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Abstract: Clinical researches usually collected numerous intermediate variables besides treatment and outcome. 

These variables are often incorrectly treated as confounding factors and are thus controlled using a variety of 

multivariable regression models depending on the types of outcome variable. However, these methods fail to 

disentangle underlying mediating processes. Causal mediation analysis (CMA) is a method to dissect total effect 

of a treatment into direct and indirect effect. The indirect effect is transmitted via mediator to the outcome. 

The mediation package is designed to perform CMA under the assumption of sequential ignorability. It reports 

average causal mediation effect (ACME), average direct effect (ADE) and total effect. Also, the package provides 

visualization tool for these estimated effects. Sensitivity analysis is designed to examine whether the results are 

robust to the violation of the sequential ignorability assumption since the assumption has been criticized to be too 

strong to be satisfied in research practice. 
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Introduction 

In clinical research, a large number of variables may be 
collected and the relationship between each variable 
can be complex. The traditional method to explore the 
relationships between explanatory variables and outcomes 
is by using multivariable regression model. However, this 
method fails to disentangle mechanisms underlying the 
association between explanatory variable and outcome, 
while investigators are sometimes interested in such 
underlying mediating pathophysiological processes (1,2). In 
these situations, the investigators may have prior knowledge 
that an explanatory variable exerts its effect on outcome via 
direct and indirect pathways. In the indirect pathway, there 
is a mediator that transmits the causal effect. For example, 
suppose that corticosteroids are effective for reducing 
mortality rate of patients with acute respiratory distress 

syndrome (ARDS), and this effect is partly mediated by 
suppressing inflammatory response (3). In this scenario, 
corticosteroid treatment is an exposure, mortality is a 
binary outcome and inflammatory response is a mediator. 
It is interesting to explore how much of the total effect 
is transmitted via inflammatory response. The example 
motivates the causal mediation analysis (CMA). In this 
article, we will introduce a commonly used method for 
CMA proposed by Imai et al. (4). Its implementation with R 
package will be described in a step-by-step approach.

Understanding CMA

Suppose we have variables X and Y indicating the 
explanatory variable (or treatment variable) and outcome 
variable, respectively (Figure 1). Mediation in its simplest 
form is to add a mediator M between X and Y (5). Model-
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based mediation analysis is implemented in the mediation 
package (6). The sequential ignorability assumption 
should be satisfied for validity of the method used for 
this package. The assumption states that “the treatment 
(explanatory variable X) is first assumed to be ignorable given 
the pre-treatment covariates, and then the mediator variable 
(M) is assumed to be ignorable given the observed value of the 
treatment as well as the pre-treatment covariates.” (7). The first 
part is often satisfied by randomization while the second 
part implies that there are no unmeasured confounding 
between mediator and outcome, which is often questionable 
even in randomized trial. Moreover, this assumption is 
not verifiable in practice and sensitivity analysis should 
be performed to quantify the degree to which violation 
of the assumption would change the results. Sensitivity 
analysis will be described in detail in following sections. 
This section focuses on the model based mediation analysis 
with continuous outcome, which is based on three linear 
equations:

Y = i1 + cX + e1 [1]
Y = i2 + c'X + bM + e2 [2]
M = i3 + aX + e3 [3]

where i1, i2 and i3 denote intercepts, Y is the outcome 
variable, X is the explanatory variable, M is the mediator, 

c is coefficient linking X and Y (total causal effect), c' is the 
coefficient for the effect of X on Y adjusting for M (direct 
effect), b is the effect of M on Y adjusting for explanatory 
variable, a is the coefficient relating to the effect of X on 
M. e1, e2 and e3 are residuals (7) that are uncorrelated with 
the variables in the right hand side of the equation and 
are independent to each other.  Under this specific model, 
the causal mediation effect (CME) is represented by the 
product coefficient of ab. Of note, Eq. [3] can be substituted 
into Eq. [2] to eliminate the term M:

Y = i2 + bi3 + (c' + ab)X + e2 + be3 [4]

It appears that the parameters related to direct (c') and 
indirect effect (ab) of X on Y is different from that of its 
total effect. That is, to testing the null hypothesis c=0 is 
unnecessary since CME can be nonzero even when the total 
causal effect is zero (i.e., direct and indirect effects can be 
opposite) (4,7), which reflects the effect cancellation from 
different pathways. 

