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Abstract: Research questions in translational microbiome studies are substantially more complex than their 

counterparts in basic science. Robust study designs with appropriate statistical analysis frameworks are pivotal to 

the success of these translational studies. This review considers how study designs can account for heterogeneous 

phenotypes by adopting representative sampling schemes for recruiting the study population and making careful 

choices about the control population. Advantages and limitations of 16S profiling and whole-genome sequencing, 

the two primary techniques for measuring the microbiome, are discussed followed by an overview of bioinformatic 

processing of high-throughput sequencing data from these measurements. Practical insights into the downstream 

statistical analyses including data processing and integration, variable transformations, and data exploration are 

provided. The merits of regularization and ensemble modeling for analyzing microbiome data are discussed 

along with a recommendation for selecting modeling approaches based on data-driven simulations and objective 

evaluation. The review builds on several recent discussions of study design issues in microbiome research but with 

a stronger emphasis on the downstream and often-ignored aspects of statistical analyses that are crucial for bridging 

the gap between basic science and translation.
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Introduction: the microbiome in translational 
medicine

The readily modifiable and dynamic nature of the 
microbiome and its close interactions with every major 
systemic component of the human body makes it a 
promising target for translation into medical practice. 
In the years following the completion of the National 
Institutes of Health’s human microbiome project (1), 
there has been a large volume of research identifying 
and cataloging the microbiome in physiological and 
pathological states including metabolic disorders (2) 
[obesity (3,4), diabetes (5), metabolic syndrome (6)], 
autoimmune disorders  (7,8)  [ inflammatory bowel  
diseases (9,10),  multiple sclerosis (11),  rheumatic  
disease (12)], infectious diseases (13) [upper and lower 
respiratory tract infections (14), candidiasis (15,16), 
urinary tract infections (17), secondary infections following 

cystic fibrosis (18) and HIV infections (19)], cancer (20,21) 
and cancer-related infections (22), lung and stem-cell 
(23,24) transplant-related infections and long-term effects 
of antibiotic-associated dysbiosis (25) [Clostridium difficile 
infections (26)].

U n d e r s t a n d i n g  t h e  m i c r o b i o m e  i s  b e c o m i n g 
increasingly relevant across the translational spectrum 
because of its potential  roles in multiple medical 
applications and as a therapeutic intervention by itself. 
The microbiome can serve as a diagnostic adjunct to 
traditional clinical and laboratory measures (23,27-29), a 
determinant of treatment-response (30), a window into 
the side-effects of exposure to antibiotics (25), a baseline 
measurement prior to the initiation of therapy (31), and 
a signature of immune processes such as inflammation 
(23,32). Furthermore, it can be used to guide nutrition 
and preventive interventions (33), monitor the severity, 
progress ion or recovery from disease (34) ,  track  
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treatment-outcomes (35), and identify small-molecule 
drugs (36) and mechanisms of pathogenesis which can 
then be targeted for therapeutic interventions (37).

The diverse ways in which the microbiome can be 
integrated into translational studies leads to the equally 
diverse technical challenges in designing these studies 
and the associated statistical analyses. A large body of 
work in the field has addressed day-to-day operations (38) 
involved in performing microbiome studies in research and 
epidemiological settings (39,40) including sample collection 
and storage (41-43), laboratory protocols for sample 
processing (40,44), choice of microbiome sequencing 
protocols (45) and the computational infrastructure required 
for data processing and storage (46,47). This review builds 
on these discussions while specifically focusing on the 
design of translational microbiome studies and development 
of downstream statistical analysis plans which answer 
complex questions in a translational setting and inform early 
and late-phase clinical trials. 

