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Abstract: Big data clinical research typically involves thousands of patients and there are numerous variables 

available. Conventionally, these variables can be handled by multivariable regression modeling. In this article, the 

hierarchical cluster analysis (HCA) is introduced. This method is used to explore similarity between observations 

and/or clusters. The result can be visualized using heat maps and dendrograms. Sometimes, it would be interesting 

to add scatter plot and smooth lines into the panels of the heat map. The inherent R heatmap package does not 

provide this function. A series of scatter plots can be created using lattice package, and then background color of 

each panel is mapped to the regression coefficient by using custom-made panel functions. This is the unique feature 

of the lattice package. Dendrograms and color keys can be added as the legend elements of the lattice system. The 

latticeExtra package provides some useful functions for the work.
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Introduction

Hierarchical cluster analysis (HCA), also known as 
hierarchical clustering, is a popular method for cluster 
analysis in big data research and data mining aiming to 
establish a hierarchy of clusters (1-3). As such, HCA 
attempts to group subjects with similar features into 
clusters. There are two types of strategies used in 
HCA: the agglomerative and the divisive strategy. With 
agglomerative clustering directing from “the leaves” to 
“the root” of a cluster tree, the approach is called a “bottom 
up” approach (4). Divisive clustering is considered a “top 
down” approach directing from the root to the leaves. All 
observations are initially considered as one cluster, and 
then splits are performed recursively as one moves down 
the hierarchy.

Clinical research is usually characterized by heterogeneous 
patient populations despite the use of long list of inclusion/

exclusion criteria (5,6). For instance, sepsis and/or septic 
shock are typically treated as a disease entity in clinical 
trials. However, there are significant heterogeneities in 
patients with sepsis with respect to infection sites, coexisting 
comorbidities, inflammatory responses and timing of 
treatment (7,8). Traditionally, these factors are considered as 
confounding factors and can be addressed by multivariable 
regression modeling (9). However, such a method primarily 
focuses on prediction and adjustment, and fails to classify a 
mixed population into a more homogeneous one. Clustering 
analysis aims to classify mixed population into more 
homogenous groups based on available features. Each cluster 
has its own signature for identification (10,11). For instance, 
investigators may be interested in how physiological signals 
predict differently on the occurrence of subacute events (e.g., 
sepsis, hemorrhage and intubation) in intensive care unit 
(ICU). For instance, physiological signatures of hemorrhage 
were found to be similar in patients from surgical and medical 
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ICU, indicating similarity between these two subgroups (12). 
In this article, we aim to provide some basic knowledge on 
the use of HCA and its visualization by dendrograms and 
heat maps.

Understanding HCA

Suppose the data consists of four observations (x1 to x4) and 
each contains two feature variables (a, b). 

> df<-matrix(c(1,2,4,3,2,1,7,9),nrow=4)

> rownames(df)<-c("x1","x2","x3","x4")

> colnames(df)<-c("a","b")

> df

a b

x1 1 2

x2 2 1

x3 4 7

x4 3 9

The matrix df is consistent with the output of a 
case report form (CRF) where each row represents an 
observation, and a column represents a variable (features). 
To facilitate a clear understanding, we assigned two-
dimensional features to the observations. During the first 
step, the distance between the observations is calculated.

> dist(df)

x1 x2 x3

x2 1.414214

x3 5.830952 6.324555

x4 7.280110 8.062258 2.236068

The dist() function calculates the distance between each 
pair of observations. There exist a variety of methods to 
calculate the distance (Table 1) (13,14). By default, dist() 
function uses Euclidean distance, and this can be modified 
using the method argument. Next, Euclidean distance is 
checked between x2 and x3:

( ) ( ) ( ) ( )2 2 2 2
2 3 2 3 2 32

2 4 1 7 6.32x x a a b b− = − + − = − + − = ,	 [1]

which is exactly the value displayed in the above tabular 
output. 

From the dist() output table, it appears that x1 and x2 are 
the closest to each other and they are merged at the first 
step, leaving clusters {x1, x2}, {x3} and {x4} to be merged 
further. At each step, clusters/observations with the shortest 
distance are merged. Distance between clusters should be 
defined. Additionally, there are different methods (also 
called linkage criteria) to define the distance between two 
clusters (Table 2).  The default method in hclust() function 
is the complete linkage clustering, in which the distance 
between two clusters is the distance between those two 
elements (one in each cluster) that are farthest away from 
each other (15). The minimum distance between the 
remaining set of observations/clusters was the one between 
x3 and x4 (d=2.24). The distances between other pairs of 
observations/clusters are: d({x1, x2}, x3) is 6.32, d({x1, x2}, 
x4) is 8.06. After combination of x3 and x4, there are only 
two clusters {x1, x2} and {x3, x4}, and they are merged as 
the latest. The results can be visualized with generic plot() 
function. 

