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Animal models of hospital-acquired pneumonia: current practices 
and future perspectives
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Abstract: Lower respiratory tract infections are amongst the leading causes of mortality and morbidity 
worldwide. Especially in hospital settings and more particularly in critically ill ventilated patients, nosocomial 
pneumonia is one of the most serious infectious complications frequently caused by opportunistic pathogens. 
Pseudomonas aeruginosa is one of the most important causes of ventilator-associated pneumonia as well as 
the major cause of chronic pneumonia in cystic fibrosis patients. Animal models of pneumonia allow us to 
investigate distinct types of pneumonia at various disease stages, studies that are not possible in patients. 
Different animal models of pneumonia such as one-hit acute pneumonia models, ventilator-associated 
pneumonia models and biofilm pneumonia models associated with cystic fibrosis have been extensively 
studied and have considerably aided our understanding of disease pathogenesis and testing and developing 
new treatment strategies. The present review aims to guide investigators in choosing appropriate animal 
pneumonia models by describing and comparing the relevant characteristics of each model using P. aeruginosa 
as a model etiology for hospital-acquired pneumonia. Key to establishing and studying these animal models 
of infection are well-defined end-points that allow precise monitoring and characterization of disease 
development that could ultimately aid in translating these findings to patient populations in order to guide 
therapy. In this respect, and discussed here, is the development of humanized animal models of bacterial 
pneumonia that could offer unique advantages to study bacterial virulence factor expression and host 
cytokine production for translational purposes.
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Hospital-acquired pneumonia

Epidemiology of hospital-acquired pneumonia

Hospital-acquired pneumonia (HAP) is the second most 
common nosocomial infection (1), and is characterized 
by high morbidity and mortality (2). HAP is frequently 

caused by either multidrug-resistant nosocomial bacteria 
or by opportunistic pathogens, i.e., microorganisms that 
usually do not cause an infection in healthy individuals 
but can typically colonize and infect critically ill patients. 
HAP is especially a serious threat to patients hospitalized 
in the intensive care unit (ICU) and receiving mechanical 
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ventilation. This so called ventilator-associated pneumonia 
(VAP) is defined as a pneumonia that typically develops 
more than 48 hours after endotracheal intubation and 
initiation of mechanical ventilation (3,4). Mechanical 
ventilation significantly increases the risk for infections 
resulting in a 20-fold increased risk for developing 
pneumonia as compared to non-ventilated patients in the 
ICU (5,6). VAP is the most common nosocomial infection 
in ICU settings (7,8), and after controlling for other 
variables, patients developing VAP have a considerably 
higher mortality, reaching up to 50% in some studies (9,10), 
compared to non-VAP pneumonia patients (11,12). 

Etiology of hospital acquired pneumonia

HAP is mostly caused by opportunistic pathogens 
such as Pseudomonas aeruginosa, methicillin-resistant 
Staphylococcus aureus (MRSA), Acinetobacter baumannii 
and Enterobacteriaceae that tend to colonize patients 
very quickly once admitted to the hospital (13,14). In 
particular, infections caused by Gram-negative multidrug-
resistant organisms, including P. aeruginosa and extended-
spectrum β-lactamase-producing or carbapenemase-
producing Enterobacteriaceae, are increasingly being reported  
worldwide (15). Especially in VAP, P. aeruginosa is one of the 
main etiologic agents responsible for a global prevalence 
rate of >25% (16) and is associated with development 
of other serious complications such as septic shock and 
multiple organ dysfunction (17). 