Making informed decisions: study design

Because studies cannot include entire populations, it is 
crucial to define the target population of interest and then 
draw a representative study sample to ensure that the 
findings from the study are generalizable (48). Given the 
complex disease targets that translational studies attempt 
to understand, it is inevitable that diseased populations of 
interest are heterogeneous in their clinical phenotypes. 
While heterogeneous phenotypes could enable investigators 
to understand several facets of a disease spectrum, the 
presence of heterogeneity dilutes the statistical estimates 
of effect sizes of the microbiome. This problem is 
compounded by the fact that typical effect sizes of individual 
members of the microbiome are weak. The dilution of 
effect size estimates is even more acute for diseases with 
several complex phenotypes. If there is prior evidence for 
substantial clinical heterogeneity or if there are theoretically 
defined subpopulations with different disease characteristics 
within the population of interest, it is prudent to prioritize 
specific aspects of the disease to study and recruit a 
relatively homogeneous study population. For example, 
in a study examining the role of the microbiome in the 
development of pneumonia, it could be beneficial to focus 
on the most common type of pneumonia in the patient 
population rather than trying to profile all of the different 
etiological types. This can be achieved by specifying well-
defined inclusion and exclusion criteria based on respiratory 

cultures such that only patients meeting the culture criteria 
for a specific etiology are included in the study (23). Such a 
targeted recruitment of patients increases the power of the 
study and is a judicious use of limited resources.

The choice of controls is a challenging question and is 
determined by the purpose of the study. In a diagnostic 
study, the typical goal is to find a discriminating microbiome 
signature that would aid in the accurate differential diagnosis 
of two very close conditions. A good control population in 
this case includes patients with a clinical phenotype that is a 
clear contrast to either of the two conditions of interest. For 
example, when studying pneumonia and tracheobronchitis 
which are two closely related and almost indistinguishable 
culture-positive conditions that occur in patients admitted 
to the intensive care unit or in lung transplant recipients, 
the control population could comprise patients with 
asymptomatic colonization confirmed by culture (23). When 
the microbiome is utilized for monitoring the severity 
or progression of a disease or the efficacy of a treatment 
process, patient subsets with either less severe disease or 
lower treatment-response could be used as controls. In 
studies that investigate microbiome-host interactions to 
identify pathways and small-molecules of interest to pursue 
for drug discovery, a valuable control group could be one 
which is completely free of disease. Multiple control groups 
recruited on the basis of a variety of criteria and methods 
could offer more insight into the heterogeneous effects 
of the microbiome compared to studies with only a single 
control group (49). 

An important aspect of study design is determining 
the timing and frequency of sample collection from the 
study population. If the goal is to discover and validate 
diagnostic microbiome signatures, it is most meaningful to 
collect cross-sectional samples from patients with clinically 
confirmed, early stages of the disease. On the other hand, 
if the goal is to monitor disease severity or treatment-
response, an appropriate design would incorporate 
temporally separated samples and repeated measurements 
from the same study subject. The frequency of sample 
collection in temporal study designs is often determined 
by factors such as the monetary resources budgeted for 
sample collection and storage, invasiveness of the sampling 
procedure, subject compliance to study protocol and in the 
case of retrospective studies, availability of samples from 
a pre-existing biorepository (40). Samples retrieved from 
a biorepository might not be uniformly separated in time, 
an aspect that needs to be accounted for while interpreting 
study findings. 
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While understanding the microbiome might be the 
central focus of the study, concurrent clinical, laboratory 
and “omics” measurements from the study play a crucial 
role in expanding the scope of microbiome-related findings 
by placing them in the context of disease pathways and 
pathological mechanisms. Non-microbiome measurements 
that encode disease phenotypes as continuous rather 
than categorical variables allow for more robust analyses 
and inference. For example, in a study investigating the 
role of the microbiome in obstructive or restrictive lung 
disease, periodic assessments of FEV1, lung density, airway 
dimensions and pulse oximetry, which are continuous 
surrogates of disease (50),  are substantially more 
informative than a categorical assessment of disease severity 
based on clinical records. Studies can similarly benefit from 
the inclusion of high-resolution measurements of disease 
phenotypes obtained using smartphone-connected digital 
monitoring devices (51) that are increasingly becoming 
popular in healthcare.

Measuring the microbiome: taxonomy and 
function

A vast majority of studies have focused on the bacterial 
and, to a lesser extent, on the fungal microbiome. Research 
on the viral microbiome has been limited (52) and is, 
in part, due to the technical challenges associated with 
measuring viruses. We first discuss the measurement issues 
surrounding the bacterial and fungal microbiome and then 
briefly address the measurement of the virome.

