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Extracorporeal techniques in acute respiratory distress syndrome
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Abstract: Extracorporeal membrane oxygenation (ECMO) was first introduced for patients with acute 
respiratory distress syndrome (ARDS) in the 1970s. However, enthusiasm was tempered due to the high 
mortality seen at that time. The use of ECMO has grown considerably in recent years due to technological 
advances and the evidence suggesting potential benefit. While the efficacy of ECMO has yet to be rigorously 
demonstrated with high-quality evidence, it has the potential not only to have a substantial impact on 
outcomes, including mortality, but also to change the paradigm of ARDS management.
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Introduction

Extracorporeal membrane oxygenation (ECMO) has been 
available to support severe respiratory failure since the 
1970s. However, high complication rates, largely due to 
limitations in technology, lead to poor outcomes early 
on. In more recent years, advances in technology and 
management have led to apparently improved survival with 
reduced complication rates, resulting in increasing use 
of ECMO for severe acute respiratory distress syndrome 
(ARDS). While outcomes have improved over time, the 
benefit of ECMO as compared to conventional, standard of 
care management for ARDS has yet to be demonstrated in 
rigorously designed, randomized controlled trials; as such 
it remains most commonly employed as salvage therapy for 
the most severe cases of ARDS. 

As the field continues to evolve, there is increasing 
potential for ECMO to enhance the way ARDS is managed, 
notably through facilitation of lung protective ventilation 
and minimization of ventilator-associated lung injury. Here 
we will review the evidence that supports the use of ECMO, 
the rationale for its use and mechanistic benefits, practical 

aspects of ECMO initiation and management, and ongoing 
investigations and future directions.

History of ECMO for ARDS

ECMO is a system that draws blood out of the body 
through a cannula via a pump, passes the blood through 
a membrane oxygenator where both oxygen delivery and 
carbon dioxide removal occur, and reinfuses the well-
oxygenated blood back into the body through a cannula, 
thus providing extracorporeal gas exchange (1). 

The first successful use of ECMO as salvage therapy 
for severe acute respiratory failure was reported in 
1972 (2), however, a subsequent randomized controlled  
trial, published in 1979, failed to demonstrate a survival 
advantage over conventional mechanical ventilation 
with low survival rates in both groups (9.5% and 8.3%, 
respectively) (3). Thereafter, the use of extracorporeal carbon 
dioxide removal (ECCO2R), which was first observed in the 
setting of early hemodialysis membranes (4), was recognized 
as a potential strategy in severe acute respiratory failure, 
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specifically as a means of facilitating carbon dioxide removal 
and minimization of invasive mechanical ventilation 
through low frequency positive-pressure ventilation (5-8). 
Observed survival rates with this strategy were much higher 
(48.8%) than previously reported in patients with similar 
clinical characteristics (9), but in a follow-up randomized 
controlled trial of ECCO2R combined with low frequency 
positive-pressure ventilation, there was no survival 
benefit over conventional mechanical ventilation (33% vs. 
42%, respectively, P=0.8) (10). Thereafter, a number of 
observational studies suggested a survival rate ranging from 
49–81% (11-19) for selected patients managed with ECMO 
for severe ARDS. However, conclusions from these early 
studies on the efficacy of ECMO for ARDS are limited by 
study methodology and the use of outdated extracorporeal 
technology as well as mechanical ventilation practices.

In the last 2 decades, there have been a number of 
changes in clinical practice that have led to improved 
outcomes in ARDS, most notably the use of a low-
volume, low-pressure ventilation strategy, conservative 
fluid management, neuromuscular blockade, and prone 
positioning (20-25). Additionally, a number of advances 
have been made over time in extracorporeal technology, 
including the use of centrifugal pumps, polymethylpentene 
membranes, biocompatible circuit components, and 
improvements in cannula technology (26,27). 