For this review, we consider animal cystic fibrosis (CF) 
models as highly relevant to understand the pathophysiology 
of HAP because of their shared etiology. P. aeruginosa is, as in 
VAP, a major cause of pulmonary infection in CF patients (18), 
along with other pathogens known for their biofilm producing 
capacity such as Staphylococcus aureus and Burkholderia 
cepacia (19). Cystic fibrosis is the most common and fatal 
autosomal-recessive disease in the Caucasian population 
affecting ≈70,000 individuals worldwide (20) and is caused by 
a dysfunctional CF transmembrane conductance regulator 
(CFTR) (21,22) resulting in increased mucous secretion 
in the alveolar spaces that provide an ideal environment 
for bacterial colonization and biofilm formation (23).  
This biofilm protects bacteria from host immune cells 
and antibiotics by encapsulation and sequestration (24,25) 
and thus co-induces the typically persistent type of lung 
inflammation observed in CF patients (26). Moreover, 
VAP pathogenesis is also closely linked to biofilm forming 
organisms colonizing the endotracheal tube (ETT) such as 

P. aeruginosa, and the presence of P. aeruginosa in the biofilm 
on the ETT microbiome negatively correlates with patient 
prognosis (27).

Animal models of hospital-acquired pneumonia

Need for animal modeling

For many decades now, animal models of infection are 
increasingly being utilized in medical research and are 
responsible for accelerated progress in various fields such 
as cancer, neuroscience and most importantly, infectious 
diseases and drug development. The aim of developing 
an animal model to study pneumonia is to mimic the 
pathophysiologic and phenotypic characteristics seen in 
humans in a more controlled setting. Such models give a 
more accurate control of significant variables through the 
course of infection by minimizing confounders like co-
morbidities or antibiotic use. Studying animal models also 
has other advantages including circumventing sampling 
limitation issues that are commonly encountered with 
human subjects. Precise control over timing of the 
infectious challenge in animal models also allows for a better 
understanding of temporal evolution of the disease and 
development of complications that are most likely related 
to an altered immune-inflammatory response of the host. 
Partial or isomorphic induced animal models of pneumonia 
are usually designed with the purpose of studying specific 
phenotypic aspects of diseases while lacking other clinical 
signs or etiology. Nonetheless animal models of pneumonia, 
and more specifically rodent pneumonia models, have 
aided considerably in our understanding of disease 
pathomechanisms and shown their utility in pre-clinical 
drug testing.

As discussed above, although other pathogens including 
Enterobacteriaceae, S. aureus and A. baumannii are important 
causes of HAP, P. aeruginosa is one of the most common 
HAP etiologies and therefore the most studied organism. 
Thus, in this review, the main characteristics of the most 
used P. aeruginosa pneumonia animal models for acute 
pneumonia, VAP and chronic pneumonia occurring in CF 
patients are summarized and compared (Table 1). Several 
different species have been used to model human pneumonia 
including piglets (28-30), rodents (31-33), primates 
(34,35), sheep (36,37), dogs (38,39) and rabbits (40,41) and 
these models have proven instructive in studies of disease 
mechanisms and in antibiotic testing. Nonetheless, rodents 
have been the preferred choice in translational pulmonary 
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research as they not only are in accordance with the 3R 
principles of animal experimentation (42) but also offer 
specific advantages such as the potential to validate key 
findings or elucidate distinct pathogenic steps in a wide 
range of developed transgenic rodent models that are 
available to the scientific community.

Types of pneumonia models

One hit acute pneumonia model
This simple model of pneumonia is established by 
administering a bacterial inoculum into the lungs and 
different methods of bacterial delivery have been described 
(Figure 1). Intratracheal instillation is the most used method 
in HAP research and involves injecting the bacterial 
suspension directly into the trachea or lungs followed by 
air for dispersion of the bolus (33,43-50). This method 
gives the most precise control on the delivered dose. 
However, surgically exposing the trachea and then suturing 
the incision provokes an inflammatory response in the 
target organ, the lung, which can have an effect on the 
measured endpoints. Endotracheal inoculation (Figure 2A 
upper panel), on the other hand, involves intubating the 
animal to facilitate instillation of the bacterial solution in 
the lungs and is as precise as the intratracheal instillation 
method (31,32,51). Less invasive methods include intranasal 
administration, whereby bacterial dose is administered 
in droplets through the nostrils followed by aspiration 
by the animal (52), or aerosol administration, that can be 
performed in unrestrained animals (53). However, the 
exact dose that reaches the lower respiratory tract in both 
methods is uncontrolled and animals frequently develop 
upper respiratory tract infections (52) or infections other 
than pneumonia (53). One method to control dose delivery 
with aerosolization is to immediately sacrifice a few (sentinel) 
animals after aerosolization for quantitative colony counts 
performed on bronchoalveolar lavage fluid or lung tissue 
lysates (53).