> plot(hclust(dist(df)))

The height  axis  displays  the distance between 

Table 1 Methods to calculate distance between two observations

Names Equations

Euclidean distance ( ) ( )2 2

2i j i j i jx x a a b b− = − + −

Manhattan distance
1i j i j i jx x a a b b− = − + −

Maximum distance { }max ,i j i j i jx x a a b b
∞

− = − −

Mahalanobis distance ( ) ( )1T

i j i jx x S x x−− − , where S is the covariance matrix and ix  and jx  are variable vectors of ix  and jx

xi and xj are ith and jth observations, where i and j are indices. a and b are feature variables.  
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observations and/or clusters (Figure 1). The horizontal bars 
indicate the point at which two clusters/observations are 
merged. For example, x1 and x2 are merged at a distance 
of 1.41, which is the minimum distance among all other 
distances. Observations x3 and x4 are merged at the value 
of 2.24. Finally, {x1, x2} and {x3, x4} are merged by a 
distance of 8.06. This easy example has illustrated the basic 
principles underlying HCA. 

Worked example

To illustrate how to perform HCA using R, we simulated 
a worked example. In the example, there are five variables 
(x1 to x5) represented by columns. Each row represents 
a patient. There is a factor variable named “diag” to 

categorize patients into different subgroups. 
 

> nvar=5

> data<-data.frame(diag=factor(rep(c("Sepsis","AEC
OPD","Surgery","MODS","Poisoning"),50)))

> for (i in 1:nvar) {

data[[paste("x",i,sep="")]]<-rnorm(250)

}

> attach(data)

> data$y<-3*x1+2*x2-2*x3+x3^2-x4+x5^3-2*x5

> detach()

In real clinical research, the variables x1 to x5 can be 
any continuous variable such as blood pressure, heart 
rate, temperature and laboratory measurements. They 
are centered by mean and scaled by standard deviation, 
resulting in a normal distribution. The variable y can be an 
outcome variable such as cost, length of stay in ICU and 
hospital. If the outcome variable is binary, transformation to 
an appropriate scale is required, e.g., the logit scale.  

Statistical quantity 

A variety of statistical quantities can be explored. In its 
original design, HCA analyzes at individual level. Each 
patient takes one row and each column represents one 
feature variable. Such analysis provides information on the 
similarity between individual patients. However, in big data 
mining, typically thousands of patients are involved and it 
is more feasible to explore features in subgroups. Summary 
statistics such as median, mean, variance, correlation and 
regression coefficients can be explored. In the present 
example, suppose we are interested in the regression 
coefficient of each feature variable for the outcome y. We 

Table 2 Methods to calculate distance between two clusters

Names Equations

Maximum (complete linkage clustering) ( ){ }, , ,Max d a b a A b B∈ ∈

Minimum (single linkage clustering) ( ){ }, , ,Min d a b a A b B∈ ∈

Mean linkage clustering ( )1 ,
a A b B

d a
A B ∈ ∈

∑∑ 

Centroid linkage clustering s tc c−  where sc  and tc  are the centroids of clusters s and t, respectively.

a and b are elements belonging to clusters A and B, respectively. 

Figure 1 A simple cluster dendrogram. The height axis displays 
the distance between observations and/or clusters. The horizontal 
bars indicate the point at which two clusters/observations are 
merged. For example, x1 and x2 are merged at a distance of 1.41, 
which is the minimum one among all other distances. Also, x3 and 
x4 are merged at the value of 2.24. Finally, {x1, x2} and {x3, x4} are 
merged and their distance is 8.06.
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do not attempt to adjust these models. As a result, we need 
to fit regression models for each combination of feature 
variables and subgroups (5×5=25). Fitting these models 
one by one would be time-consuming and error-prone, 
therefore an R syntax is needed that is able to repeat the 
same regression model function. In R, it is not wise to use 
loop functions, instead the lapply() can apply a user-defined 
function across variables. Let’s see how it works.

