
Page 1 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Big-data Clinical Trial Column

Hierarchical cluster analysis in clinical research with heterogeneous
study population: highlighting its visualization with R

Zhongheng Zhang1, Fionn Murtagh2,3, Sven Van Poucke4, Su Lin5, Peng Lan6

1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Big Data

Lab, University of Derby, Derby, UK; 3Goldsmiths University of London, London, UK; 4Department of Anesthesia, Critical Care, Emergency

Medicine and Pain Therapy, Ziekenhuis Oost-Limburg, Genk 3600, Belgium; 5Liver Research Center, First Affiliated Hospital of Fujian Medical

University, Fuzhou 350005, China; 6Department of Critical Care Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine,

Hangzhou 310016, China

Correspondence to: Zhongheng Zhang. No 3, East Qinchun Road, Hangzhou 310016, China. Email: zh_zhang1984@hotmail.com.

Abstract: Big data clinical research typically involves thousands of patients and there are numerous variables

available. Conventionally, these variables can be handled by multivariable regression modeling. In this article, the

hierarchical cluster analysis (HCA) is introduced. This method is used to explore similarity between observations

and/or clusters. The result can be visualized using heat maps and dendrograms. Sometimes, it would be interesting

to add scatter plot and smooth lines into the panels of the heat map. The inherent R heatmap package does not

provide this function. A series of scatter plots can be created using lattice package, and then background color of

each panel is mapped to the regression coefficient by using custom-made panel functions. This is the unique feature

of the lattice package. Dendrograms and color keys can be added as the legend elements of the lattice system. The

latticeExtra package provides some useful functions for the work.

Keywords: Hierarchical cluster analysis (HCA); dendrogram; clinical research; heat map

Submitted Sep 19, 2016. Accepted for publication Jan 18, 2017.

doi: 10.21037/atm.2017.02.05

View this article at: http://dx.doi.org/10.21037/atm.2017.02.05

Introduction

Hierarchical cluster analysis (HCA), also known as
hierarchical clustering, is a popular method for cluster
analysis in big data research and data mining aiming to
establish a hierarchy of clusters (1-3). As such, HCA
attempts to group subjects with similar features into
clusters. There are two types of strategies used in
HCA: the agglomerative and the divisive strategy. With
agglomerative clustering directing from “the leaves” to
“the root” of a cluster tree, the approach is called a “bottom
up” approach (4). Divisive clustering is considered a “top
down” approach directing from the root to the leaves. All
observations are initially considered as one cluster, and
then splits are performed recursively as one moves down
the hierarchy.

Clinical research is usually characterized by heterogeneous
patient populations despite the use of long list of inclusion/

exclusion criteria (5,6). For instance, sepsis and/or septic
shock are typically treated as a disease entity in clinical
trials. However, there are significant heterogeneities in
patients with sepsis with respect to infection sites, coexisting
comorbidities, inflammatory responses and timing of
treatment (7,8). Traditionally, these factors are considered as
confounding factors and can be addressed by multivariable
regression modeling (9). However, such a method primarily
focuses on prediction and adjustment, and fails to classify a
mixed population into a more homogeneous one. Clustering
analysis aims to classify mixed population into more
homogenous groups based on available features. Each cluster
has its own signature for identification (10,11). For instance,
investigators may be interested in how physiological signals
predict differently on the occurrence of subacute events (e.g.,
sepsis, hemorrhage and intubation) in intensive care unit
(ICU). For instance, physiological signatures of hemorrhage
were found to be similar in patients from surgical and medical

Zhang et al. HCA in clinical research

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Page 2 of 11

ICU, indicating similarity between these two subgroups (12).
In this article, we aim to provide some basic knowledge on
the use of HCA and its visualization by dendrograms and
heat maps.

Understanding HCA

Suppose the data consists of four observations (x1 to x4) and
each contains two feature variables (a, b).

> df<-matrix(c(1,2,4,3,2,1,7,9),nrow=4)

> rownames(df)<-c("x1","x2","x3","x4")

> colnames(df)<-c("a","b")

> df

a b

x1 1 2

x2 2 1

x3 4 7

x4 3 9

The matrix df is consistent with the output of a
case report form (CRF) where each row represents an
observation, and a column represents a variable (features).
To facilitate a clear understanding, we assigned two-
dimensional features to the observations. During the first
step, the distance between the observations is calculated.