The use of ECMO in severe ARDS during the 2009 
influenza A (H1N1) pandemic generated more widespread 
interest in its use, with high overall survival rates (28-30), 
including a reported survival of 75% in a cohort of patients 
in Australia and New Zealand (31,32). However, favorable 
outcomes were also observed for comparable cohorts of 
patients with severe ARDS due to influenza A (H1N1) at 
other centers without the use of ECMO (33), calling into 
question the benefit of ECMO over optimal conventional 
management. Two cohort studies that utilized matched-
pairs analysis of patients with H1N1-asscoiated ARDS 
who were managed with or without ECMO demonstrated 
conflicting results; the first reported a mortality benefit (RR 
0.45–0.51, P=0.001–0.006) (34), whereas the second did not 
(OR 1.48, P=0.32) (35). 

The only multicenter randomized controlled trial 
utilizing relatively modern techniques in ECMO for ARDS 
is the Conventional Ventilation or ECMO for Severe Adult 
Respiratory Failure (CESAR) trial, in which 180 patients 
with severe acute respiratory failure were randomized to 
either receive conventional mechanical ventilation or be 

referred to a specialized center where they were considered 
for ECMO after an initial period of optimal conventional 
management. A significant reduction was seen in the 
composite outcome of death or severe disability at 6 months 
in patients who were referred to a specialty center for 
consideration of ECMO versus conventional management 
(37% vs. 53%; RR 0.69, 95% CI 0.05–0.97, P=0.03). Of 
note, only 76% of patients referred to a specialty center 
were ultimately managed with ECMO, and a large portion 
of patients in the conventional management arm (30%) 
never received lung protective ventilation at any time, 
making it difficult to draw conclusions about the benefit 
of ECMO itself on outcomes. Despite these and other 
limitations, referral of patients with severe forms of ARDS 
to a center that has the capability of performing ECMO, 
and adheres to standard of care mechanical ventilation, may 
be beneficial (36,37). 

Indications and contraindications for ECMO  
in ARDS

ECMO may be considered as a salvage therapy for patients 
with ARDS in those who have severe gas exchange 
abnormalities in the setting of potentially reversible acute 
respiratory failure. Proposed thresholds for the initiation 
of ECMO include severe hypoxemia [e.g., partial pressure 
of oxygen in arterial blood (PaO2) to the fraction of 
inspired oxygen (FiO2) ratio less than 80], uncompensated 
hypercapnia with acidemia (e.g., pH less than 7.15) or 
excessively high end-inspiratory plateau pressures (e.g., 
greater than 35–45 cmH2O) despite standard of care low-
volume, low-pressure ventilation (1). When available, 
adjunctive therapies that have a proven or suspected benefit 
in severe ARDS (e.g., neuromuscular blockade and prone 
positioning) should be strongly considered prior to the 
initiation of ECMO.

Patients who have been exposed to high-pressure 
ventilation (end-inspiratory plateau pressure of greater 
than 30) or high FiO2 for more than 7 days may be less 
likely to benefit from ECMO, although clearly this is 
only a relative contraindication and may simply reflect 
enrichment of the population for more severe cases. Other 
relative contraindications include limited vascular access 
options for cannulation and any condition that does not 
allow the use of systemic anticoagulation, which is strongly 
preferred to minimize thrombosis formation in the ECMO 
circuit (1). Additionally, there are conditions that should  
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exclude patients from receiving ECMO due to the limited 
overall benefit anticipated from its use. Such patients 
include those with advanced, untreatable underlying 
conditions (e.g., irreversible brain injury or metastatic 
cancer). An absolute contraindication is the use of ECMO 
in patients with end-stage lung disease and severe acute-on-
chronic respiratory failure who are not candidates for lung 
transplantation when recovery to baseline is not deemed 
possible (1). 