Acute P. aeruginosa pneumonia, both in rodents and 
humans, is characterized by a high 1- to 3-day mortality 
(33,50) and histologically presents as multilobar confluent 
pneumonia (54) causing high alveolar neutrophilic 
infiltration along with vascular congestion, alveolitis 
and alveolar collapse (Figure 2B,C). The inflammatory 
response towards acute P. aeruginosa pneumonia is chiefly 
governed by expression of proinflammatory cytokines 
including TNFα, IFNγ, IL-1α, IL-1β and IL-12 as well 
as chemotactic molecules such as IL-8 secreted by innate T
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immune cells, epithelial cells and alveolar macrophages 
that result in neutrophil recruitment to the site of infection 
(54-57). However, the choice of inoculum dose is of high 
importance because a relatively high dose of P. aeruginosa 
causes a more marked increase in production of cytokines 
in the early time-points compared to lower doses (50) and 
thus has important consequences for studying pneumonia 
development.

Ventilator-associated pneumonia model
As described above, mechanical ventilation by itself is an 
important component in the pathogenesis of VAP, however, 
spontaneous development of pneumonia that occurs 
naturally in patients, is induced in mechanically ventilated 
animals most frequently by co-challenging with a bacterial 
inoculum. Interestingly, mechanical ventilation has been 
shown to cause a sterile inflammatory response in the lung 
leading to tissue damage caused by different mechanisms 
such as overstretching of the lung, barotrauma and 
volutrauma, leakage of air due to disruption of the airspace 
wall, pulmonary edema and atelectrauma (repeated opening 
and closing of alveoli) (58-61). Mechanical ventilation-
associated lung inflammation is marked by an upregulation 
of proinflammatory cytokines such as TNFα, IFNγ, IL-6 
and IL-1α and IL-1β (62-68) combined with chemokine 
release including IL-8 and CXCL-1 (69). However, 

mechanical ventilation also has been shown to cause a 
lowered natural killer cell activity and reduced MIP-2 and 
IL-10 expression in splenocyte proliferation assays from 
mechanically ventilated rats (67). Moreover, host immune 
response alters when different ventilation strategies are  
used (70) and therefore, clinically relevant ventilation 
strategies similar to those applied in patients of 8 mL/kg 
tidal volume or less should be used in animals to accurately 
mimic lung inflammation caused by mechanical ventilation.

To establish VAP animal models, two main strategies 
have been used. In the first strategy, bacteria are injected 
into the lungs prior to mechanical ventilation (71,72) 
(Figure 1). A second strategy uses bacterial instillation after 
ventilation and mimics the more natural disease evolution 
(31,32) where mechanical ventilation precedes bacterial 
infection occurring in VAP patients. VAP models display 
similar histological features as compared to the direct acute 
pneumonia model (Figure 2C), however, VAP animal model 
show an increased bacterial lung burden, a more severe 
disease progression and a higher mortality compared to 
animals that received the same bacterial dose without prior 
ventilation (31,32) (Figure 2B).