> library(lme4)

> coeff<-lapply(data[,2:6],function(x) {

coef(lmList(y~x|diag,data=data.frame(x=x,y=data$y,di
ag=data$diag)))[2]

})

While the lapply() repeats the regression function 
across variables x1 to x5, lmList() is employed to perform 
regression analysis across subgroups (16). Note that the 
first formula argument of lmList() allows a grouping factor 
specifying the partitioning of the data according to which 
different lm fits will be performed. The data argument 
specifies the data frame containing the variables named in 
the formula. Here we vary the data argument in each cycle, 
ensuring each lm fit employs different feature variables. 
The index [2] extracts regression coefficient of lm models. 
Because the lapply() function returns a list, we need to 
transform it into a data frame for further analysis. 

> coefficient<-t(as.data.frame(coeff))

> varlist<-names(data[,2:6])

> row.names(coefficient)<-varlist

Also, the t() function is used to transpose the data frame, 
making the rows represent variables and the columns 
represent the subgroups. Next, we rename the row names 
by using x1 to x5. 

Heat map

A heat map is a graphical representation of data where the 
individual values contained in a matrix are represented 
as colors (17). The orders of columns and rows are 
reordered to facilitate better presentation of dendrograms. 
Dendrograms are used to describe the similarity between 
clusters and/or observations. There are a variety of heat 
map packages in R. heatmap() is a base function shipped 
with R installation. Other heat map packages include 

d3heatmap to create interactive heat maps, fheatmap to plot 
high quality, elegant heat map using ‘ggplot2’ graphics, 
heatmap.plus to allow non-identical X- and Y-dimensions, 
heatmap3 to provide more powerful and convenient features, 
and pheatmap to offer more control over dimensions and 
appearance. In this case we use heatmap.2() function 
contained in gplots package. It provides good control over 
annotations and labels, and also draws a color key to map 
data values to colors. 

> library("gplots")

> heatmap.2(coefficient,ColSideColors=rainbow(ncol(co
efficient)),RowSideColors=rainbow(nrow(coefficient)),sr
tCol=45)

The heatmap.2() function first takes a numeric 
matrix of the values to be plotted. The method used 
to calculate distance can be specified using distfun for 
distance (dissimilarity) between both rows and columns, 
and hclustfun for computing the hierarchical clustering. 
Suppose one attempts to use “minkowski” method for 
distance calculation and “mcquitty” method for computing 
clustering, the following code can do the task:

> heatmap.2(coefficient,

hclust(dist(coefficient,method="minkowski"),

method="mcquitty"),

ColSideColors=rainbow(ncol(coefficient)),

RowSideColors=rainbow(nrow(coefficient)),

srtCol=45)

ColSideColors argument takes a character vector of 
length ncol(x) containing the color names for a horizontal 
side bar that may be used to annotate the columns of x. 
Here we used the rainbow color style for annotating the 
columns. RowSideColors is used for vertical side bar with 
the same usage as that of ColSideColors. srtCol argument is 
used to control the angle of column labels in degrees from 
horizontal. The result is shown in Figure 2. As indicated 
by the color key, more negative values are represented by 
more dark red color and positive values are represented by 
light yellow. The histogram shows the number of values in 
each color strip. The dendrogram shows the dissimilarity 
between columns and rows. The results show that surgery 
and poisoning patients are the most similar subgroups. 
Variable x3 is negatively correlated with y across subgroups 
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and x1 is positively correlated with y. 

Add scatter plot to the heat map

To better illustrate how variables correlate with outcome 
y, it would be interesting to visualize scatter plots in 
heat map. However, the aforementioned heat map 
packages do not provide this function. One approach is 
to draw each scatter plot within a panel with the lattice 
package (18). Then background of each panel is filled 
with colors corresponding to coefficient values. Also, 
the dendrogram can be passed to the legend of xyplot() 
function using dendrogramGrob function (19). The order 
of lattice panels should be rearranged to the order that 
is consistent with HCA. Finally, the strip labels can be 
moved to the left and top of the plot. Next, let’s take a 
close look at how each step is carried out and readers 
can adapt these codes into their own needs. 

Firstly, the data frame needs to be reshaped to be utilized 
by the xyplot() function. The reshape2 package can do this 
task perfectly. Because we change the wide format to long 
format, only the melt() function is used. 