ECMO cannulation and configuration in ARDS

ECMO configurations include venovenous, where 
deoxygenated blood is drained from a central vein 
and oxygenated blood is reinfused into a central vein  
(Figure 1), and venoarterial, where blood is drained from a 
central vein and reinfused into a central artery. Venovenous 
ECMO provides respiratory support, whereas venoarterial 
ECMO provide both respiratory and hemodynamic support. 
The majority of ARDS cases involve severe respiratory 
failure alone, for which a venovenous configuration is 
most appropriate, and is the primary focus of this review. 
Some cases of ARDS may present with concomitant 
severe cardiogenic shock. In such circumstances, a hybrid 
approach, where blood is drained from a vein and reinfusion 
is split between a central artery and vein (Figure 2), may 
be necessary to provide both hemodynamic support and 
adequate upper-body oxygenation (1,38-40). Of note, 
when ARDS presents with an acute elevation in pulmonary 
vascular resistance (PVR) with right ventricular dysfunction 
from severe hypoxemic- or hypercapnic-induced pulmonary 
vasoconstriction, venovenous ECMO is often effective in 
improving PVR and unloading the right ventricle such that 
venoarterial ECMO can be avoided (41). 

Venovenous ECMO can utilize either a dual-site or 
single-site cannulation approach. The dual-site approach 
most commonly drains blood from a femoral vein and 
reinfuses into an internal jugular or contralateral femoral 
vein. This approach may be complicated by recirculation 
of blood, which occurs when reinfused blood is drawn 
back into the circuit without passing through the systemic 
circulation, thereby reducing the effectiveness of gas 
exchange. A single bicaval dual-lumen cannula can also be 
used (Figure 3), which, when properly positioned, minimizes 
the likelihood of recirculation and does not require 
femoral cannulation, allowing for improved mobility 
of patients when appropriate. However, it does require 

either transesophageal echocardiography or fluoroscopic 
guidance to ensure proper positioning, notably directing 
the reinfusion jet across the tricuspid valve (1,26,42,43). 

An alternative configuration for gas exchange support 
is a pumpless, arteriovenous circuit (arterial drainage 
and venous reinfusion via femoral artery and vein, 
respectively), which relies upon the patient’s native cardiac 
output to generate extracorporeal blood flow through the 
membrane oxygenator. However, the lack of control over 
extracorporeal blood flow, which tends to be relatively 
low and thus less effective for oxygenation, and the need 
for arterial cannulation make this approach less desirable 
than a pump-based venovenous configuration in most 
circumstances (44-46). 

Management of ECMO in ARDS

Control of oxygenation and carbon dioxide removal

Once a patient is cannulated with venovenous ECMO, a 
gas supply typically consisting of a mixture of oxygen and 
air is connected to the membrane oxygenator, with the 
fraction of delivered oxygen (FDO2) set via a gas blender. 
This gas, referred to as sweep gas, passes along one side of 
a semipermeable membrane, while blood flows along the 
other side, with the membrane allowing for diffusion of 
oxygen and carbon dioxide down their respective gradients. 
The sweep gas flow rate is the main determinant of carbon 
dioxide removal at high blood flow rates, and can be titrated 
to PaCO2 or pH (Table 1). The level of PaCO2, blood flow 
rate and properties of the membrane lung also affect carbon 
dioxide removal. 

The major determinants of blood oxygenation in patients 
receiving venovenous ECMO include the amount of blood 
flow through the circuit relative to cardiac output, FDO2 
through the circuit, the contribution of native lung gas 
exchange (which is largely impaired in severe ARDS), 
and the characteristics of the membrane lung. As such, 
establishing adequate blood flow based on a patient’s size 
and predicted cardiac output is an important determinant 
in choosing the appropriate cannula sizes, with blood flow 
largely being limited by the size of the drainage cannula. 
An increase in cardiac output at a given extracorporeal 
flow rate will decrease systemic oxygenation because of a 
relative decrease in the contribution of the ECMO circuit 
to oxygenation. In a small study that evaluated various 
ECMO parameters with regard to blood oxygenation 
and decarboxylation in patients with ARDS, it was noted 
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that when blood flow was greater than or equal to 60% of 

cardiac output, patients were able to maintain an arterial 
saturation of greater than 90% (47).