However, the above-mentioned equations within linear 
structural equation modeling (LSEM) framework are not 
directly applicable to binary outcome. LSEM equation 
needs extension to accommodate non-linear settings 
(8,9). In this article we will focus on Imai’s method that is 
applicable to non-linear settings (4).

Worked example

Next, a dataset is simulated using the motivating example 
described in the introduction section. Suppose investigators 
want to explore the effect of corticosteroids on mortality 
outcome, and it is valuable to notice if part of the total effect 
is mediated via reducing inflammatory response. C-reactive 
protein (CRP) is a biomarker of inflammatory response and 
there is evidence that higher CRP is associated with adverse 
clinical outcomes (10). Note that the example is created to 
demonstrate the use of CMA into the clinical context, and 
there is no clinical relevance of the results.

> set.seed(888)

> treat_flg<-rbinom(1000,1,0.3) #binary treatment 
variable with binomial distribution

> crp<- round(abs(40*treat_flg+rnorm(1000,100,30)),1)
#regress crp on treatment

> lp<-10*treat_flg+0.02*crp-5 # linear prediction 

> link_lp <- exp(lp)/(1 + exp(lp)) #link function 

> mort<-(runif(1000) < link_lp)

Figure 1 Causal mediation analysis in its simplest form. X, Y and 
M are treatment, outcome and mediator variables. c is coefficient 
linking X and Y (total causal effect), c' is the coefficient for the 
effect of X on Y adjusting for M (direct effect), b is the effect of M 
on Y adjusting for explanatory variable, a is the coefficient relating 
to the effect of X on M. e1, e2 and e3 are residuals
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> df<-data.frame(crp=crp,treat_flg=treat_flg,mort=mort)

CMA 

This article implements CMA using the R mediation 
package (6). This package also contains functions for 
CMA with certain designs or conditions such as multiple 
outcome/treatment/mediator combinations, multiple causal 
mechanisms, treatment non-compliance, and dataset with 
missing values. In addition, this package allows researchers 
to implement sensitivity analysis for certain parametric 
models. In the following example, the authors only applied 
the simplest form of CMA. Let’s first install the package and 
then perform CMA with a few lines of codes. 

> install.packages("mediation")

> library(mediation)

> model.m<-lm(crp~treat_flg,data=df[1:100,])

> model.y<-glm(mort~treat_flg+crp,family = 
binomial,data=df[1:100,])

> med.out <- mediate(model.m, model.y, treat = "treat_
flg", mediator = "crp",robustSE = TRUE, sims = 100)

The mediate() function requires two fitted model 
objects: one is for the mediator and the other is for the 
outcome. In the example, the mediator model is a linear 
model that regresses crp on treat_flg. The outcome model 
is a logistic regression model that regresses mort on treat_
flg and crp. Note that these two regression models allow 
other confounding factors to be added if they are observed. 
In the example, only the first 100 observations are used 
for analysis. The treat argument takes a character string 
indicating the name of the treatment variable (treat_flg) 
used in the models. Similarly, the mediator argument takes 
a character string indicating the name of the mediator 
variable (crp) used in the model. 

Understanding summary output with binary 
outcome variable

The results of CMA can be accessed with summary() and 
plot() function. 

