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Abstract: In the last few years, a growing number of molecules have been associated to an endocrine 
function of the skeletal muscle. Circulating myokine levels, in turn, have been associated with several 
pathophysiological conditions including the cardiovascular ones. However, data from different studies are 
often not completely comparable or even discordant. This would be due, at least in part, to the whole set 
of situations related to the preparation of the patient prior to blood sampling, blood sampling procedure, 
processing and/or store. This entire process constitutes the pre-analytical phase. The importance of the pre-
analytical phase is often not considered. However, in routine diagnostics, the 70% of the errors are in this 
phase. Moreover, errors during the pre-analytical phase are carried over in the analytical phase and affects 
the final output. In research, for example, when samples are collected over a long time and by different 
laboratories, a standardized procedure for sample collecting and the correct procedure for sample storage are 
acknowledged. In this review, we discuss the pre-analytical variables potentially affecting the measurement of 
myokines with cardiovascular functions.
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Introduction

Starting from their classification as an “independent” 
category of molecule, in 2003 (1), 266 records can be 
retrieved on PubMed after searching the term “myokines”. 
The ancestor molecule of this family, the first described 
“exercise factor”, was interleukin (IL)-6. Thereafter, a 
plethora of both already known and newly discovered 
molecules have been associated with muscle activity, and 
consequently classified as myokines. The term myokine 
refers to a protein which if: (I) synthesized and released 
by the skeletal muscle (SKM); (II) exerts its biological 
function(s) in an endocrine or paracrine fashion (2). Hence, 
physical activity (PA) represents the main stimulus to the 

endocrine functioning of the SKM (3). Other than IL-6, 
more than 100 myokines have been so far identified (4), 
among the 300 predicted proteins constituting the SKM 
secretome (5), and 17 additional novel exercise-responsive 
transcripts have been recently discovered (3).

PA is directly associated with reduced risk of acute 
myocardial infarction (AMI), stroke, hypertension, 
peripheral artery disease, erectile dysfunction, depression, 
dementia, malignancies, and improved status in diabetes, 
obesity, sarcopenia, and cognitive functioning and mental 
health. Thus, regularly exercising helps in slow down aging 
consequences in association with an improvement of the 
quality of life, possibly promoting longevity (6). Physical 
inactivity has been recognized by the World Health 
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Organization (WHO) as the fourth cause of death (7). 
Hence, based on their endocrine action, myokines are key 
mediators of those mechanisms involved in the exercise-
associated beneficial effects. In addition, several myokines 
are involved in cardiovascular regulation and many of 
them have protective effects in cardiovascular diseases (8). 
Despite the increasing interest in these bioactive muscle-
derive factors and their possible clinical use, either as 
diagnostic/prognostic factors or therapeutic targets, only a 
few studies focused on the pre-analytical warnings in their 
measurements. Thus, the aim of this review is to collect the 
information regarding the whole set of knowledge about the 
pre-analytical phase to be satisfied when a certain myokine, 
specifically a myokine associated with cardiovascular 
function, is measured.

Overview of myokines with cardiovascular functions

The effect of myokines on cardiovascular function can be 
either direct or indirect. The former is directly mediated by 
a myokine, produced by the activated SKM, which targets 
cardiomyocytes, neuronal fibers resident within the heart 
wall, endothelial cells (EC), or vascular smooth muscle 
cells (VSMC). The indirect effect is mediated by a myokine 
targeting an organ involved in metabolic functions [e.g., 
adipose tissue (AT), pancreas, liver] which (dys)functioning 
can affect cardiovascular function. However, myokines 
are often able to act through both ways (8). For instance, 
follistatin-like 1 (FSTL1) is induced, in both SKM and 
cardiac muscle, by ischemia and hypertrophic response 
and it has beneficial effects on vasculature (by limiting EC 
apoptosis, VSMC proliferation, and neointimal formation) 
and heart (by limiting cardiac ischemic injury, adverse 
cardiac remodeling, and cardiac rupture) (8,9). On the 
contrary, irisin induces white-to-brown transition of AT, 
increasing lipid oxidation-to-storage balance and improving 
the metabolic profile, finally improving cardiovascular 
function (10).