> library(lattice)

> library(reshape2)

> m.data<-melt(data, id.vars=c("diag", "y"))

> head(m.data)

diag y variable value

1 Sepsis 2.8858013 x1 -0.3937166

2 AECOPD 3.3040682 x1 1.3065381

3 Surgery -1.2972116 x1 -0.5979787

4 MODS -0.2088301 x1 0.1037778

5 Poisoning -0.1218218 x1 0.0134908

6 Sepsis 10.9084870 x1 -0.3384164

Note that the variables x1 to x5 disappear and their 
values are stacked on the value column. A new variable 
named “variable” is created to denote the original variable 
name x1 to x5. ID variables diag and y remain unchanged. 

Next, we define the order of rows and columns according 
to the HCA. With the help of the dist() and hclust() 
function, this task can be easily done with several lines of 
code. Furthermore, the users can visualize the dendrograms 
and compare them with the results produced by heatmap.2() 
function.

> dd.row <- as.dendrogram(hclust(dist(coefficient)))

> row.ord <- order.dendrogram(dd.row)

> dd.col <- as.dendrogram(hclust(dist(t(coefficient))))

> col.ord <- order.dendrogram(dd.col)

> par(mfrow=c(2,1))

> plot(dd.row)

> plot(dd.col)

Note that the dd.row and row.order correspond to the 
variables x1 to x5, and the dd.col and col.ord correspond to 
the subgroups (Figure 3). This is important for reordering 
rows and columns of the coefficient data frame. The next 
code reorders the rows and columns according to the HCA 
order. The data frame coeff.order is then rescaled to ensure 
that its values are integers. Such values can help to map 
themselves to colors as defined by palette.

> coeff.order<-coefficient[row.ord,col.ord]

> scale.coef<-as.vector(round((coeff.order 
-min(coefficient))*10+1))

One attractive feature of heat map is the use of colors 

Figure 2 Heat map produced by heatmap.2() function with color 
key. The light blue solid lines in the heat map correspond to the 
value of coefficient. The dashed lines were the reference value 
zero. There is a histogram in the color key showing the number 
of coefficient values within each color bar (i.e., one color bar 
represents a range of coefficient values). The orders of rows and 
columns are rearranged to avoid intersecting of dendrogram lines. 
It appears that surgery and poisoning patients are the most similar 
subgroups.
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to highlight differences between individual elements. 
Therefore, the color style is important to make the heat map 
attractive and informative. In R colors can be represented 
by index into palette, color name and hex constant. When 
a col argument is assigned a vector of numeric index, each 
numeric value represents one color in the vector of colors 
defined by palette. To help readers better understand how 
palette works in R, a series of simple examples are used by 
varying color styles and some relevant arguments.

> par(mfrow=c(3,2))

> palette(rainbow(10))

> barplot(rep(1,10), yaxt="n",main="rainbow", col=1:10)

> palette(rainbow(10,start=0,end=0.7))

> barplot(rep(1,10), yaxt="n",main="rainbow (0-0.7)", 
col=1:10)

>  palette(heat.colors(10))

>  barplot(rep(1,10), yaxt="n",main="heat colors", 
col=1:10)

>  palette(terrain.colors(10))

>  barplot(rep(1,10), yaxt="n",main="terrain colors", 
col=1:10)

>  palette(topo.colors(10))

>  barplot(rep(1,10), yaxt="n",main="topo colors", 
col=1:10)

>  palette(topo.colors(10,alpha=0.7))

>  barplot(rep(1,10), yaxt="n",main="topo colors (al-
pha=0.7)", col=1:10)

The output is shown in Figure 4. There are a variety of 
color styles to select. In the figure we show rainbow, heat, 
terrain and topo colors. The start and end arguments are 
used to define the range of hue. The alpha argument takes 
a number in between 0 and 1 to specify the transparency. 
With the understanding of palette colors, we proceed to 
define the palette for our heat map.

> palette(rainbow(round((max(coefficient)-min(coeffici
ent))*10)+1,start=0,end=0.7))

In the example, rainbow color is added to the palette. 
The number of colors is determined by the range of 
coefficients. A numeral 1 is added to make sure that the 
minimum value refers to the first color in the palette. 
At this stage, it is well prepared to draw a heat map with 
scatter plot in each panel. We need another package called 
“latticeExtra” which provides several new high-level 
functions and methods, as well as additional utilities such as 
panel and axis annotation functions. Figure 5 is produced by 
the following codes.  