> summary(med.out)

Causal Mediation Analysis 

Quasi-Bayesian Confidence Intervals

Estimate 95% CI 
Lower

95% CI 
Upper

p-value

ACME (control) 1.84e-01 1.41e-02 4.01e-01 0.02

ACME (treated) 1.13e-08 7.48e-10 4.74e-08 0.02

ADE (control) 9.40e-01 8.78e-01 9.80e-01 0.00

ADE (treated) 7.55e-01 5.33e-01 9.36e-01 0.00

Total Effect 9.40e-01 8.78e-01 9.80e-01 0.00

Prop. Mediated 
(control)

1.81e-01 1.47e-02 4.30e-01 0.02

Prop. Mediated 
(treated)

7.92e-09 8.09e-10 5.27e-08 0.02

ACME 
(average)

9.21e-02 7.03e-03 2.01e-01 0.02

ADE (average) 8.48e-01 7.06e-01 9.52e-01 0.00

Prop. Mediated 
(average)

9.06e-02 7.35e-03 2.15e-01 0.02

Sample Size Used: 100 

Simulations: 100 

The results show the ACME and average direct effect 
(ADE) for the treated and control groups. For a single 
index, researchers can use the average ACME and ADE to 
determine the average mediation strength. Note that the 
ACMEs are different for the treated and control groups. 
This can be understood in the counterfactual framework. 
Let’s first define ACME with mathematical equation 
according to Imai and colleagues (7): 

δi(t) ≡ Yi [t, Mi(1)] − Yi [t, Mi(0)] [5]

δi(t) is the CME under treatment t, which represents 
the indirect effect of treatment on outcome Yi(t) through 
mediator. The subscript i indicates the individual patient. 
The counterfactual framework can be understood with 
the following question: what changes would occur to the 
outcome if the mediator is changed from the value under 
treatment t=1 [Mi(1)] to the value that would be observed 
under treatment t=0 [Mi(0)], while holding treatment at t. 
While the outcome of the form Yi[t, Mi(t)] is observable, Yi[t, 
Mi(1−t)] is unobservable for a given patient. In the example, 
CME (treated, δi(1)) is the difference between two potential 
mortality outcomes for patient i who received corticosteroids. 
For the patient, Yi[1, Mi(1)] is observed outcome if he or 
she receives corticosteroids, whereas Yi[1, Mi(0)] represents 
the mortality outcome under the condition that the patient 
still receives corticosteroids but change the mediator value 
that would result without treatment. This definition with 
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counterfactual framework reflects the intuitive notion of 
mediation that the treatment indirectly influences outcome 
via mediator. Similarly, direct effect can be defined as: 

ζi(t) ≡ Yi [1, Mi(t)] − Yi [0, Mi(t)] [6]

In the example, ζ i(1)represents the direct effect of 
corticosteroids on patient i’s mortality outcome while 
holding the crp at the level that would be observed under 
treatment. The causal effect of the treatment on the 
outcome for unit i now can be defined as the following 
relationship

Total ≡ δi(t) − ζi(1−t) [7]

While CME is at the individual level, the ACME is the 
expected value for the whole study population:

( ) ( ){ }( ) IE , 1 , 0i i i it Y t M Y t Mδ ≡ −        [8]

It appears that ACMEs of both the treated and the 
control are statistically non-significant. This may be due to 
the limited sample size. Recall that we only used the first 
100 patients for analysis. The results can be visualized with 
plot() function.

> plot(med.out)

The simple function automatically produces a plot of 
mediation analysis. Estimates for both treated and control 
group were depicted because they are different in the 
example. The dashed line represents the control and solid 
line represents the treated. It appears that most of the total 
effect is explained by the direct effect (Figure 2). 

The next question that often confuses people is the 
interpretation of coefficients. In normal linear model, all 
variables are linked in the same scale and the interpretation 
is straightforward. However, in CMA with binary outcome 
variables, the estimated coefficients from above links to the 
probability scale, rather than that obtained from logistic 
regression model that its exponentiation gives the odds 
ratio (OR). Next, let’s take a look at how estimation of 
mediation effects can be different using different methods: 
the standard LSEM approach proposed by Baron (11) and 
the method by Imai.  