> dist(df)

x1 x2 x3

x2 1.414214

x3 5.830952 6.324555

x4 7.280110 8.062258 2.236068

The dist() function calculates the distance between each
pair of observations. There exist a variety of methods to
calculate the distance (Table 1) (13,14). By default, dist()
function uses Euclidean distance, and this can be modified
using the method argument. Next, Euclidean distance is
checked between x2 and x3:

() () () ()2 2 2 2
2 3 2 3 2 32

2 4 1 7 6.32x x a a b b− = − + − = − + − = ,	 [1]

which is exactly the value displayed in the above tabular
output.

From the dist() output table, it appears that x1 and x2 are
the closest to each other and they are merged at the first
step, leaving clusters {x1, x2}, {x3} and {x4} to be merged
further. At each step, clusters/observations with the shortest
distance are merged. Distance between clusters should be
defined. Additionally, there are different methods (also
called linkage criteria) to define the distance between two
clusters (Table 2). The default method in hclust() function
is the complete linkage clustering, in which the distance
between two clusters is the distance between those two
elements (one in each cluster) that are farthest away from
each other (15). The minimum distance between the
remaining set of observations/clusters was the one between
x3 and x4 (d=2.24). The distances between other pairs of
observations/clusters are: d({x1, x2}, x3) is 6.32, d({x1, x2},
x4) is 8.06. After combination of x3 and x4, there are only
two clusters {x1, x2} and {x3, x4}, and they are merged as
the latest. The results can be visualized with generic plot()
function.

> plot(hclust(dist(df)))

The height axis displays the distance between

Table 1 Methods to calculate distance between two observations

Names Equations

Euclidean distance () ()2 2

2i j i j i jx x a a b b− = − + −

Manhattan distance
1i j i j i jx x a a b b− = − + −

Maximum distance { }max ,i j i j i jx x a a b b
∞

− = − −

Mahalanobis distance () ()1T

i j i jx x S x x−− − , where S is the covariance matrix and ix and jx are variable vectors of ix and jx

xi and xj are ith and jth observations, where i and j are indices. a and b are feature variables.

Annals of Translational Medicine, Vol 5, No 4 February 2017 Page 3 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

observations and/or clusters (Figure 1). The horizontal bars
indicate the point at which two clusters/observations are
merged. For example, x1 and x2 are merged at a distance
of 1.41, which is the minimum distance among all other
distances. Observations x3 and x4 are merged at the value
of 2.24. Finally, {x1, x2} and {x3, x4} are merged by a
distance of 8.06. This easy example has illustrated the basic
principles underlying HCA.

Worked example

To illustrate how to perform HCA using R, we simulated
a worked example. In the example, there are five variables
(x1 to x5) represented by columns. Each row represents
a patient. There is a factor variable named “diag” to

categorize patients into different subgroups.

> nvar=5

> data<-data.frame(diag=factor(rep(c("Sepsis","AEC
OPD","Surgery","MODS","Poisoning"),50)))

> for (i in 1:nvar) {

data[[paste("x",i,sep="")]]<-rnorm(250)

}

> attach(data)

> data$y<-3*x1+2*x2-2*x3+x3^2-x4+x5^3-2*x5

> detach()

In real clinical research, the variables x1 to x5 can be
any continuous variable such as blood pressure, heart
rate, temperature and laboratory measurements. They
are centered by mean and scaled by standard deviation,
resulting in a normal distribution. The variable y can be an
outcome variable such as cost, length of stay in ICU and
hospital. If the outcome variable is binary, transformation to
an appropriate scale is required, e.g., the logit scale.