In piglets, it has been shown that experimentally-
induced tracheal stenosis along with prolonged mechanical 
ventilation of up to 4 days causes spontaneous pneumonia 
development with endogenous microbiota as primary 

Figure 1 Overview of different P. aeruginosa experimental pneumonia models. (A) One-hit acute pneumonia model where different 
inoculation routes (intratracheal, endotracheal, intranasal, or aerosolization) are employed; (B) VAP models where animals receive bacterial 
inoculation, prior to or after mechanical ventilation (MV). In spontaneous piglet VAP model, no bacterial inoculations are performed; (C) P. 
aeruginosa agar bead models wherein bacteria are either entrapped within agar beads or free-living bacteria are mixed with sterile agar beads 
prior to animal inoculation.
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Figure 2 Characteristics and endpoints of animal models of hospital-acquired pneumonia. (A) Left image shows endotracheal intubation 
technique illustrated here on a Wistar rat. Animal is fixed on a tilting platform by front incisors. Using a speculum mounted on an otoscope, an 
endotracheal tube is advanced towards the vocal cords with the aid of a guide wire. The right image shows animals receiving parallel mechanical 
ventilation. A pressure-controlled ventilation setting was used that allows for equal volume distribution between the different animals and 
small Y-shaped adaptors decrease the dead space to a minimal. Animals are placed on a heating blanket to maintain body temperature and 
blood oxygenation is measured using pulse-oximetry (red adaptor around paw of middle animal); (B) Kaplan-Meier survival analyses of 
rodent pneumonia models show highest mortality for VAP model while CF agar bead chronic pneumonia model shows highest survival; 
(C) representative images from H & E stained lung paraffin sections from rat pneumonia models. One-hit and VAP models cause confluent 
multilobar pneumonia with distinct signs of vascular congestion, alveolitis and alveolar collapse along with high infiltration of neutrophils (see 
insets). CF agar bead model shows more intense inflammation around areas that contain beads (inset) mostly restricted to the larger bronchioles 
resembling diffuse bronchopneumonia. The control MV and sterile beads only cause a mild inflammation evidenced by increased cellular 
infiltrates that for sterile bead inoculated animals are restricted to areas surrounding the beads (see insets). Scale bar represents 200 μm; (D) 
clinical follow-up of VAP and one-hit rodent pneumonia models show characteristic sharp increase in pneumonia clinical parameters up to 24 h 
post infection followed by a sharp decline to baseline levels 3 days post-infection. CF agar bead chronic pneumonia model shows a progressive 
pneumonia development with clinical signs of pneumonia present up to 3 days post-infection; (E) plethysmography recording of animal pre- 
and 18 hours post- P. aeruginosa endotracheal inoculation (blue arrow). Upper panel shows drop in tidal volume (mL), middle panel shows drop 
in breathing frequency (breath/min) and lower panel shows increase in Penh (non-invasive extrapolation to indicate bronchoconstriction). 
(B,C,D,E) Data presented here are from meta-analyses of our own results. MV and VAP models were ventilated using 8 mL/kg tidal volume 
and 4 cm H2O positive end expiratory pressure. All animals received same bacterial load of 2E7 CFU in 500 μL.
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etiology, although known opportunistic human VAP 
pathogens including Pseudomonas and Klebsiella species have 
also been isolated in this piglet VAP model (29). Recently, 
a porcine P. aeruginosa VAP model was established via 
oropharyngeal challenge immediately after intubation 
and a second challenge 4 hours into ventilation using a 
ceftriaxone-resistant P. aeruginosa strain to ensure pulmonary 
aspiration of oropharyngeal secretions caused by the desired  
organism (28).  Using 40 cm H2O pressure in the 
endotracheal cuff, the authors limited direct bacterial 
inoculation but rather mimicked aspiration of oropharyngeal 
secretions that build up behind the cuff, as similarly occurs 
in VAP patients (28,73). This resulted in localized lung 
pathology in distinct lobes, as also observed in VAP patients 
(28,73). However, in this model, the authors did not use 
a lung-protective ventilation strategy as currently used 
in patients and animals, where, as discussed above, lungs 
are typically ventilated with approximately 8 mL/kg tidal 
volumes accompanied by positive end-expiratory pressure 
to mitigate end-expiratory alveolar collapse. Perhaps this 
or less control on etiology leads to more variability and a 
clinical course of experimental VAP that appears slightly 
different from that observed in VAP patients (73).