The most common method of profiling the bacterial 
microbiome thus far has been to sequence one or more of 
the variable regions of the highly conserved gene that codes 
for the small-subunit (16S) of the ribosomal RNA (rRNA) 
in the bacterial kingdom (53). The variation in the base pairs 
within the less-conserved regions of the 16S gene enables the  
identification of bacteria. Similarly, the fungal microbiome 
has been profiled by sequencing the internal transcribed 
spacer (ITS) (54) DNA located between the small and the 
large ribosomal subunit genes. Profiling the 16S (and ITS) 
variable regions enables researchers to catalog the taxonomic 
composition of the bacteria (or fungi) in the samples, up to a 
genus-level resolution. However, the information contained 
in these short sequences do not directly reveal if these 
bacteria (or fungi) are alive, or provide information about 
their metabolic states or their functions within living systems 
(55,56). Additionally, sequence read-counts do not directly 
correlate with the absolute bacterial load in the samples, in 

part, due to the variable copy numbers of the 16S gene in any 
given organism, dissimilarities of the universal 16S primers to 
the target genes of some of the microbes, and amplification-
related artefacts introduced by the polymerase chain reaction 
(PCR), which is used to extract and amplify the 16S DNA 
fragments prior to sequencing (38). Even though 16S 
profiling continues to become progressively inexpensive for 
large-scale sequencing of samples taken from sizeable clinical 
populations, it does not entirely meet the requirements of 
translational studies in which it is necessary to characterize 
the microbiome in terms of its strain-level composition (57), 
metabolic state, and transcriptional profiles. These facets 
help investigators understand host-pathogen interactions 
and inform the design of microbiome-based interventions in 
which specifically chosen microbial strains are administered 
to patients to repair dysbiotic disease-related microbial 
communities. 

The limitations of 16S profiling are, in part, addressed 
by metagenomic sequencing (56) in which whole genomes 
of microbes in biological samples are fractionated and 
sequenced in a shotgun manner. Since bacterial (and fungal) 
genomes can have a wide range of genomic sizes, a large 
number of sequencing reads per sample (i.e., sequencing 
depth) is required for attaining sufficient coverage of all 
genes in a community of microbes. Sequencing depth 
also determines the number of organisms in the samples 
for which whole-genome profiles can be completely 
indexed (58). The most distinct advantage of metagenomic 
sequencing is the ability to use the sequencing reads 
to construct a catalog of genes in a sample and use 
this information to arrive at species and strain-level 
identification (56). Additionally, the relative gene-content 
enables a direct profiling of the functional attributes of the 
organisms in the sample. The drawbacks of metagenomic 
sequencing stem from its substantial cost which increases 
with the depth of sequencing and the number of samples. 
Lower sequencing depths result in the complete profiling 
of only the most abundant species in a sample and thus 
limit the scope of this approach in translational studies 
where detection of sparsely distributed and yet substantially 
influential pathogenic strains is of interest. Since strains 
can be genetically and thus functionally quite different 
from each other, strain-level identification can pinpoint 
gene functions or single-nucleotide polymorphisms (SNPs) 
that are specific to the strain (57). This information can 
help detect genetic and metabolic changes in strains under 
varying interventions or, prospectively, over time. Strain 
analysis can also detect microevolutionary developments 
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such as mutation hotspots or horizontal gene transfers in 
the microbial genetic framework (59). 

The choice between 16S and metagenomic sequencing 
is dictated by both the core objectives of the study and 
the resources available to the investigator (56). If the goal 
is an in-depth characterization of the top 20 to 50 most 
abundant bacterial species or strains along with their 
functional and metabolic profiles, metagenome sequencing 
offers distinct advantages. However, if the objective is to 
develop diagnostic signatures or monitor changes in the 
entire microbiome community, 16S sequencing is a better 
alternative. Translational studies also have the choice of 
including concurrent measurements such as metabolomics 
and proteomics to supplement findings from 16S profiling. 
While these measurements increase the informativeness of a 
study, a carefully developed statistical framework is required 
to integrate these data sources to construct a more complete 
view of the microbiome along with its functional profile.