Anticoagulation 

Systemic anticoagulation is required for all ECMO 
circuits to minimize the risk of thrombus formation, 
with unfractionated heparin being the most commonly 
used anticoagulant. Although there are no universally 
accepted anticoagulation goals for ECMO, an activated 
partial thromboplastin time of 40 to 60 seconds has been 
used by some centers as a target that provides adequate 
anticoagulation of the circuit while minimizing potential 
bleeding complications (1,48). Retrospective data suggests 
that a low level anticoagulation strategy, coupled with 
conservative transfusion thresholds and reinfusion of circuit 
blood at the time of decannulation, results in favorable 
outcomes while minimizing transfusion requirements (49). 

Ventilator strategies

While a low-volume, low-pressure strategy is the hallmark 
of ventilator management in ARDS, (21,50-53) the ideal 

Figure 1 Two-site approach to venovenous ECMO cannulation. 
The venous drainage cannula typically enters a femoral vein and 
extends into the inferior vena cava. Blood from the cannula is 
drawn into a pump. This blood is then propelled forward through 
the oxygenator before beng reinfused into the body. The venous 
reinfusion cannula typically enters an internal jugular vein and 
extends into the right atrium, where reinfusion occurs. Reproduced 
with permission from collectedmed.com, previously published in 
ASAIO (Agerstrand CL, Bacchetta MD, Brodie D. ECMO for 
adult respiratory failure: current use and evolving applications. 
ASAIO J 2014;60:255-62. Figure 1).

Figure 3 Single-site approach to venovenous ECMO cannulation. 
A dual-lumen cannula enters the internal jugular vein and 
terminates in the inferior vena cava. Blood enters the drainage 
lumen through ports in the inferior and superior vena cava and 
is drawn into the pump. This blood is then propelled forward 
through the oxygenator before being reinfused via the second 
lumen of the cannula, which has a port positioned in the right 
atrium and blood flow is directed across the tricuspid valve. 
Reproduced with permission from collectedmed.com, previously 
published in ASAIO (Agerstrand CL, Bacchetta MD, Brodie D. 
ECMO for adult respiratory failure: current use and evolving 
applications. ASAIO J 2014;60:255-62. Figure 2).

Figure 2 Venovenous-arterial ECMO cannulation. The venous 
drainage cannula enters a femoral vein and extends into the 
inferior vena cava. This blood is then drawn into a pump and 
propelled forward through the oxygenator before being reinfused 
into the body. The reinfusion of blood is split between a venous 
cannula, typically placed in an internal jugular vein, and an 
arterial cannula, typically placed in a femoral artery. Reproduced 
with permission from collectedmed.com, previously published in 
ASAIO (Biscotti M, Lee A, Basner RC, et al. Hybrid configurations 
via percutaneous access for extracorporeal membrane oxygenation: 
a single-center experience. ASAIO J 2014;60:635-42. Figure 3). 
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ventilator settings for patients managed with ECMO 
are unknown. Secondary analysis of the data from the 
ARDSNet ARMA trial of low tidal volume ventilation in 
ARDS suggests patients with even lower end-inspiratory 
plateau pressures than the targeted 30 cmH2O on day 
one, had lower mortality rates as compared with those 
with higher values, regardless of tidal volume assignment, 
suggesting a lower target may be more protective (53,54). 
However, the ability to achieve very low plateau airway 
pressures—below those targeted with a standard of care 
low-volume, low-pressure ventilation strategy—in patients 
with ARDS and severely reduced lung compliance, is often 
limited by unacceptable levels of respiratory acidosis. The 
concurrent use of ECMO may provide sufficient additional 
gas exchange support to allow for further reductions in 
ventilator volumes and pressures while managing the 
hypercapnia and acidemia that accompanies the reduction 
in minute ventilation. Whether this strategy is superior to 
standard of care low-volume, low-pressure ventilation is 
unknown.