Agar-bead (chronic) pneumonia model
This model is used extensively in the field of cystic fibrosis 
research and was originally developed in rats (74). To 
mimic biofilm, agar or seaweed alginate beads are used as 
extracellular polymeric substances which are loaded with 
bacteria in a process that requires mixing with mineral oil 
(55,75) and addition of an emulsifying agent, sorbitan-
monooleate, to increase uniformity of the beads (75)  
(Figure 1). For sham animals, sterile beads are prepared 
using PBS or saline, however, instillation of sterile beads 
itself incites an inflammatory response resulting in increased 
cellular infiltrates in lungs (55,75) (Figure 2C) and increased 
release of inflammatory cytokines that, depending on 
the precise clinical endpoints utilized in the study, could 
obscure the potential beneficial treatment effects (75). 

Interestingly, although bacteria can migrate from the 
agarose beads in vivo, bacterial growth is slow and is limited 
to the beads, a situation that is similar to what has been 
observed in bacteria existing in a biofilm phenotype (76). 
Also, clearance of bacteria is impaired and animals are less 
likely to develop acute sepsis that occurs more frequently 
with free-living bacterial inoculation (54). Interestingly, 
P. aeruginosa loaded agar beads induce several of the main 
characteristics of the chronic lung infection observed in 

CF patients including lung histopathology and elevation in 
lung neutrophils and increased cytokines (22). In particular, 
rodents, when inoculated with P. aeruginosa loaded beads, 
highly reproduce human pathology by developing a diffuse 
bronchopneumonia type of lung histopathology (Figure 2C).  
This  i s  accompanied  by  a  h igher  product ion  of 
proinflammatory cytokines and a more significant weight 
loss compared to animals receiving free-living bacteria with 
equal bacterial titers (54). Although the precise reasons 
for this remains unknown, extensive neutrophil influx 
in response to the P. aeruginosa-loaded beads has been 
noted and is proposed to cause severe airway obstruction 
and limited gas exchange (22), especially in mice (54). 
Additionally, few studies have shown that mixing free-living 
bacteria with sterile beads produces similar pathological 
changes as observed with bacteria-loaded beads (54,77) 
(Figure 1). However, P. aeruginosa-loaded agarose beads 
better resemble the chronic lung infection observed in CF 
patients with regards to histopathological features, elevation 
in lung neutrophils and the accumulation of cytokines in 
epithelial lining fluid (54).

Unmet pre-clinical need in pneumonia animal 
modeling

A better control on etiology and administered dose

Of utmost importance in developing animal models of 
infection is to accurately estimate the bacterial dose given 
to each animal and to keep this dose consistent between 
different independent experiments. Consistent culturing 
methods along with predetermined standards for optical 
density measurements that correlate with colony forming 
unit (CFU) counts is, in that respect, one of the most 
accurate methods that does not require costly equipment 
such as flow cytometers. Nonetheless, it is recommended 
that, for every inoculum used for an experiment, the 
actual bacterial load be validated using quantitative culture 
followed by (CFU) counts (54).

Besides a good control on administered dose, the choice 
of a particular strain can have profound effects on the 
phenotype of the pneumonia model. For example, naturally 
occurring P. aeruginosa isolates can lack ExoU expression, 
an important toxin secreted by the type 3 secretion system 
(T3SS). These isolates induce a reduced pneumonia 
phenotype in animal models (78,79). Furthermore, 
strains isolated from CF patients have reduced T3SS  
expression (80) while biofilm formation in these strains 
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is enhanced resulting in a mucoid phenotype due to high 
alginate expression (81). Therefore, mucoid strains like 
PAO1 should be preferred for developing CF models of 
chronic pneumonia. However, a precise bacterial count for 
highly mucoid strains is more difficult and leads to high 
inter-experiment variance.