Statistical quantity

A variety of statistical quantities can be explored. In its
original design, HCA analyzes at individual level. Each
patient takes one row and each column represents one
feature variable. Such analysis provides information on the
similarity between individual patients. However, in big data
mining, typically thousands of patients are involved and it
is more feasible to explore features in subgroups. Summary
statistics such as median, mean, variance, correlation and
regression coefficients can be explored. In the present
example, suppose we are interested in the regression
coefficient of each feature variable for the outcome y. We

Table 2 Methods to calculate distance between two clusters

Names Equations

Maximum (complete linkage clustering) (){ }, , ,Max d a b a A b B∈ ∈

Minimum (single linkage clustering) (){ }, , ,Min d a b a A b B∈ ∈

Mean linkage clustering ()1 ,
a A b B

d a
A B ∈ ∈

∑∑ 

Centroid linkage clustering s tc c− where sc and tc are the centroids of clusters s and t, respectively.

a and b are elements belonging to clusters A and B, respectively.

Figure 1 A simple cluster dendrogram. The height axis displays
the distance between observations and/or clusters. The horizontal
bars indicate the point at which two clusters/observations are
merged. For example, x1 and x2 are merged at a distance of 1.41,
which is the minimum one among all other distances. Also, x3 and
x4 are merged at the value of 2.24. Finally, {x1, x2} and {x3, x4} are
merged and their distance is 8.06.

dist(df)
hclust (*, "complete"）

Cluster dendrogram

H
ei

gh
t

1

x1

x2
 x3

x4

5
3

7
2

6
4

8

Zhang et al. HCA in clinical research

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Page 4 of 11

do not attempt to adjust these models. As a result, we need
to fit regression models for each combination of feature
variables and subgroups (5×5=25). Fitting these models
one by one would be time-consuming and error-prone,
therefore an R syntax is needed that is able to repeat the
same regression model function. In R, it is not wise to use
loop functions, instead the lapply() can apply a user-defined
function across variables. Let’s see how it works.

> library(lme4)

> coeff<-lapply(data[,2:6],function(x) {

coef(lmList(y~x|diag,data=data.frame(x=x,y=data$y,di
ag=data$diag)))[2]

})

While the lapply() repeats the regression function
across variables x1 to x5, lmList() is employed to perform
regression analysis across subgroups (16). Note that the
first formula argument of lmList() allows a grouping factor
specifying the partitioning of the data according to which
different lm fits will be performed. The data argument
specifies the data frame containing the variables named in
the formula. Here we vary the data argument in each cycle,
ensuring each lm fit employs different feature variables.
The index [2] extracts regression coefficient of lm models.
Because the lapply() function returns a list, we need to
transform it into a data frame for further analysis.

> coefficient<-t(as.data.frame(coeff))

> varlist<-names(data[,2:6])

> row.names(coefficient)<-varlist

Also, the t() function is used to transpose the data frame,
making the rows represent variables and the columns
represent the subgroups. Next, we rename the row names
by using x1 to x5.

Heat map

A heat map is a graphical representation of data where the
individual values contained in a matrix are represented
as colors (17). The orders of columns and rows are
reordered to facilitate better presentation of dendrograms.
Dendrograms are used to describe the similarity between
clusters and/or observations. There are a variety of heat
map packages in R. heatmap() is a base function shipped
with R installation. Other heat map packages include

d3heatmap to create interactive heat maps, fheatmap to plot
high quality, elegant heat map using ‘ggplot2’ graphics,
heatmap.plus to allow non-identical X- and Y-dimensions,
heatmap3 to provide more powerful and convenient features,
and pheatmap to offer more control over dimensions and
appearance. In this case we use heatmap.2() function
contained in gplots package. It provides good control over
annotations and labels, and also draws a color key to map
data values to colors.

> library("gplots")

> heatmap.2(coefficient,ColSideColors=rainbow(ncol(co
efficient)),RowSideColors=rainbow(nrow(coefficient)),sr
tCol=45)

The heatmap.2() function first takes a numeric
matrix of the values to be plotted. The method used
to calculate distance can be specified using distfun for
distance (dissimilarity) between both rows and columns,
and hclustfun for computing the hierarchical clustering.
Suppose one attempts to use “minkowski” method for
distance calculation and “mcquitty” method for computing
clustering, the following code can do the task:

> heatmap.2(coefficient,

hclust(dist(coefficient,method="minkowski"),

method="mcquitty"),

ColSideColors=rainbow(ncol(coefficient)),

RowSideColors=rainbow(nrow(coefficient)),

srtCol=45)