Unlike the bacterial and fungal microbiome, the virome 
can be measured only after substantial enrichment and 
purification of circulating viral particles and elimination 
of non-viral nucleic acids typically using nucleases (52,60). 
However, these methods do not recover intracellular latent 
viruses and double-stranded DNA viruses (61). A majority 
of virome studies have thus focused on RNA viruses and, 
as a result, the diversity and function of the human virome 
is not completely understood. After sequencing has been 
performed for profiling bacterial, fungal or viral populations, 
assigning these sequences to known taxonomic categories 
requires the availability of good public databases containing 
reference sequences of a large number of organisms with 
known positions in the phylogenetic tree. While these types 
of databases continue to improve at an impressive rate for 
bacterial and fungal microbiomes, databases for viromes 
have lagged behind. Once the composition and diversity 
of the human virome is more comprehensively cataloged, 
investigators can expect rapid advances in understanding 
the dynamics of the virome in diseased and healthy states.

Measuring the microbiome: quality control and 
data processing

Calibration and continual monitoring for sample 
contamination and sequencing artefacts are cornerstones 
to internal validity and accurate quantification of 
the microbiome. An effective strategy to track any 
contamination is to include negative controls such as blank 
water or reagent samples in the processing workflow (62). 

Negative controls are run through the same PCR-based 
template extraction and amplification steps as those used 
for processing study samples. Blank reagent controls test 
reagents for any inadvertent background contamination. 
After sequencing, comparisons of reads from the negative 
controls with the reads from the study samples provide 
information on whether reagent and/or processing-related 
contamination exists in the samples. Even if reads from the 
negative controls are negligible, the researcher may opt for 
a conservative route and remove any background signals 
by subtracting the negative control reads from the reads 
associated with study samples prior to downstream analysis.

Unlike negative controls, positive controls help calibrate 
the sequencing method. Two types of positive controls are 
usually included in the sequencing workflow. The simplest 
positive control is usually comprised of pure strains of 
Escherichia coli (E. coli) which produce strong PCR bands 
of a known size. Inspecting the PCR bands from the E. 
coli samples and the subsequent sequencing reads verifies 
whether the PCR amplification and the sequencing steps 
target both the expected organisms and the expected size 
of fragments of the 16S gene and, additionally, yield the 
desired number of reads of these organisms. Using the 
E. coli controls enables a qualitative comparison of PCR 
efficiency of the positive controls relative to the negative 
controls and the study samples. 

The second type of positive control consists of synthetic 
mock microbial community samples from the Biodefense 
and Emerging Infectious Research (BEI) Resources of the 
American Type Culture Collection (ATCC) (Manassas, VA, 
USA) (63). Two variants of the mock community are usually 
included in the sequencing workflow, the first containing 
equimolar concentrations of rDNA operons within the 
genomic DNA from 21 bacterial strains and the second 
with the molar rDNA operon concentrations staggered by 
up to 1,000-fold across the 21 strains. By sequencing these 
controls in each sequencing plate and run, and examining 
the resulting reads, investigators can ensure that their 
amplification, sequencing and taxonomic classification 
protocols have not introduced substantial bias or distortions 
in the expected microbiome profiles.

While the inclusion of  controls  in the sample 
processing workflows can help monitor for contamination 
and correct for sequencing-related skews, HTS platforms 
come with their own share of challenges embedded in data 
generation (64,65). Errors can be introduced during the 
preparation of the template or sample libraries, sequencing, 
imaging or data analysis. Several of the errors associated 
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with HTS platforms are stabilized and corrected by post-
sequencing read demultiplexing (i.e., assigning sequence 
reads to samples) and quality-checking software designed 
by the platform manufacturers. However, several other 
errors and biases that persist after the initial quality checks 
need to be carefully identified and filtered out prior to 
taxonomic classification of the reads. Reads are classified 
into taxonomic categories using bioinformatic algorithms 
that operate in a sequential manner to (I) trim bases from 
the edges of the sequence reads that have been flagged as 
low-quality or less informative by the sequencing platform; 
(II) stitch paired reads together into one contiguous read 
(contigs), if the target DNA of interest was sequenced 
in two segments (also called paired-end sequencing), 
or construct several contigs if shotgun sequencing was 
performed; (III) remove sequencing artefacts such as 
chimeras, which consist of merged sequences from two 
distinct organisms inadvertently spliced together at the 
PCR stage; (IV) in the case of 16S profiling, filter out 
non-16S DNA by comparison with reference databases; 
and (V) assign taxonomic identities to the sequences in a 
probabilistic manner by comparing the sequences (or gene-
content in case of shotgun sequencing) to those present in 
reference databases. Several such sequential bioinformatics 
workflows or pipelines for sequence processing and 
taxonomic assignment are available for 16S profiling (66-70) 
and metagenomic sequence analysis (71-76). While there 
are pros and cons to using each of these existing workflows, 
there are also large-scale evaluations and comparative 
studies that discuss the strengths and limitations of each 
of these pipelines under various conditions (77-80). An 
in-depth review of these evaluations, in consultation 
with bioinformatics experts, is recommended so that the 
investigators can adopt the most appropriate workflow for a 
given set of measurement choices made within a study.