Imai’s method consists of two steps which are based on 
Eqs. [5] and [6]. The first step is to fit regression models for 
mediator and outcome, which has been done in the above R 
codes. The second is to simulate the unobserved potential 
mediator and then compute the average potential outcome 
from the fitted model. 

> ####average over different simulation runs to obtain 
mediation effects, direct effects and total effect.

> ####M is simulation times, this is sims=100 in Imai's 
method, when M is larger, the result is less sensitive to 
the seed use.

> M<-100

> acme0<-acme1<-rep(NA,M)

> total<-rep(NA,M)

> direct1<-direct0<-rep(NA,M)

> for (i in 1:M){

 ###impute potential mediators

   m0<-predict(model.m,data.frame(treat_flg=0))+ 
summary(model.m)$sigma*rnorm(100,0,1)

   m1<-predict(model.m,data.frame(treat_flg=1))+ 
summary(model.m)$sigma*rnorm(100,0,1)

    ###impute potential outcomes

   y0_m0<-predict(model.y,data.frame(treat_
flg=0,crp=m0),type="response")

   y0_m1<-predict(model.y,data.frame(treat_
flg=0,crp=m1),type="response")

   y1_m0<-predict(model.y,data.frame(treat_
flg=1,crp=m0),type="response")

0.0 0.2 0.4 0.6 0.8 1.0

Total
Effect

ADE

ACME

Figure 2 Visualization of results from mediate() function. 
Estimates for both treated and control group were depicted because 
they are different in the example. The dashed line represents the 
control and solid line represents the treated. It appears that most 
of the total effect is explained by the direct effect
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   y1_m1<-predict(model.y,data.frame(treat_
flg=1,crp=m1),type="response")

   acme0[i]<-mean(y0_m1-y0_m0)

   acme1[i]<-mean(y1_m1-y1_m0)

   total[i]<-mean(y1_m1-y0_m0)

    direct1[i]<-mean(y1_m1-y0_m1)

    direct0[i]<-mean(y1_m0-y0_m0)

   }

> ###point estimate for ACME0, ACME1 compare to 
mediation package output

> c(mean(acme0),med.out$d0)

 [1] 0.1929078 0.1842675

> c(mean(acme1),med.out$d1)

 [1] 7.032967e-09 1.131077e-08

> ###point estimate for total effect, compare to 
mediation package output

> c(mean(total),med.out$tau.coef)

 [1] 0.9447887 0.9396576

> ###point estimate for direct effects, compare to 
mediation package output

> c(mean(direct0),med.out$z0)

 [1] 0.9447887 0.9396576

> c(mean(direct1),med.out$z1)

 [1] 0.7518808 0.7553901

The value 0.193 approximate the ACME(0) reported in 
tabular output by summary() function. A small diffidence 
is that we perform limited number of simulations. If 
we compute acme0 with our code 1,000 times and take 
the average, the value would be more approximate. The 
coefficients estimated with mediate() function can be better 
understood with above explicit computation. Because the 
type argument takes a string variable “response” within 
the predict() function, y0_m0 is the probability of death 
for a given patient in the control group and a crp level 
being observed. y0_m1 is the probability of death for a 
given patient in the control group and a crp level that 
would be observed supposing the patient had received 
treatment. Thus, y0_m1 is unobservable in reality but only 
in counterfactual framework. The difference between y0_
m0 and y0_m1 gives the ACME in the control group that 
can be interpreted as the probability of death being changed 
by varying crp values, while holding the treatment status 
constant. The total effect of 0.94 can be interpreted as the 
increased probability of death comparing treatment versus 

control group. The model coefficients estimated from Imai’s 
nonparametric method have a direct link to the probability 
scale and thus is more clinically relevant.

Now we will show that if we ignore the fact that some 
of the equations are fit with nonlinear link and still use 
the formula derived from linear setting, i.e., the total 
effect c = c’+a*b, we will not be able to yield correct result.  
Eqs. [2] with logit link and [3] have been fitted and stored 
in objects model.y and model.m, respectively. We only have to 
fit the Eq. [1] with logit link and store it in an object called 
model.t.