ColSideColors argument takes a character vector of
length ncol(x) containing the color names for a horizontal
side bar that may be used to annotate the columns of x.
Here we used the rainbow color style for annotating the
columns. RowSideColors is used for vertical side bar with
the same usage as that of ColSideColors. srtCol argument is
used to control the angle of column labels in degrees from
horizontal. The result is shown in Figure 2. As indicated
by the color key, more negative values are represented by
more dark red color and positive values are represented by
light yellow. The histogram shows the number of values in
each color strip. The dendrogram shows the dissimilarity
between columns and rows. The results show that surgery
and poisoning patients are the most similar subgroups.
Variable x3 is negatively correlated with y across subgroups

Annals of Translational Medicine, Vol 5, No 4 February 2017 Page 5 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

and x1 is positively correlated with y.

Add scatter plot to the heat map

To better illustrate how variables correlate with outcome
y, it would be interesting to visualize scatter plots in
heat map. However, the aforementioned heat map
packages do not provide this function. One approach is
to draw each scatter plot within a panel with the lattice
package (18). Then background of each panel is filled
with colors corresponding to coefficient values. Also,
the dendrogram can be passed to the legend of xyplot()
function using dendrogramGrob function (19). The order
of lattice panels should be rearranged to the order that
is consistent with HCA. Finally, the strip labels can be
moved to the left and top of the plot. Next, let’s take a
close look at how each step is carried out and readers
can adapt these codes into their own needs.

Firstly, the data frame needs to be reshaped to be utilized
by the xyplot() function. The reshape2 package can do this
task perfectly. Because we change the wide format to long
format, only the melt() function is used.

> library(lattice)

> library(reshape2)

> m.data<-melt(data, id.vars=c("diag", "y"))

> head(m.data)

diag y variable value

1 Sepsis 2.8858013 x1 -0.3937166

2 AECOPD 3.3040682 x1 1.3065381

3 Surgery -1.2972116 x1 -0.5979787

4 MODS -0.2088301 x1 0.1037778

5 Poisoning -0.1218218 x1 0.0134908

6 Sepsis 10.9084870 x1 -0.3384164

Note that the variables x1 to x5 disappear and their
values are stacked on the value column. A new variable
named “variable” is created to denote the original variable
name x1 to x5. ID variables diag and y remain unchanged.

Next, we define the order of rows and columns according
to the HCA. With the help of the dist() and hclust()
function, this task can be easily done with several lines of
code. Furthermore, the users can visualize the dendrograms
and compare them with the results produced by heatmap.2()
function.

> dd.row <- as.dendrogram(hclust(dist(coefficient)))

> row.ord <- order.dendrogram(dd.row)

> dd.col <- as.dendrogram(hclust(dist(t(coefficient))))

> col.ord <- order.dendrogram(dd.col)

> par(mfrow=c(2,1))

> plot(dd.row)

> plot(dd.col)

Note that the dd.row and row.order correspond to the
variables x1 to x5, and the dd.col and col.ord correspond to
the subgroups (Figure 3). This is important for reordering
rows and columns of the coefficient data frame. The next
code reorders the rows and columns according to the HCA
order. The data frame coeff.order is then rescaled to ensure
that its values are integers. Such values can help to map
themselves to colors as defined by palette.

> coeff.order<-coefficient[row.ord,col.ord]

> scale.coef<-as.vector(round((coeff.order
-min(coefficient))*10+1))

One attractive feature of heat map is the use of colors

Figure 2 Heat map produced by heatmap.2() function with color
key. The light blue solid lines in the heat map correspond to the
value of coefficient. The dashed lines were the reference value
zero. There is a histogram in the color key showing the number
of coefficient values within each color bar (i.e., one color bar
represents a range of coefficient values). The orders of rows and
columns are rearranged to avoid intersecting of dendrogram lines.
It appears that surgery and poisoning patients are the most similar
subgroups.

x1

value

Color key
and histogram

-2 0

0
2

4
6

C
ou

nt

2

x5

x2

x4

x3

Sep
sis

Sug
er

y

AECOPD

M
ODS

Pois
on

ing

Zhang et al. HCA in clinical research

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Page 6 of 11

to highlight differences between individual elements.
Therefore, the color style is important to make the heat map
attractive and informative. In R colors can be represented
by index into palette, color name and hex constant. When
a col argument is assigned a vector of numeric index, each
numeric value represents one color in the vector of colors
defined by palette. To help readers better understand how
palette works in R, a series of simple examples are used by
varying color styles and some relevant arguments.