> library(latticeExtra)

> plot<-xyplot(y~value|variable+diag,data=m.data,

par.strip.text = list(cex = 0.6),

Figure 3 Dendrograms for rows and columns of the coefficient data 
frame. Note that dd.row corresponds to the variables x1 to x5, and 
dd.col corresponds to the subgroups.

Figure 4 Illustration of how palette works in R, by varying color 
styles and relevant parameters such as range of hue and alpha. 
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key=list(space="left",

lines=list(col=seq(1,round((max(coefficient)-min(coe
fficient))*10)+1,4),lwd=4,size=1),

text=list(as.character(round((seq(1,round((
max(coefficient)-min(coefficient))*10)+1,4)-
1)/10+min(coefficient),1)))

),

legend =

list(right =

list(fun = dendrogramGrob,

args =

list(x = dd.col, ord = col.ord,

side = "right",

size = 10)),

top =

list(fun = dendrogramGrob,

args =

list(x = dd.row, 

side = "top",

type = "triangle"))),

mycolors =scale.coef,

panel = function(x, y,col,mycolors) { 

panel.fill(col=mycolors[panel.number()])

panel.xyplot(x, y,cex=0.2,col="black")

panel.loess(x, y, col="black",lwd=2)

},

index.cond=list(row.ord,col.ord),

xlab="x value"

) 

> useOuterStrips(plot) 

The first argument of xyplot() is a formula indicating 
that plots of y (on the y-axis) versus value (on the x-axis) 
will be produced conditioned on variables variable and 
diag. Remember that variable and diag are factor variables 
indicting x variables and subgroups, respectively. This 
formula produces one panel for each unique combination 
of these two factor variables. The data argument passes 
a data frame containing values for any variables in the 
formula. Here, m.data contains all variables specified in the 
formula. The size of strip text can be controlled with par.
strip.text argument. Key takes a list that defines a legend to 
be drawn on the plot. In the example, we want the key to 

Figure 5 Heat map produced by xyplot() function, with background color of each panel mapping to coefficient values. For instance, the 
regression coefficient of x3 is −3.57 in the subgroup Surgery, thus the background color of the first panel (x3 and Surgery) is red. One can 
check the link between colors and values on the left legend.
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show the corresponding coefficient values of colors, and 
this key is displayed on the left. The key is composed of 
lines and texts, where each line has a color and each text 
represents the coefficient value corresponding to the line 
color in the same row. The legend argument allows the 
use of arbitrary “grob”s (grid objects) as legends. Here 
we use the dendrogramGrob function to create a grob 
(a grid graphics object) that can be manipulated as such. 
The first argument of dendrogramGrob should be an 
object of dendrogram. Recall that dd.col corresponds to the 
subgroups and thus we assign it to the right argument. Ord 
argument takes col.ord. By default, dendrogram is displayed 
in that a child node is joined to its parent as a “stair” with 
two lines (“rectangle”). If one wants to join child node 
to parent directly with a straight line, the type should be 
assigned “triangle”, as we have done for top dendrogram. 
A panel function is defined to allow for customized output. 
In the example, we need to display lowess smooth lines, 
scatter points and background in each panel. Of note, the 
background of each panel is different, which is determined 
by the coefficient values. Here, panel.number() is used to 
extract corresponding index number of mycolors. Each 
numeric value of the vector mycolors refers to a color in 
the palette that has been defined previously. By default, 
the xyplot() function ranges panels alphabetically by levels 
of each conditioning variable. In order to avoid lines of 
dendrograms intersecting with each other, we need to 
reorder the panels. This is done by the use of index.cond 
argument. In our example, the index.cond is a list. It is as 
long as the number of conditioning variables, and the i-th 
component is a valid indexing vector for levels(g_i), where 
g_i is the i-th conditioning variable in the plot. The second 
component of of index.cond list is col.ord which corresponds 
to the second conditioning variable diag. 

> row.ord

[1] 3 4 5 1 2

As shown above, the order of row.ord is {3, 4, 5, 1, 2}, 
which is consistent with the order of x variables in Figure 5 
{x3, x4, x5, x1, x2}. The last line uses useOuterStrips function 
from the latticeExtra package, which moves strips to the top 
and left boundaries when printed, instead of in every panel 
as usual. When there are two conditioning variables, it 
seems redundant to display strips in every panel. 