> model.t<-glm(mort~treat_flg,family = 
binomial,data=df[1:100,])

> c<-model.t$coef[[2]]

> c.prime<-model.y$coef[[2]]

> b<-model.y$coef[[3]]

> a<-model.m$coef[[2]]

> c(c,c.prime+a*b)

[1] 23.38447 24.45443

The results show that the total effect estimated from 
regression model.t approximate that estimated from 
regression models.y and model.m. For nonlinear case, the 
two quantities might approximately the same under some 
special cases, for example, weak indirect effect (a*b), log 
link function or rare outcome. Our example is the one with 
weak indirect effect. However, the values of these estimated 
coefficients are not equal to that obtained via mediate() 
function, because the later coefficients are identified with 
methods as described above (12). The coefficients estimated 
from logistic regression model are in the linear prediction 
function scale that its exponentiation gives the odd ratio (OR).

> exp(c(a*b,c.prime,c))

[1] 7.082856e+00 5.891355e+09 1.431347e+10

The total OR is the sum of direct effect OR and indirect 
effect OR. The results show that there is negligible indirect 
effect, and the direct effect takes nearly all of the total 
effect. 

Sensitivity analysis

CMA described above is performed under sequential 
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ignorability assumption. However, this assumption 
is untestable in practice. One approach is to perform 
sensitivity analysis to examine whether the results are robust 
to the violation of the assumption. Violation to assumption 
indicates that there exists an unmeasured confounder that 
is related to both the mediator and the outcome. Note 
that this unmeasured confounder is not affected by the 
treatment. Sensitivity analysis uses certain statistics to 
quantify how strong the confounder would have to be 
to change the conclusion being drawn about the direct 
and indirect effect (13). Imai and colleagues proposed a 
correlation parameter (ρ) reflecting the existence of omitted 
variables that were related to the mediator and outcome 
even after conditioning on treatment, and the parameter 
was added to the calculations of ACME. Sensitivity analysis 
is to vary ρ values and compute corresponding ACMEs. 
There are two methods to calculating ρ. One is to compute 
ρ based on residual correlation:

ρ ≡ cor(e2, e3) [9]

The other way is to calculate correlation parameter ρ 
based on coefficients of determination (i.e., a number that 
indicates the proportion of the variance in the dependent 
variable that is predictable from the independent variable):

( ) ( )  

( )( )
2 3* *

2 3 2 2

sgn
sgn

1 1

M Y
M Y

M Y

R R
R R

R R

λ λ
ρ π λ λ= =

− −  
[10]

2 2 2e U e 'λ= +

3 3 3e U e 'λ= +

where 2*
MR  and 2*

YR  represent the proportion of previously 
unexplained variance (mediator and outcome) that is 
explained by the unobserved confounders.  2

MR  and  2
YR  

are the proportion of variance that is explained by the 
unobserved confounders. U is unobserved confounding 
variable. 2

MR  and 2
YR  are the coefficients of determination 

for the mediation and outcome regression models. 
2
MR  represents the proportion of explained variance by 

covariates in the mediation model (Eq. [3]). λ2 and λ3 
are coefficients for unobserved variable in the equation 
regressing residual e2 or e3 on the unobserved variable. We 
only care about the direction (sign) of the effect. In this 
framework, investigators can specify values of ( 2*

MR , 2*
YR ) and 

( 2
MR ,  2

YR ), and the sign of (λ2λ3) to estimate ACME (4,14).
Next I proceed to perform sensitivity analysis with 

medsens() function. Because the function in its current 
version only support probit link, the mediation model needs 
to be updated. 