> par(mfrow=c(3,2))

> palette(rainbow(10))

> barplot(rep(1,10), yaxt="n",main="rainbow", col=1:10)

> palette(rainbow(10,start=0,end=0.7))

> barplot(rep(1,10), yaxt="n",main="rainbow (0-0.7)",
col=1:10)

> palette(heat.colors(10))

> barplot(rep(1,10), yaxt="n",main="heat colors",
col=1:10)

> palette(terrain.colors(10))

> barplot(rep(1,10), yaxt="n",main="terrain colors",
col=1:10)

> palette(topo.colors(10))

> barplot(rep(1,10), yaxt="n",main="topo colors",
col=1:10)

> palette(topo.colors(10,alpha=0.7))

> barplot(rep(1,10), yaxt="n",main="topo colors (al-
pha=0.7)", col=1:10)

The output is shown in Figure 4. There are a variety of
color styles to select. In the figure we show rainbow, heat,
terrain and topo colors. The start and end arguments are
used to define the range of hue. The alpha argument takes
a number in between 0 and 1 to specify the transparency.
With the understanding of palette colors, we proceed to
define the palette for our heat map.

> palette(rainbow(round((max(coefficient)-min(coeffici
ent))*10)+1,start=0,end=0.7))

In the example, rainbow color is added to the palette.
The number of colors is determined by the range of
coefficients. A numeral 1 is added to make sure that the
minimum value refers to the first color in the palette.
At this stage, it is well prepared to draw a heat map with
scatter plot in each panel. We need another package called
“latticeExtra” which provides several new high-level
functions and methods, as well as additional utilities such as
panel and axis annotation functions. Figure 5 is produced by
the following codes.

> library(latticeExtra)

> plot<-xyplot(y~value|variable+diag,data=m.data,

par.strip.text = list(cex = 0.6),

Figure 3 Dendrograms for rows and columns of the coefficient data
frame. Note that dd.row corresponds to the variables x1 to x5, and
dd.col corresponds to the subgroups.

Figure 4 Illustration of how palette works in R, by varying color
styles and relevant parameters such as range of hue and alpha.

dd.row

dd.col

x3
A

E
C

O
P

D

M
O

D
S

S
ep

si
s

P
oi

so
ni

ng

S
ug

er
y

0
0

2
1

4
2

6
3

8
4

x4 x5 x1 x2

Rainbow

Heat colors

Topo colors Topo colors (alpha=7)

Terrain colors

Rainbow (0–0.7)

Annals of Translational Medicine, Vol 5, No 4 February 2017 Page 7 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

key=list(space="left",

lines=list(col=seq(1,round((max(coefficient)-min(coe
fficient))*10)+1,4),lwd=4,size=1),

text=list(as.character(round((seq(1,round((
max(coefficient)-min(coefficient))*10)+1,4)-
1)/10+min(coefficient),1)))

),

legend =

list(right =

list(fun = dendrogramGrob,

args =

list(x = dd.col, ord = col.ord,

side = "right",

size = 10)),

top =

list(fun = dendrogramGrob,

args =

list(x = dd.row,

side = "top",

type = "triangle"))),

mycolors =scale.coef,

panel = function(x, y,col,mycolors) {

panel.fill(col=mycolors[panel.number()])

panel.xyplot(x, y,cex=0.2,col="black")

panel.loess(x, y, col="black",lwd=2)

},

index.cond=list(row.ord,col.ord),

xlab="x value"

)

> useOuterStrips(plot)

The first argument of xyplot() is a formula indicating
that plots of y (on the y-axis) versus value (on the x-axis)
will be produced conditioned on variables variable and
diag. Remember that variable and diag are factor variables
indicting x variables and subgroups, respectively. This
formula produces one panel for each unique combination
of these two factor variables. The data argument passes
a data frame containing values for any variables in the
formula. Here, m.data contains all variables specified in the
formula. The size of strip text can be controlled with par.
strip.text argument. Key takes a list that defines a legend to
be drawn on the plot. In the example, we want the key to

Figure 5 Heat map produced by xyplot() function, with background color of each panel mapping to coefficient values. For instance, the
regression coefficient of x3 is −3.57 in the subgroup Surgery, thus the background color of the first panel (x3 and Surgery) is red. One can
check the link between colors and values on the left legend.

