control of blood pressure: e.g., 
an inhibitor of the Na+,K+-ATPase, triamterene, shows a 
diuretic action by diminishing the epithelial Na+ transport 
(renal Na+ reabsorption) via blockade of the Na+,K+-ATPase 
in the collecting duct of the kidney (39,40).

We could not maintain homeostasis of body Na+ 
contents without any sensors detecting the body Na+ 
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content, although ENaCs play various important roles in 
homeostasis of body Na+ contents. The mechanisms sensing 
the body Na+ content are considered to exist in the kidney 
and the brain. The kidney detects the body Na+ content 
via the Na+ concentration in the early distal nephron via 
the Na+-K+-2Cl− cotransporter (NKCC2) (41-45), while 
the brain detects the body Na+ content via the Nax channel 
(Nax) (46-53) in addition to an osmotic sensor located at 
hypothalamus (54,55) as follows.

In the kidney, juxtaglomerular apparatus located at 
the glomerular pole of the nephron senses the NaCl 
concentration in the early distal nephron coming from 
its own glomerulus (56,57). When glomerular filtration 
rate (GFR) becomes lower, the concentration of NaCl in 
the early distal nephron becomes lower. This low NaCl 
concentration decreases NaCl uptake into the intracellular 
space of juxtaglomerular cells via NKCC2, releasing renin. 
As well known, renin stimulates the renin-angiotensin-
aldosterone system elevating the serum aldosterone level. 
The renin-induced elevated aldosterone increases ENaC 
production and the apical surface expression of ENaCs 
medicated by SGK1 (58,59) via a decrease in endocytotic 
rate of ENaC (37). Thus, the low GFR due to a decrease 
in the circulating blood caused by low body Na+ content 
increases renin release, leading to elevation of body 
Na+ content due to an increase in Na+ reabsorption via 
aldosterone-induced increases of ENaC production and 
surface expression in the collecting duct. 

Further, recently Nax has been reported to be a Na+ 
concentration-sensitive Na+ channel acting as a Na+ sensor 
(46-53,60,61). Nax was found in the brain as an atypical 
Na+ channel, poorly homologous to the voltage-gated 
Na+ channels (62). Interestingly, Nax knock-out mice do 
not stop taking salt even at dehydrated (high ECF Na+ 
concentration in the body), while wild-type mice avoid 
salt intake (60,61). This observation suggests that Nax acts 
as a sensor detecting the ECF Na+ concentration in the 
body. Later, Nax is reported to require α1-isoform of the 
Na+/K+-ATPase to act as a sensor detecting Na+ (47,48). 
The functional linkage of Nax and α1-isoform of Na+/K+-
ATPase is performed by lactate production: i.e., high Na+ 
in the intracellular space caused by high Na+ influx via Nax 
dependent on high extracellular Na+ activates the Na+/
K+-ATPase, leading to metabolic enhancement resulting 
in extensive lactate production (52). Further, the linkage 
between detection of high ECF Na+ concentration via Nax 
and water intake is mediated by TRPV4 (51): knock-out of 
TRPV4 in mice induces no water intake even at high Na+ 

concentration in cerebrospinal fluid (CSF) (51), in which 
CSF-contacting nucleus (CSF-CN) plays an important role 
in sensing the Na+ concentration of CSF and satiating Na+ 
appetite (53). Nax has the cation selectivity of Na+ ≈ Li+ > 
Rb+ > Cs+ and is bound to postsynaptic density protein 95 
(PSD95) via its PSD95/Disc-large/ZO-1 (PDZ)-binding 
motif at the C-terminus in neurons, suggesting involvement 
of this complex in the surface expression of Nax (49). Thus, 
these observations clearly indicate the role of Nax in the oral 
Na+ intake at high Na+ concentration in CSF by sensing the 
Na+ concentration and its mechanism.

A further observation indicates that Nax regulates 
ENaC activity (46). As mentioned above, Nax acts as a 
sensor detecting the extracellular Na+ concentration in the 
brain. In addition to the brain, Nax is expressed in multiple 
epithelial tissues and up-regulates its downstream genes 
in hypertrophic scars (46). When Nax detects an increased 
extracellular Na+ concentration, Nax up-regulates prostasin 
(protease) release into the extracellular space (46), which 
activates ENaC by cleaving the extracellular loop of γ 
ENaC subunit (23,63), increasing Na+ influx via ENaC 
associated with elevation of downstream mRNA synthesis 
of inflammatory mediators (46). Further, blockade of Nax 
expression improves scarring and atopic dermatitis (46). 
These findings strongly indicate that Nax plays an important 
role in maintaining epithelial homeostasis via control of 
ENaC activity.

In summary, this article provides the following points 
regarding Na+ homeostasis in the body. ENaC determines 
the amount of Na+ uptake (reabsorption) into the body by 
performing the epithelial Na+ transport in the colon, the 
kidney and the lung, while Nax acts as a sensor detecting 
the extracellular Na+ concentration, controlling the amount 
of oral Na+ intake. Nevertheless, little knowledge on 
the cooperation of these channels (ENaC and Nax) was 
available: i.e., even though Nax controlled the oral Na+ 
intake by sensing the extracellular Na+ concentration in 
CSF, it was unknown if ENaC activity would be affected 
by the extracellular Na+-dependent activity of Nax. 
Recently, it becomes clarified that activation of Nax by an 
increased extracellular Na+ concentration in the wounded 
skin stimulates secretion of prostasin, a protease, which 
activates ENaCs, reducing the osmolality of the surface 
fluid of the wounded skin by elevating Na+ reabsorption 
from skin surface into the intracellular space (46). Thus, 
Nax and ENaC cooperatively function for Na+ homeostasis 
in the body. This study (46) is the first report indicating the 
cooperatively functional linkage of ENaC and Nax.
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