Statistical considerations in microbiome 
analysis: a roadmap

A variety of downstream statistical analyses are necessary 
to analyze taxonomic and functional characteristics of 
microbiome communities that were measured by either 
16S or metagenomic profiling. The design and choice 
of these statistical analyses is closely connected with the 
research objectives of the study. When examining the 
microbiome profiles of study samples, translational studies 
do not solely aim to catalog the microbial diversity or 
to arrive at a simple answer to the question of “What is 

different?” between any two groups of samples. Rather, 
translational study questions are substantially more complex 
such as, (I) how much does the microbiome add to the 
classification accuracy of existing clinical measures? (II) 
Which quantifiable aspect of the microbiome could be used 
to monitor treatment-response or the severity, progression 
or recovery from a disease? (III) Which strains, when 
introduced into an existing microbiome community, cause 
the least amount of disruption to the healthy microbiome 
while displacing the dysbiotic components? (IV) What are 
the microbiome signatures of a complex immune process 
such as inflammation or of particular aspects of disease 
pathogenesis? (V) Which components of the microbiome 
undergo dynamic changes, and do any of these changes 
reflect side-effects of a given treatment? 

A multi-layered and iterative approach to analysis that 
appropriately integrates the non-microbiome sources of 
data with the microbiome data is required to effectively 
answer these questions. While the design of these analyses 
in translational studies is dictated by study questions, 
the design process involves some common elements 
that includes exploring the data by getting to know the 
attributes of variables collected, applying the necessary 
transformations, normalizing their values, inspecting and 
summarizing the missing values, examining the relationships 
among these variables by descriptive summaries and 
visualizations, selecting the dependent and independent 
variables and the form of statistical models and finally, 
developing and implementing the statistical models that 
explore the study hypotheses and questions. Each of these 
elements is discussed below.

A careful evaluation of the nature and type of variables 
informs the course of data processing. Notwithstanding 
careful sample processing, the number of sequencing 
reads (or read-counts) is inherently non-uniform across 
samples (81). Thus, analyses performed on the raw read-
counts could identify significant differences in taxonomic 
composition between groups of samples, that are, in part, 
artefacts associated with the variability in sequencing depth 
across samples. Although there are analytical approaches, 
originally developed for RNA-sequencing and gene-
expression data, that attempt to adjust for differences 
in sequencing depth across samples (82), a more robust 
option, specifically for microbiome data, is to convert the 
sequence reads to proportions and then log-transform these 
proportions to bring the values corresponding to abundant 
and rare taxa to a similar dynamic range (83). These 
transformations substantially smooth out the non-uniform 
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variability of sequence reads across samples. 
While the number of sequencing reads per sample 