> probit.y<-glm(mort~treat_flg+crp,family = binomial(
probit),data=df[1:100,])

> med.out1 <- mediate(model.m, probit.y, treat = 
“treat_flg”, mediator = “crp”,robustSE = TRUE, sims = 
100)

> sens.out <- medsens(med.out1, rho.by = 0.1, effect.
type = “indirect”, sims = 100)

The medsens() function first takes an object of class 
“mediate” which is an output object from mediate() 
function. The argument rho.by takes a numeric value 
ranging from 0 to 1 indicating the increment for sensitivity 
parameter ρ. The effect.type argument indicates which effect 
to be examined. 

 > summary(sens.out)

Mediation Sensitivity Analysis: Average Mediation Effect

Sensitivity Region: ACME for Control Group

Rho ACME 
(control)

95% CI 
Lower

95% CI 
Upper

R^2_
M*R^2_
Y*

R^2_
M~R^2_
Y~

[1,] 0.2 0.0098 -0.0020 0.0246 0.04 0.0013

[2,] 0.3 0.0020 -0.0119 0.0096 0.09 0.0029

[3,] 0.4 -0.0035 -0.0208 0.0021 0.16 0.0051

Rho at which ACME for Control Group = 0: 0.3

R^2_M*R^2_Y* at which ACME for Control Group = 0: 0.09

R^2_M~R^2_Y~ at which ACME for Control Group = 0: 
0.0029 

      

Sensitivity Region: ACME for Treatment Group

Rho ACME 
(treated)

95% CI 
Lower

95% CI 
Upper

R^2_
M*R^2_
Y*

R^2_
M~R^2_
Y~

[1,] 0.2 0.0017 0e+00 0.0071 0.04 0.0013

[2,] 0.3 0.0008 0e+00 0.0035 0.09 0.0029

[3,] 0.4 0.0001 -6e-04 0.0008 0.16 0.0051

Rho at which ACME for Treatment Group = 0: 0.4

R^2_M*R^2_Y* at which ACME for Treatment Group = 0: 
0.16

R^2_M~R^2_Y~ at which ACME for Treatment Group = 0: 
0.0051 

Because we assigned “indirect” for the argument effect.
type, sensitivity analysis for ACME is performed. The 
summary output displays the computed ACMEs by varying 
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ρ values for the treatment and control groups. Two tables 
are similar in interpretation, so we only take a look at the 
first table (control group). The first column is the ρ values 
with an increment of 0.1. The second column shows the 
corresponding ACMEs, and the third and forth columns are 
confidence intervals. The last two columns are quantities 
based on coefficients of determination. Because the ρ value 
at which ACME becomes zero is of interest, it is displayed 
following the table. A graphical display of the results can be 
more intuitive and helpful in sensitivity analysis. 

> par(mfrow=c(2,1))

> plot(sens.out, sens.par = “rho”, main = “Mortality”)

The sens.par argument specifies which sensitivity 
parameter,  residual correlation or coefficients of 
determination, to be displayed. The dashed line represents 
the ACME value without correlation (ρ=0), which is 
computed under the assumption of sequential ignorability. 
We need to set ρ≥0.3 for the ACME to become negative 
(Figure 3). A large critical ρ value is needed to reverse the 

sign of ACME indicates the robustness of the result to the 
violation of ignorability assumption. It requires subject 
knowledge to judge whether the value of 0.3 is large or not. 
In practice, observed confounding variables are often used 
to determine the upper bound of sensitivity parameters.

Sensitivity analysis based on R2 statistic is performed 
by assign “R2” to sens.par. The type of R2 to be used is 
specified in r.type argument. A string variable “residual” 
indicates that the effects are plotted against the proportions 
of the residual variances that are explained by the 
unobserved confounder. On the other hand, a value of 
“total” indicates that the proportions of the total variances 
are used as sensitivity parameters. When sensitivity analysis 
is performed with R2 statistic, the user must specify whether 
the unobserved confounder affects the mediator (λ3) and 
outcome (λ2) in the same direction (sgn[λ2λ3]=1) or opposite 
direction (sgn[λ2λ3]=−1). If the effects are in the same 
direction, users assign sign.prod = “positive”. Otherwise, 
the sign.prod argument takes the string variable “negative”. 