X value
−2

−2

x3 x4 x5 x1 x2

−2

−2 −2

−20

−20

A
E

C
O

P
D

M
O

D
S

S
ep

si
s

P
oi

so
ni

ng
S

ur
ge

ry

−20

y

−20
−3.2
−3.6

−2.8
−2.4

−1.6
−1.2
−0.8
−0.4

0.4
0.8
1.2
1.6

2.4
2.8
3.2

2

0

−2

−20

−10

−10

−10

−10

−10

0

0

0

0

0

10

10

10

10

10

20

20

20

20

20

2

2 2

2 20

0 0

0 0

Zhang et al. HCA in clinical research

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Page 8 of 11

show the corresponding coefficient values of colors, and
this key is displayed on the left. The key is composed of
lines and texts, where each line has a color and each text
represents the coefficient value corresponding to the line
color in the same row. The legend argument allows the
use of arbitrary “grob”s (grid objects) as legends. Here
we use the dendrogramGrob function to create a grob
(a grid graphics object) that can be manipulated as such.
The first argument of dendrogramGrob should be an
object of dendrogram. Recall that dd.col corresponds to the
subgroups and thus we assign it to the right argument. Ord
argument takes col.ord. By default, dendrogram is displayed
in that a child node is joined to its parent as a “stair” with
two lines (“rectangle”). If one wants to join child node
to parent directly with a straight line, the type should be
assigned “triangle”, as we have done for top dendrogram.
A panel function is defined to allow for customized output.
In the example, we need to display lowess smooth lines,
scatter points and background in each panel. Of note, the
background of each panel is different, which is determined
by the coefficient values. Here, panel.number() is used to
extract corresponding index number of mycolors. Each
numeric value of the vector mycolors refers to a color in
the palette that has been defined previously. By default,
the xyplot() function ranges panels alphabetically by levels
of each conditioning variable. In order to avoid lines of
dendrograms intersecting with each other, we need to
reorder the panels. This is done by the use of index.cond
argument. In our example, the index.cond is a list. It is as
long as the number of conditioning variables, and the i-th
component is a valid indexing vector for levels(g_i), where
g_i is the i-th conditioning variable in the plot. The second
component of of index.cond list is col.ord which corresponds
to the second conditioning variable diag.

> row.ord

[1] 3 4 5 1 2

As shown above, the order of row.ord is {3, 4, 5, 1, 2},
which is consistent with the order of x variables in Figure 5
{x3, x4, x5, x1, x2}. The last line uses useOuterStrips function
from the latticeExtra package, which moves strips to the top
and left boundaries when printed, instead of in every panel
as usual. When there are two conditioning variables, it
seems redundant to display strips in every panel.

With binary outcome variable

In clinical research, there are more situations when
researchers have to deal with binary outcome variables such
as occurrence of event of interest, and mortality. As such,
we can display probability of outcome in the vertical axis
and the values of x on the horizontal axis. Here we created a
new binary variable y.bin

> data$y.bin = 1/(1+exp(-data$y)) > 0.5

Again we need to extract coefficients of logistic regression
models for every unique combination of subgroups and
diagnosis. Here, a string “binomial” indicating the error
distribution is assigned to the family argument, and the link
function is “logit”. This is the standard argument for logistic
regression model. Coefficient obtained in this way has no direct
clinical relevance, but its exponentiation gives the odds ratio.

> coeff.bin<-lapply(data[,2:6],

function(x) {

coef(lmList(y~x|diag,

family=binomial(link="logit"),

data=data.frame(x=x,y=data$y.bin,diag=data$diag)))
[2]

})

> coeff.bin<-as.matrix(as.data.frame(coeff.bin))

> colnames(coeff.bin)<-varlist

> heatmap.2(coeff.bin,

ColSideColors=rainbow(ncol(coeff.bin)),

RowSideColors=rainbow(nrow(coeff.bin)),

srtRow=45)

Here, we created a heat map with similar argument to
that displayed in Figure 2, except that values are coefficients
estimated from logistic regression models.