depends on the body site being studied as well as the 
number of samples pooled in a given sequencing run, 
studies typically aim for a sequencing depth that saturates 
the rarefaction curve for the sequencing platform. 
However, rarefaction curves vary across platforms and 
extremely rare members of the microbiome which 
correspond to taxa with substantially fewer reads 
(sometimes as few as 20 to 50 reads) are more likely 
to be artefacts of sequencing errors or clustering 
algorithms rather than genuine members of the microbial 
communities being profiled (84). Dropping these taxa from 
analysis is an effective way to diminish the impact of these 
errors. Additionally, dropping these rare taxa after the 
read proportions have been calculated, partially eliminates 
the correlation of read proportions across microbes 
and elicits more robust estimates from downstream 
statistical analysis. It is beneficial to avoid categorization 
of variables that are either naturally continuous or have at 
least ≥5 unique values because categorizing a continuous 
variable results in loss of information by mapping the 
underlying complex process that created the variable to 
an artificial simplistic decision process that motivated the 
categorization (85). Once the continuous and categorical 
variables in the analysis are coded as numeric constructs, it 
is advantageous to scale the continuous variables to mean 
0 and variance 1, which makes it easier for downstream 
statistical algorithms to detect associations in the data.

Missing data points are a cause for concern in any 
experiment as they introduce bias in measurements. It is 
thus informative to examine the pattern of missingness 
in the data. If the missingness is not correlated with any 
particular variable and exists in only a few samples, it 
is worth adopting multiple imputation schemes (85) to 
impute the missing values in the interest of retaining as 
many samples as possible for data analysis. However, if a 
large number of values are missing for a specific variable, 
imputation is likely to bias the results. In these cases, it is a 
reasonable choice to exclude the variable from the analysis.

Following the initial data processing, it is necessary 
to identify the key independent and dependent variables 
related to the primary research questions in the study. 
Descriptive summaries of these variables stratified by 
clinical characteristics help examine the distribution 
of these variables. Similarly, summaries stratified by 
experimental or technical variables such as the sequencing 
run, batch, time of processing etc., enable the identification 

of any measurement biases. Visualization of the dependent 
variables in relation to the independent variables using a 
variety of graphical representations (86) such as boxplots, 
histograms etc. allows the investigator to assess the central 
and extreme values and the distribution of these variables, 
check assumptions about the data and verify that the 
assumptions are consistent with pre-existing knowledge 
in the field. Defining a color palette (87) for the variables 
of interest at the exploratory stage and consistently 
associating specific variables with this color palette 
throughout the analysis enhances clarity of the visualization. 
For microbiome datasets which are high-dimensional 
(i.e., number of measured microbes is far greater than 
the number of study subjects), it is advantageous at the 
exploratory stage to plot summary measures that represent 
the state of the microbiome such as the Shannon (88) or the 
inverse Simpson (89) diversity index, rather than visualize 
each microbe, one at a time. 

The complexity of questions in a translational study 
makes it unlikely that a single statistical model would 
adequately answer all facets of the study question. In 
other words, no single hypothesis or model is guaranteed 
to capture the true relationships among the microbiome 
and other measurements that have been collected as 
part of the study (90). As a result, it is useful to design 
multiple statistical models using several combinations 
of independent-dependent variables that best address 
the study question based on domain knowledge and 
investigator-generated hypotheses. For example, in a study 
on pneumonia that has measured both the microbiome 
and immune-function in the form of multiplexed cytokine 
assays, the immune-function measurements can be seen 
as representing the intermediate functional pathways 
through which the disease processes of pneumonia 
are influenced by the microbiome or, alternatively, the 
mechanism through which the microbiome is shaped by 
the disease process. These hypotheses can be tested using 
two types of models. In the first, each of the disease-related 
phenotypes is modeled as the dependent variable with the 
microbiome, cytokines and other clinical measurements 
as the independent variables. In the second, each of the 
cytokines is modeled as the dependent variable. Thinking in 
advance about how the model findings would be interpreted 
and how they might answer study questions, simplifies the 
design of models. 

