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Although the generation of a human heart in vitro would 
be an attempt somewhat beyond human wisdom, many 
researchers are tackling the subject with enthusiasm, taking 
advantage of technological progresses in stem cell biology 
and bioengineering in recent decades. The discovery of 
human induced pluripotent stem cells (hiPSCs) (1) was a 
paradigm shift on this research field which opened the door 
to employ abundant human heart cells (cardiomyocytes, 
vascular cells and so on) as a source of autologous or 
allogeneic engineered human heart constructs, which have 
never been possible with stem cell populations reported so 
far. Novel protocols to efficiently induce heart cells from 
hiPSCs (2-4), and bioengineered methods to reconstruct 
the 3-dimensional (3-D) heart based on porous biomaterials 
(5-11), decellularized heart (12) or scaffold-free approaches 
such as cell sheet technologies (3,13-15) are under 
investigation. 

Generation of human heart tissues, a partial achievement 
of the whole heart reconstruction, is thought to give rise 
to valuable fundamentals for the new frontiers in the 
treatment of severe heart diseases resistant to conventional 
therapies from two standpoints. The first point is the 
establishment of transplantable heart tissues which may 
compensate the impaired cardiac function due to heart 
injury associated with myocardial infarction or idiopathic 
dilated cardiomyopathy which are representative cardiac 

disorders leading to severe heart failure requiring heart 
transplantation. The establishment of functioning heart 
tissue in vitro would serve as a new technological basis for 
cardiac regenerative therapy in which numerous attempts 
including intracoronary of myocardial injection of stem 
cell populations and their progenies possessing cardiogenic 
potential have been carried out with rather disappointing 
results. The second point is the substantiation of the cardiac 
biology, physiology and physics in vitro which can be used 
as a toolbox for drug discovery and the elucidation of the 
etiology of heart diseases which is restricted because of 
rather limited opportunities in obtaining diseased human 
heart samples from surgical resection or biopsy. 

A crucial requirement for the better quality of the 3-D 
construct suitable for the abovementioned two applications 
is the maturation of the tissue. Cardiac cells differentiated 
from hiPSCs mostly used for recent studies in this research 
field are juvenile and immature, and have only acquired 
characteristics of terminally differentiated cell lineages for 
1–2 months. These cells are equivalent to cells at the fetal 
stage at the first trimester of pregnancy (7-10). It has been 
reported that the electrophysiological properties of the 
vast majority of hiPSC-derived cardiomyocytes lack the IK1 
current leading to immature repolarization capacity (16) 
which encourages researchers to drive cellular maturation, 
and also maturation as a tissue. During the early embryonic 



Masumoto and Yamashita. Stem cell-engineered heart tissue maturation

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):87atm.amegroups.com

Page 2 of 3

development, the primitive heart tube composed of 
endocardium and myocardium layers derived from the 
lateral plate mesoderm starts to be compartmentalized 
along with looping, leading to the formation of the nascent 
heart organ (17). In this process, the volume and number 
of cardiomyocytes and other cardiac cells drastically 
increase to form a myocardial structure with enough 
thickness comparable to functional heart tissue. What 
kind of mechanisms are taking place in this early stage of 
heart development to drive the maturation of heart tissue? 
It would be a reasonable approach to apply this innate 
system during early embryonic heart development to drive 
engineered tissue maturation by putting the artificial tissue 
in culture conditions that recapitulate the dynamic physical 
microenvironment of early heart development. 

Recently, Ruan et al. reported a unique method to achieve 
tissue maturation using the novel combination of physical 
stretch and electrical stimulation to a bioengineered heart 
tissue composed of hiPSC-derived cardiomyocytes and 
collagen I (11). The combination of physical stretch and 
electrical stimulation, possibly inspired by the bona fide 
processes of early heart development, is a new insight into 
this research field to pursue stem cell-derived 3-D tissue 
maturation. They indicated that static physical stretch 
enhanced contractile force, cellular and extracellular 
matrices (ECMs) alignment, tissue tensile stiffness, cellular 
size and SERCA2 expression which indicated maturation 
of the sarcoplasmic reticulum. They also reported that the 
addition of electrical stimulation further promoted tissue 
force production with unchanged cellular alignment and 
cell size, suggesting that the combination of physical stretch 
and electrical pacing promoted the maturation of excitation-
contraction coupling. These intriguing findings imply that 
the closer recapitulation of innate developmental systems 
associates with higher effects on tissue maturation. 

We may propose two perspectives of physical training 
which may further simulate or modify the innate 
developmental system and subsequently promote the 
tissue maturation. The first perspective is external cyclic 
stretching (not only static stretching by anchoring both 
edges of the tissue). A previous report of external cyclic 
stretching on bioengineered tissue showed positive 
results in increased gap junction formation and calcium 
handling (18). Considering another report that a pacing 
frequency higher than the intrinsic beating rate led to a 
more matured phenotype of cardiomyocytes among tissue 
structure including promoted calcium handling and IK1 
current (8), non-physiological stimulation would accelerate 

tissue maturation, and it is worth attempting as long as it is 
guaranteed that the physical stress would not affect cellular 
viability, or promote undesirable cellular migration or other 
adverse effects. Another perspective is the supplementation 
of other cell lineages consisting native heart tissue such as 
vascular cells (vascular endothelial cells or vascular mural 
cells), or stromal cell lineages (e.g., cardiac fibroblasts) 
besides cardiomyocytes. Cell sheet experiments or 3-D 
engineered cardiac tissue experiments have shown that the 
co-existence of vascular cells with cardiomyocytes within the 
structure promotes reinforced secretion of humoral factors 
working on tissue repair, cellular alignment or sarcomeric 
maturation (7,19). A report from Tulloch et al. (same 
group as that of Ruan et al.) also indicates the additional 
effect of non-myocytes in which the supplementation with 
endothelial cells enhanced cellular alignment especially 
under conditions of cyclic stretching (20). These results 
indicate the importance of co-existence of various cardiac 
cell lineages among the 3-D construct, and that the addition 
of electrical stimulation potentially further enhances tissue 
maturation. 

It still remains unclear what is indispensable to achieve 
tissue maturation comparable to the native adult heart 
tissue. What we learned from literatures and the recent 
report from Ruan et al. would be that a multidisciplinary 
approach is required to resolve this challenge considering 
the complex machinery of human heart development under 
various stage-specific physical and physiological conditions 
which may affect cellular proliferation and lineage 
specification as well as maturation. Untiring steps may 
pioneer the frontier. 
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