An important issue that also needs to be addressed is 
the fact that different bacterial strains are host-specific (82)  
and only express certain virulence factors depending on 
the particular host niche (83). In that respect, clinical 
isolates might not be ideally suited to establish pneumonia 
in a rodent model, but, on the other hand, rodent adapted 
bacterial strains might lack expression of specific key 
virulence factors and thus provoke an altered immune 
response (84,85). To circumvent this limitation, studies 
have frequently resorted to supra-physiological high dose 
inoculation in animals, using, for example, initial doses 
ranging from 1E7-1E8 CFU in rats (86-88). This, however, 
does not resemble the common pathophysiological 
mechanisms observed in human pneumonia where 
colonization and micro-aspiration are the main initial events 
leading to infection. However, to study specific aspects of 
the disease, i.e., the effect of different pathogenic strains or 
antibiotic testing, high dose inoculation remains the most 
used method to create an experimental animal pneumonia 
model (6).

Disease endpoints for translational studies

In vivo non-invasive disease monitoring
In order to accurately follow-up animal disease progression, 
detailed non-invasive in vivo monitoring is required. One 
approach is to simply observe the animals for signs of pain, 
discomfort or distress (Figure 2D), as has been previously 
utilized (89). In our experience and also of others (89), 
pneumonia progression can be categorized into 3 distinct 
stages each containing signs resembling a specific stage 
during acute lung inflammation/infection. Stage 1 presents 
signs of early infection/inflammation in the lung, stage 2 
presents distinct signs of severe pneumonia and stage 3 
presents signs of severely compromised lung functions, as 
seen in HAP patients when infection overwhelms the host 
immune system and patients tend to succumb to the disease. 
The specific signs from stage 2 or stage 3 could be weighted 
more than those from stage 1 in order to create a clinical 
scoring scheme. 

Recently, unrestrained whole body lung plethysmography 
has been shown to be able to monitor progressive pneumonia 

robustly utilizing tidal volume, breathing frequencies, 
and enhanced pause (Penh) as measures of lung function 
(Figure 2E) (90,91). While tidal volume and breathing 
frequencies are being commonly utilized, Penh can only 
be used in unrestrained plethysmography if the gas in the 
plethysmograph is pre-conditioned to body temperature 
and humidity, however, this lung function parameter as a 
measurement for airway restriction is much debated (92,93). 

Other methods for non-invasive disease monitoring 
include the use of genetically engineered bioluminescent 
bacteria (94,95). The Photorhabdus luminescence lux operon 
is one of the best-studied operons to be utilized as a marker 
(96-98). Luminescent detection, however, requires sufficient 
signal emission and therefore highly virulent rodent strains 
that need to be used in lower doses might not be suited for 
this model as well as larger animal species that do not allow 
enough transmitted light to be detected by the camera (95).

Bacterial enumeration
As explained above, accurate bacterial enumeration to 
estimate bacterial load is of utmost importance in animal 
infection modeling. This becomes especially important 
when testing antibacterial compounds in animal models. 
Quantitative lung bacteriology can be performed on BAL 
fluid, or on homogenized lung tissue, collected post-
euthanasia. Additionally, detection of nucleic acids by PCR 
can also be used to estimate bacterial lung burden (53), 
however, these assays will also quantify dead bacteria that 
might not be directly involved in the infectious process.

Lung histopathology
Besides lung bacteriology, histology is one of the key primary 
endpoints post- euthanasia (Figure 2C). Different lung 
pathology scoring schemes have been used previously (98),  
however, the American Thoracic Society has developed a 
dedicated lung pathology-scoring scheme for animals (99). 
Next to standard lung histopathology on H&E stained 
sections, immunohistochemistry for main cell types of 
the innate immune system including macrophages and 
neutrophils can aid in grading pneumonia severity.