The CESAR trial managed patients with pressure-
controlled ventilation with a target peak inspiratory pressure 
of 20–25 cmH2O, a rate of 10 breaths per minute, PEEP 
of 10–15 cmH2O and FiO2 of 0.3 (36). This strategy has 
often been adopted in the practice of ECMO. However, the 
ventilator strategy itself was not tested. Multiple approaches 
may be acceptable, including the use of volume-cycled 

ventilation to target a particular plateau airway pressure, 
although the optimal plateau airway pressure has yet to be 
determined. Prospective ARDS studies suggest that there 
may not be a safe upper limit of tidal volume or plateau 
airway pressure (53). In addition, recent reports highlight 
the role of respiratory rate as a contributor to ventilator-
associated lung injury (55,56) and that lower respiratory 
rates (e.g., lower than 10 breaths per minute) should be 
considered. Analysis of pooled data of patients managed 
with mechanical ventilation alone for ARDS and those 
managed with venovenous ECMO have also suggested that 
driving pressure (plateau airway pressure minus positive 
end-expiratory pressure) is independently associated 
with increased mortality; while this relationship has not 
been validated in a prospective or randomized fashion, 
perhaps targeting a lower driving pressure could also be  
beneficial (57,58). 

In light of the significant mortality benefit seen with the 
use of prone positioning in patients with ARDS (25), prone 
positioning should be strongly considered prior to the 
initiation of ECMO, when possible (59). Prone positioning 
might also be considered in selected patients managed 
with ECMO. However, little is known about the effects of 
combining these strategies. One small case series reviewed 
the outcomes in patients with ARDS who were managed 
with the combination of ECMO and prone positioning. 
The authors noted improved oxygenation and general 
safety of the procedure with no complications attributable 
to prone positioning (60). 

Extubation during extracorporeal support

Given that the fundamental goals for ventilator management 
in ARDS are geared towards minimizing ventilator-
associated lung injury, removing the ventilator entirely 
may theoretically be the preferred strategy. Additionally, 
it could optimize other intensive care-based management 
strategies, including minimization of sedation, reductions 
in nosocomial infections (particularly ventilator-associated 
pneumonia) and maximization of mobilization and enteral 
nutrition. However, there is potential concern over 
exacerbating mechanical stress with spontaneous breathing 
in ARDS (61-65). Although ECCO2R has been shown to 
have the ability to control ventilatory drive in select patients 
with severe, chronic respiratory failure (e.g., COPD), data 
suggests that it may not be able to sufficiently control the 
spontaneous and potentially injurious respiratory efforts of 
patients with severe ARDS (66,67). 

Table 1 Determinants of oxygenation and carbon dioxide removal

Determinants of oxygenation

Amount of extracorporeal blood flow relative to total cardiac 
output

Fraction of oxygen delivered through oxygenator

Hemoglobin

Membrane properties

Recirculation

Native gas exchange

Determinants of carbon dioxide removal

Rate of gas flow (sweep gas) through oxygenator 

Contribution of native lung function

Extracorporeal blood flow

Membrane properties

Native gas exchange
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Mobilization during extracorporeal support

Physical and occupational therapy has been shown to 
not only be feasible, but also have a number of favorable 
outcomes in patients with acute respiratory failure, 
notably improving functionality, reducing delirium, and 
increasing ventilator-free days (68-70). The mobilization 
of patients with respiratory failure requiring ECMO has 
been increasing overall, but this data is largely limited to 
patients who are awaiting lung transplantation (71-74). 
While patients requiring ECMO for ARDS may often be 
too critically ill to participate in active rehabilitation, it 
may be possible in appropriate patients who are at centers 
that have a multidisciplinary approach to physical therapy  
(75-77). The benefit of mobilizing ARDS patients on 
ECMO has not been well defined and must be weighed 
against the potential risks of physical therapy in this 
population.

Complications

Potential risks or complications of ECMO include 
hemorrhage, thrombosis, hemolysis, and infection, among 
others, and must be weighed against the potential benefits 
when selecting appropriate patients for ECMO support  
(78-82). A lower anticoagulation goal has been adopted 
by many centers in an attempt to minimize the risks of 
hemorrhage while still maintaining circuit patency (1). 
Advances in extracorporeal technology and techniques 
and increasing experience have reduced the rates of these 
complications over time, however, the risks of ECMO 
remain considerable (78). 