Design choices made in the encoding of variables can 
help get the most out of statistical modeling. If a variable 
is continuous, using it directly in the model is substantially 
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more informative than using either a categorical or 
binary encoding of the variable (85). This is true for 
both dependent (also called response) and independent 
variables. Using a binary response such as disease/no-
disease constrains the analysis to use a classification model. 
While such a model is able to identify microbes that are 
differentially expressed across disease and no-disease 
categories, more robust estimates of the effects of microbes 
on the disease process can be obtained by using a model 
that employs a continuous phenotype of the disease as the 
response, and is thus closer to the underlying biology. If 
the model findings, obtained using a continuous response, 
reveal a monotonic relationship between the response and 
a given microbe, it strongly suggests that the microbe is 
dynamically related to the response. Such insights into 
the dynamic relationships between the microbiome and 
the disease process can, in part, address limitations of 16S 
profiling which is not able to unambiguously reveal if the 
microbes being studied are alive or dead. If gene-expression 
and/or functional profiles from metagenomic sequencing 
are also available, then a continuous response model could 
determine whether a microbe is upregulating specific genes 
and/or functional pathways. Carefully selected continuous 
responses that accurately represent the disease phenotype or 
treatment-response in translational studies could be valuable 
for bridging the gap between complex research findings and 
clinical trial designs with simple patient-response endpoints.

Just as there are several plausible models that can 
explain the underlying biology, there are several strategies 
to estimate these models. However, before proceeding 
to estimation, it is important to consider the unique 
characteristics of data comprised of microbiome variables 
and any accompanying “omics” variables measured using 
HTS platforms. These data are high-dimensional in 
nature, with the total number of variable measurements 
far exceeding the number of samples, often by two to 
three orders of magnitude. Given p variables, there is an 
exponential number (2p) of variable combinations that could 
explain the response (91). Furthermore, these variables are 
multicollinear with complex covariance structures. Such 
high-dimensionality and multicollinearity leads to several 
challenges in model estimation. Univariate approaches 
that perform hypothesis testing, one variable at a time, 
underutilize data by not evaluating effects of variable 
combinations, assuming the orthogonality of variables and 
ignoring the covariance structure. While a multivariable 
regression model can address multicollinearity, it can result 
in a large number of inflated coefficients that overfit the 

data and do not generalize to new settings. Additionally, 
building a single multivariable model ignores the many 
alternative models that are also plausible. Given these 
challenges, model estimation for microbiome and HTS data 
in translational studies needs to employ towards a strategy 
that incorporates multicollinearity, avoids overfitting by 
incorporating coefficient penalties, combines evidence 
from a large number of models and estimates coefficients 
with low variability even with low sample sizes. Ensemble 
models with penalization (also called regularization) meet 
all of these criteria (83). By imposing an explicit cost on 
inflated coefficients, penalized regression improves the 
generalizability of model findings. Instead of using point 
estimates to summarize the data, ensemble models can 
aggregate coefficient estimates over a large collection of 
models to generate a stable list of influential variables 
ordered by their importance to the response while also 
generating confidence estimates for these coefficients. 
Examples of such ensemble models include frequentist 
approaches such as random forests (92) and elastic 
net regression (93) with stability selection (94), which 
aggregates information over multiple models estimated on 
bootstrap resamples of the data, and Bayesian approaches 
that employ either Markov chain Monte Carlo (MCMC) 
sampling (91) or variational approximations (95) to sample 
and combine estimates over a high-dimensional space of 
models. 

An objective approach to determine the most accurate 
model for the data of interest is to conduct an evaluation 
of all available methods on a simulated dataset that very 
closely resembles the characteristics of the microbiome 
and the HTS data under study (83). The simulation pre-
specifies the true relationships between the response and 
the independent variables so that model performance 
can be calibrated against this pre-determined truth. 
Since the data used for simulation mimics actual data, it 
provides a meaningful assessment of model performance 
on real datasets. Embedding evaluation-based selection 
of estimation techniques into translational study designs 
reduces guesswork and enables investigators to choose 
a single best method for any given study dataset with an 
emphasis on consistent and accurate performance.

Conclusions

Microbiome research has been making steady inroads into 
translational studies over the past decade, at a rate that 
has far outstripped genomics and other high-throughput 
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technologies. Appropriate study design and statistical 
analysis within translational studies have the potential to 
inform a number of aspects in clinical trial-design such as 
inclusion and exclusion criteria for patient populations, 
choice of agent or regimen to be used as control, and 
definitions of primary endpoints. The current broad 
review of the technical considerations in study design and 
integrative statistical analysis of microbiome datasets in 
translational studies attempts to familiarize investigators 
in the field with the practical limitations of the current 
techniques for microbiome measurement and analysis along 
with potential approaches to successfully address these 
challenges.
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