With binary outcome variable 

In clinical research, there are more situations when 
researchers have to deal with binary outcome variables such 
as occurrence of event of interest, and mortality. As such, 
we can display probability of outcome in the vertical axis 
and the values of x on the horizontal axis. Here we created a 
new binary variable y.bin

> data$y.bin = 1/(1+exp(-data$y)) > 0.5

Again we need to extract coefficients of logistic regression 
models for every unique combination of subgroups and 
diagnosis. Here, a string “binomial” indicating the error 
distribution is assigned to the family argument, and the link 
function is “logit”. This is the standard argument for logistic 
regression model. Coefficient obtained in this way has no direct 
clinical relevance, but its exponentiation gives the odds ratio. 

> coeff.bin<-lapply(data[,2:6],

function(x) {

coef(lmList(y~x|diag,

family=binomial(link="logit"),

data=data.frame(x=x,y=data$y.bin,diag=data$diag)))
[2]

})

> coeff.bin<-as.matrix(as.data.frame(coeff.bin))

> colnames(coeff.bin)<-varlist

> heatmap.2(coeff.bin,    

ColSideColors=rainbow(ncol(coeff.bin)),

RowSideColors=rainbow(nrow(coeff.bin)),

srtRow=45)

Here, we created a heat map with similar argument to 
that displayed in Figure 2, except that values are coefficients 
estimated from logistic regression models. 

> models<-lapply(data[,2:6],

function(x) {

lmList(y~x|diag,

family=binomial(link="logit"),

data=data.frame(x=x,y=data$y.bin,diag=data$diag))

})
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Then, the predicted probability can be estimated using 
predict.lmList() function. The function returns a vector 
whose order should be given more attention. If one intends 
to build also the confidence interval, the se.fit argument 
should be “TRUE” to allow estimation of standard error of 
each point estimate. 

> prob<-as.vector(NULL)

> for (i in 1:5) {

prob<-c(prob,predict(models[[i]]))

}

Because the order of melted data.bin and prob are 
not consistent, we need some lines of code to arrange 
them. Alternatively, one may save predicted probability 
and standard error as a data frame, and the order can be 
different. Users can try it. 

data.bin<-melt(data[,-7], id.vars=c("diag", "y.bin"))

> diaglist<-data[1:5,]$diag

> data.sort<-data.bin[0,]

> for (var in varlist) {

for (dia in diaglist) {

data.sort<-rbind(data.sort,       

data.bin[data.bin$variable==var&data.
bin$diag==dia,])

}

}

> data.pred<-cbind(data.sort,prob)

The following codes are similar to that described in the 
above example with minor adaptations. 

> dd.row.bin <- as.dendrogram(hclust(dist(coeff.bin)))

> row.ord.bin <- order.dendrogram(dd.row.bin)

> dd.col.bin <- as.dendrogram(hclust(dist(t(coeff.bin))))

> col.ord.bin <- order.dendrogram(dd.col.bin)

> coeff.order.bin<-coeff.bin[row.ord.bin, col.ord.bin] 

> scale.coef.bin<-as.vector(round((t(coeff.order.bin)-
min(coeff.bin))*10+1))

> palette(rainbow(round((max(coeff.bin)-min(coeff.
bin))*10)+1,start=0,end=0.7))

> plot.bin<-xyplot(prob~value|variable+diag,data=da
ta.pred,

par.strip.text = list(cex = 0.6),

key=list(space="left",

lines=list(col=seq(1,round((max(coeff.bin)-min(coeff.
bin))*10)+1,2),lwd=4,size=1),

text=list(as.character(round((seq(1,round((max(co
eff.bin)-min(coeff.bin))*10)+1,2)-1)/10+min(coeff.
bin),1)))

),

legend =

list(right =

list(fun = dendrogramGrob,

args =

list(x = dd.col.bin, ord = col.ord.bin,

side = "right",

size = 10)),

top =

list(fun = dendrogramGrob,

args =

list(x = dd.row.bin, 

side = "top",

type = "triangle"))),

colors.bin =scale.coef.bin,

panel = function(x, y,col,colors.bin) { 

panel.fill(col=colors.bin[panel.number()])

panel.xyplot(x, y,cex=0.2,col="black")

panel.loess(x, y, col="black",lwd=1)

},

index.cond=list(col.ord.bin, row.ord.bin),

xlab="x value",

ylab="probability"

)

> useOuterStrips(plot.bin) 

The output is shown in Figure 6. This time the vertical 
axis represents the probability of the binary outcome. The 
black dot is the predicted probability, and thus each x value 
corresponds to one probability value. 
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