> par(mfrow=c(2,2))
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Figure 3 Sensitivity analysis based on residual correlation. The dashed line represents the ACME (0.0735) without correlation (ρ=0), which 
is computed under the assumption of sequential ignorability. Note that ρ≥0.2 is required for the ACME to become negative.
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> plot(sens.out, sens.par = "R2", r.type = "residual", sign.
prod = "negative")

> plot(sens.out, sens.par = "R2", r.type = "total", sign.
prod = "positive")    

Four plots are produced by varying r.type and sign.prod 
arguments (Figure 4). The first panel shows the sensitivity 
analysis for ACME in the control group by setting 
sgn(λ2λ3)=−1. However, it appears that except for the first 
plot that displayed many values of ACME, each of the other 
plots only displays the contour of one ACME value. The 
reason is that the native R contour function automatically 
adjusts the displaying values, and thus we need to adjust the 
levels argument to allow displaying of more contours. The 
ACME values across a range of degrees of confounding 
can be examined in the values returned by the medsens() 
function.

> sens.out$d0

[1] 0.913575804 0.661963822 0.453954736

[4] 0.314137898 0.220546426 0.156108478

[7] 0.110405639 0.077178510 0.052570140

[10] 0.034124673 0.020227810 0.009787342

[13] 0.002044243 -0.003544247 -0.007382268

[16] -0.009793831 -0.011076604 -0.011559293

[19] -0.011636731

> sens.out$d1

[1] 2.545749e-01 9.531345e-02 5.024505e-02

[4] 3.087918e-02 2.067147e-02 1.455696e-02

[7] 1.054603e-02 7.727958e-03 5.639027e-03

Figure 4 Sensitivity analysis based on coefficient of determination. Four plots are produced by varying r.type and sign.prod arguments within 
plot() function. Note that only the first plot that has displayed a series of ACME values. Each of the other plots has displayed the contour of 
one ACME value, because the native R contour function automatically adjusts the displaying values.
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Figure 5 Sensitivity analysis based on coefficient of determination. Series of ACME values are displayed by adjusting levels argument in the 
plot() function. 

[10] 4.023900e-03 2.733704e-03 1.678442e-03

[13] 8.033842e-04 7.707901e-05 -5.145001e-04

[16] -9.706079e-04 -1.278730e-03 -1.428202e-03

[19] -1.456307e-03

Note that the ACME values (i.e., the first 9 values of the 
sens.out$d0 output) for the control group when sgn(λ2λ3)=−1 
is increased at a step approximating 0.1 and thus can be 
displayed without specifying levels argument. However, 
the ACME values (i.e., the first 9 values of the sens.out$d1 
output) for the treated group when sgn(λ2λ3)=−1 is changed 
at steps significantly different from 0.1, thus we need to 
specify the levels for displaying more contours. 

> par(mfrow=c(2,2))

> plot(sens.out, sens.par = "R2", r.type = "residual", sign.
prod = "negative",levels=c(sens.out$d0[1:10],sens.
out$d1[1:10]))

> plot(sens.out, sens.par = "R2", r.type = "total", sign.
prod = "positive",levels=c(sens.out$d0[10:19],sens.out$
d1[10:19]),ylim=c(0,0.08),xlim=c(0,0.55))

The bold line represents various combinations of R2 
statistics where ACME takes the value zero (Figure 5). In the 
example, the value of ACME under sequential ignorability 
assumption is not statistically significant, thus the degree 
of confounding where ACME would be zero is of limited 
interest. In other situations, where ACME is statistically 
significant, the critical point of the degree of confounding 
where ACME takes zero is of great interest because beyond 
this point the effect size is in opposite direction (i.e., the 
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sign is changed). However, there is no cutoff value for the 
statistics of confounding (i.e., ρ and combinations of R2 
statistics) to judge the robustness of CMA results estimated 
under ignorability assumption. 
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