Economics of ECMO for ARDS

There are limited data evaluating the cost-benefit profile 
of ECMO in ARDS. The CESAR trial incorporated an 
economic evaluation within their study, which noted more 
than a two-fold increase in cost per patient who received 
ECMO as compared to standard management, with a gain 
of 0.03 quality-adjusted life-years (QALYs) at 6 months. 
However, this was limited to one health care system in the 
context of a randomized controlled trial (36,83). Further 
economic assessments will be important as the use of this 
technology continues to widen.

Ethical considerations

ECMO has the ability to support gas exchange for patients 

with severe respiratory failure. However, ethical dilemmas 
have arisen, most notably when patients are unable to be 
weaned from extracorporeal support and are deemed not to 
be candidates for lung transplantation. There are currently 
no available devices that would offer a “destination therapy” 
or more portable extracorporeal devices that would allow 
such a patient with persistent respiratory failure the option 
of residing outside the ICU. As such, families and patients 
may find themselves in a situation with no clear endpoint to 
their clinical course (84). Careful selection of patients who 
have a higher likelihood of a favorable outcome from ARDS 
may help avoid some of these dilemmas (85-87). Potential 
future technological advances in device therapy may one 
day help remedy such situations by providing a durable 
destination device.

Ongoing areas of investigation

ECCO2R for less severe ARDS

While the use of ECCO2R was first described in the 1970’s 
as an alternative means of providing ventilation, pursuit 
of novel management strategies incorporating ECCO2R 
have become more popular in recent years in response to 
the increasingly recognized importance of lung-protective 
ventilatory strategies and advances in technology that have 
improved the risk-benefit profile of extracorporeal support. 
Venovenous ECMO has largely been reserved as salvage 
therapy for cases of the most severe forms of ARDS (1,88), 
the incidence of which is low compared to less severe 
forms of ARDS (89). As such, there is increasing interest 
in the possible utilization of ECCO2R in less severe cases 
of ARDS in an attempt to facilitate or extend low-volume, 
low-pressure ventilation, which is often otherwise limited by 
hypercapnia with acidemia. The removal of carbon dioxide 
via an extracorporeal circuit, notably with lower flow and 
smaller cannulae (which is more feasible in patients with less 
severe hypoxemia), could permit the optimization of lung 
protective strategies, including lower tidal volumes, plateau 
airway pressures, and respiratory rates, by maintaining pH 
within an acceptable range. This concept of ECCO2R-
assisted very-low tidal volume ventilation in patients with 
ARDS was studied in a prospective trial that used ECCO2R 
to reduce tidal volumes from 6 mL/kg of predicted 
body weight to approximately 4 mL/kg with a goal of 
reducing plateau airway pressure from 28–30 cmH2O to  
25–27 cmH2O. In doing so, inflammatory markers 
(including interleukin 6, interleukin 8, interleukin 1b, 
and interleukin 1 receptor antagonist) were significantly 
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reduced from baseline, suggesting potential mitigation 
of ventilator-associated lung injury (90). A subsequent 
randomized controlled trial compared the use of ECCO2R-
assisted very-low tidal volume ventilation (tidal volume of  
3 mL/kg predicted body weight) to a standard lung 
protective ventilation strategy in patients with moderate 
to severe ARDS. Although there was no difference in the 
primary outcome of ventilator free days at 28 and 60 days 
between the two groups (33 vs. 29, P=0.469), there was 
a suggestion of benefit among those with more severe 
hypoxemia (91). Based on the limited literature that exists, 
extending lung protective ventilation to very-low tidal 
volume ventilation is achievable with the assistance of 
ECCO2R. The overall clinical benefits of such a strategy 
are still uncertain and need to be further elucidated in 
randomized-controlled trials.

Conclusions

Despite a lack of rigorous, high-quality evidence, 
modern-day ECMO is increasingly becoming accepted 
as a reasonable salvage therapy for patients with severe  
ARDS (92), and has the ability to maximize lung-protective 
ventilation in these patients, albeit with uncertain benefit. 
The application of ECCO2R may, in the future, also play 
an important role in the mitigation of ventilator-associated 
lung injury in less severe forms of ARDS. Randomized 
controlled trials are needed to assess the potential impact of 
extracorporeal technology on the management of ARDS.
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