Inflammatory parameters
Serum samples taken serially from tail vein can be used 
to monitor the systemic response against developing 
pneumonia. Acute phase proteins including CRP, serum 
amyloid protein A, haptoglobin and α2 macroglobulin (100) 
as well as proinflammatory cytokines including TNFα, 
IFNγ, IL-1α, IL-1β and IL-6 can be measured in rodents 
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by antibody based detection methods. While ELISAs are 
being commonly employed, availability of multiplexing 
platforms such as Luminex and Mesoscale, allowing 
simultaneous measurement of different proteins from single 
sample analysis, are highly beneficial when sample amounts 
are limited. Post-euthanasia, inflammatory profiles can 
also be established using lung transcript analysis, however, 
proper handling of tissue prior to RNA extraction is vital. 
Also other considerations when targeting lung transcript 
studies have to be taken in account. For instance, when 
BAL is being performed, the major proportion of alveolar 
macrophages as well as neutrophils is washed out from 
airways that can have a drastic effect on total lung transcript 
readouts. Also, improper washing of tissue can result in 
mixed lung/blood causing more difficulty in interpreting 
results. In our experience, snap-freezing lung tissue in liquid 
nitrogen allows for both downstream protein and RNA 
studies and gives more flexibility compared to using RNA 
protection media. 

Humanized models

Although humans and rodents belong to the monophyletic 
group of Mammalia, considerable differences exist between 
rodents and humans including their immune system. For 
instance, mice have fewer circulating neutrophils compared 
to humans (101), have different Toll-like receptor expression 
patterns in specific cell subsets (102), and respond 
differently towards specific chemotactic molecules (102).  
In addition, IL-10 is believed to have a predominant Th2 
anti-inflammatory function in rodents, while in humans, 
both Th1 (proinflammatory) and Th2 cells can secrete IL-
10 and serves as an immunomodulatory cytokine (103). 
Moreover, activation and proliferation of Th17 cells, a 
T-cell subset important in defense against Gram-negative 
bacterial pneumonia (104,105), is predominantly induced 
by IL-1β, IL-6, and IL-23 in humans compared to IL-6 
and TGFβ that are the main drivers of Th17 differentiation 
in rodents (106). Even within the same species, notable 
differences occur that can influence experimental outcomes. 
For example, BALB/c mice are classified as a Th2 
responder strain compared to C3H/HeN mice that are 
Th1 responders (26); and establishment of infection using 
the same bacterial dose led to higher mortality in the Th2 
responding strain (26).

In the last decade, these inherent differences between 
rodents and humans have most likely contributed to the 
high number of failures observed in human clinical trials 

(107-109). For example, one meta-analysis study has shown 
that in the period 2008–2010, 51% of phase II clinical 
trials failed due to insufficient efficacy of the compound 
in human pathology (109). In this context, humanized 
mouse models that have a closer resemblance to the human 
immune system could offer great benefits in pre-clinical 
research by lessening type 1 and type 2 errors made by a 
wrongful extrapolation of results obtained from common 
animal models. Humanized mouse models have already 
been extensively employed in research of cancer and 
human-specific viruses, such as HIV and herpes (110-112), 
however, their use in bacterial pneumonia models is not well 
established. A humanized bacterial pneumonia model could 
offer significant advantages over wild type animals. A recent 
study using NSG (NOD scid gamma) background mouse 
strain grafted with human CD34 cells showed increased 
susceptibility towards clinical isolate USA300 S. aureus 
strain compared to wild type animals (113). Furthermore, 
this study identified specific bacterial toxins that were 
more effective in the humanized mouse strain (113). This 
indicates that specific host-pathogen interactions drive 
pneumonia development and illustrates the importance 
of humanized animal models to study HAP. Additionally, 
an adult, immunocompetent humanized HAP animal 
model that mimics “human” host cytokine response would 
generate data and mechanisms with more translational 
value in directly investigating more clinically relevant 
infectious processes of human pneumonia (114). Besides 
these potential major advantages of utilizing a humanized 
immune system to study bacterial pneumonia, the 
commonly used wild-type animal models described above 
are currently easier to create and allow for more flexibility 
in the experimental setup and will therefore remain an 
important tool to tackle the problems surrounding hospital-
acquired pneumonia.
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