> models<-lapply(data[,2:6],

function(x) {

lmList(y~x|diag,

family=binomial(link="logit"),

data=data.frame(x=x,y=data$y.bin,diag=data$diag))

})

Annals of Translational Medicine, Vol 5, No 4 February 2017 Page 9 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Then, the predicted probability can be estimated using
predict.lmList() function. The function returns a vector
whose order should be given more attention. If one intends
to build also the confidence interval, the se.fit argument
should be “TRUE” to allow estimation of standard error of
each point estimate.

> prob<-as.vector(NULL)

> for (i in 1:5) {

prob<-c(prob,predict(models[[i]]))

}

Because the order of melted data.bin and prob are
not consistent, we need some lines of code to arrange
them. Alternatively, one may save predicted probability
and standard error as a data frame, and the order can be
different. Users can try it.

data.bin<-melt(data[,-7], id.vars=c("diag", "y.bin"))

> diaglist<-data[1:5,]$diag

> data.sort<-data.bin[0,]

> for (var in varlist) {

for (dia in diaglist) {

data.sort<-rbind(data.sort,

data.bin[data.bin$variable==var&data.
bin$diag==dia,])

}

}

> data.pred<-cbind(data.sort,prob)

The following codes are similar to that described in the
above example with minor adaptations.

> dd.row.bin <- as.dendrogram(hclust(dist(coeff.bin)))

> row.ord.bin <- order.dendrogram(dd.row.bin)

> dd.col.bin <- as.dendrogram(hclust(dist(t(coeff.bin))))

> col.ord.bin <- order.dendrogram(dd.col.bin)

> coeff.order.bin<-coeff.bin[row.ord.bin, col.ord.bin]

> scale.coef.bin<-as.vector(round((t(coeff.order.bin)-
min(coeff.bin))*10+1))

> palette(rainbow(round((max(coeff.bin)-min(coeff.
bin))*10)+1,start=0,end=0.7))

> plot.bin<-xyplot(prob~value|variable+diag,data=da
ta.pred,

par.strip.text = list(cex = 0.6),

key=list(space="left",

lines=list(col=seq(1,round((max(coeff.bin)-min(coeff.
bin))*10)+1,2),lwd=4,size=1),

text=list(as.character(round((seq(1,round((max(co
eff.bin)-min(coeff.bin))*10)+1,2)-1)/10+min(coeff.
bin),1)))

),

legend =

list(right =

list(fun = dendrogramGrob,

args =

list(x = dd.col.bin, ord = col.ord.bin,

side = "right",

size = 10)),

top =

list(fun = dendrogramGrob,

args =

list(x = dd.row.bin,

side = "top",

type = "triangle"))),

colors.bin =scale.coef.bin,

panel = function(x, y,col,colors.bin) {

panel.fill(col=colors.bin[panel.number()])

panel.xyplot(x, y,cex=0.2,col="black")

panel.loess(x, y, col="black",lwd=1)

},

index.cond=list(col.ord.bin, row.ord.bin),

xlab="x value",

ylab="probability"

)

> useOuterStrips(plot.bin)

The output is shown in Figure 6. This time the vertical
axis represents the probability of the binary outcome. The
black dot is the predicted probability, and thus each x value
corresponds to one probability value.

Zhang et al. HCA in clinical research

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Page 10 of 11

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1.	 Muntaner C, Chung H, Benach J, et al. Hierarchical
cluster analysis of labour market regulations and
population health: a taxonomy of low- and middle-income
countries. BMC Public Health 2012;12:286.

2.	 Petushkova NA, Pyatnitskiy MA, Rudenko VA, et al.
Applying of hierarchical clustering to analysis of protein
patterns in the human cancer-associated liver. PLoS One
2014;9:e103950.

3.	 Murtagh F. Hierarchical Clustering. In: Lovric M. editor.
International Encyclopedia of Statistical Science. Berlin,
Heidelberg: Springer; 2014:633-5.

4.	 Gil-Garcia RJ, Badia-Contelles JM, Pons-Porrata A.
A General Framework for Agglomerative Hierarchical

Clustering Algorithms. IEEE 2006:569-72.
5.	 Iwashyna TJ, Burke JF, Sussman JB, et al. Implications

of Heterogeneity of Treatment Effect for Reporting and
Analysis of Randomized Trials in Critical Care. Am J
Respir Crit Care Med 2015;192:1045-51.

6.	 Ruan SY, Lin HH, Huang CT, et al. Exploring the
heterogeneity of effects of corticosteroids on acute
respiratory distress syndrome: a systematic review and
meta-analysis. Crit Care 2014;18:R63.

7.	 Kalil AC, Florescu DF. Severe sepsis: are PROWESS and
PROWESS-SHOCK trials comparable? A clinical and
statistical heterogeneity analysis. Crit Care 2013;17:167.

8.	 Ma PL, Peng XX, Du B, et al. Sources of Heterogeneity
in Trials Reporting Hydroxyethyl Starch 130/0.4 or
0.42 Associated Excess Mortality in Septic Patients: A
Systematic Review and Meta-regression. Chin Med J (Engl)
2015;128:2374-82.

9.	 Zhang Z. Model building strategy for logistic regression:
purposeful selection. Ann Transl Med 2016;4:111.

10.	 Murtagh F, Contreras P. Algorithms for hierarchical
clustering: an overview. WIREs Data Mining Knowl
Discov 2012;2:86-97.

11.	 Blasius J. Greenacre M. editors. Visualization and
Verbalization of Data. Boca Raton: Chapman and Hall/

X value

−2

−2

x1 x2 x3 x4 x5

−2

−2 −2

0.2
0.0

0.0

A
E

C
O

P
D

M
O

D
S

S
ep

si
s

P
oi

so
ni

ng
S

ur
ge

ry

0.2
0.0

P
ro

ba
bi

lit
y

0.2
0.0

−1.5
−1.3
−1.1
−0.9
−0.7
−0.5
−0.3
−0.1
0.1
0.3
0.5
0.7
0.9
1.1
1.3
1.5
1.7
1.9
2.1
2.3
2.5

0.2
0.0

0.4

0.2

0.4

0.4

0.4

0.6

0.4

0.6

0.6

0.6

0.8

0.6
0.8

0.8

0.8

0.8

1.0

1.0

1.0

1.0

1.0

2

2 2

2 20

0 0

0 0

Figure 6 Heat map produced by xyplot() function, with vertical axis representing the estimated probability of outcome events.

Annals of Translational Medicine, Vol 5, No 4 February 2017 Page 11 of 11

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(4):75atm.amegroups.com

Cite this article as: Zhang Z, Murtagh F, Van Poucke S, Lin
S, Lan P. Hierarchical cluster analysis in clinical research with
heterogeneous study population: highlighting its visualization
with R. Ann Transl Med 2017;5(4):75. doi: 10.21037/
atm.2017.02.05

CRC, 2014:xlii+350.
12.	 Moss TJ, Lake DE, Calland JF, et al. Signatures of

Subacute Potentially Catastrophic Illness in the ICU:
Model Development and Validation. Crit Care Med
2016;44:1639-48.

13.	 Shahid R, Bertazzon S, Knudtson ML, et al. Comparison
of distance measures in spatial analytical modeling for
health service planning. BMC Health Serv Res 2009;9:200.

14.	 Murtagh F. A Survey of Recent Advances in Hierarchical
Clustering Algorithms. Comput J 1983;26:354-9.

15.	 Defays D. An efficient algorithm for a complete link
method. Comput J 1977;20:364-6.

16.	 Bates D, Mächler M, Bolker B, et al. Fitting Linear Mixed-

Effects Models Using lme4. Journal of Statistical Software
2015;67:1-48.

17.	 Toddenroth D, Ganslandt T, Castellanos I, et al.
Employing heat maps to mine associations in structured
routine care data. Artif Intell Med 2014;60:79-88.

18.	 Sarkar D. Lattice: Multivariate Data Visualization with R.
New York: Springer; 2008:1.

19.	 Maindonald J, Braun WJ. editors. Data Analysis and
Graphics Using R – an Example-Based Approach
(Cambridge Series in Statistical and Probabilistic
Mathematics). 3rd ed. Cambridge: Cambridge University
Press; 2009:538.