Pre-analytical phase in the assessment of 
myokines involved in cardiovascular function

The pre-analytical phase in laboratory medicine

Regard le s s  o f  the  method  o f  measurement ,  the 
concentration an analyte in a biological sample depends 
on biological, analytical, and pre-analytical variability (11). 
Indeed, uses and lifestyle in the hours before sampling, 

sample drawing execution, handling, processing, and 
storing can cause unwanted changes in the concentration 
of certain types of biomolecules (e.g., degradation, release 
from cellular components or carrier molecules) (12,13). 
Within the flux of samples, from collection to analysis 
and final reporting, the whole set of decisions and actions 
(i.e., sample matrix choice, collection, transportation, 
treatment and storage) taken during the pre-analytical 
phase has the biggest impact on the analytical output (70% 
of all errors) (14-16). Errors in this phase are carried over 
to the analytical phase affecting measurement accuracy 
and, ultimately, leading to uncertainty about results 
(12,17). The effects of these variables can be minimized by 
carefully following standard operating procedures (SOPs). 
However, current SOPs are based on “best practices” 
and not on experimental findings; therefore, studies 
addressing such procedures under “real-life” conditions are  
needed (18). While the pre-analytical phase is critical in 
routine laboratory medicine (19), its importance in research 
and clinical trials is often underestimated (20,21).

Factors  associated with sampling and subjects 
should be considered. The main sources of variability 
among sampling-associated factors are represented by 
the preparation of the patient (timing, environmental 
conditions, posture), sample collection [identification and 
labeling, type of disposables (e.g., straight needle, butterfly, 
cannula, needle caliber), containers (e.g., primary tube), 
drawing order, phlebotomy procedure (e.g., tourniquet 
time, tube mixing), contamination], sample transportation 
(length, temperature, pneumatic tube systems), sample 
preparation (centrifugation time, speed, and temperature, 
aliquot preparation), sample storage (length, temperature, 
freeze/thaw cycles) (14).

Subject-associated variables to be considered when 
planning blood sampling are: drug administration (timing 
of drawing and treatments), PA (to be avoided in the 
48–24 h before sampling), and menstrual cycle. Likewise, 
uncontrollable subject-related factors that should be 
critically considered are: age and gender (e.g., menopause), 
ethnicity, usual medications (e.g., antihypertensive), dietary 
supplements, comorbidities/diseases, and circannual and 
seasonal rhythms (22,23).

Myostatin

Myostatin, also known as growth-differentiation factor-8 
(GDF-8), belongs to the transforming growth factor-β 
(TGF-β) superfamily. It is a negative regulator of SKM 
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growth, as demonstrated in GDF-8 knock-out mice, which 
had increased SKM mass (24). Myostatin is secreted by 
muscle and cardiac myocytes as a prepromyostatin; after 
cleavage of N-terminal signal-peptide, promyostatin is 
further cleaved into two active fragments, myostatin-
prodomain (N-terminal) and myostatin-ligand (C-terminal). 
Activation requires the release of myostatin-ligand (25). In 
type 2 diabetes (T2DM), muscle myostatin mRNA increases 
1.4-fold compared to controls; however, plasma myostatin 
levels do not change, indicating that myostatin release from 
muscle is well-regulated (26). The attenuation of myostatin 
expression reduces adiposity and improves cardiac 
contractility, probably as a consequence of improvements 
in cardiac Ca2+-handling (27). Myostatin expression is also 
increased in cardiomyocytes after myocardial infarction (28), 
although other authors failed in correlating its serum levels 
with the severity and prognosis of chronic heart failure (29).

Pre-analytical factors

Commercially available enzyme-linked immunosorbent 
assays (ELISAs) are mainly designed to detect myostatin-
ligand, although assays detecting both subunits have been 
developed (30). Breitbart and colleagues developed an 
IRMA method for measuring myostatin-prodomain in 
human serum. According to their findings, the N-terminal 
domain was stable at room temperature (RT) (25). No 
information about the sample matrix effect is currently 
available. Up to four freeze/thaw cycles did not affect 
myostatin immunoreactivity (25).

In a wide cohort of males, Szulc et al. found that 
myostatin slightly increases until 57 years of age and it 
subsequently decreases (31) with no association with age-
related muscle loss (32,33). Serum myostatin levels follow a 
circannual rhythm with a spring-time peak, being directly 
correlated with 25-hydroxy vitamin D levels. Smoke 
decreases myostatin levels, while it was not dependent on 
current PA, parathyroid hormone (PTH), testosterone, 
and 17β-estradiol (31,34). Pro-myostatin is not affected by 
menstrual cycle (35) and females have slightly lower levels 
compared to males (25). High plasma levels of myostatin 
were found in in rats with chronic kidney disease (CKD) (36) 
and in patients with chronic obstructive pulmonary disease 
(COPD) (37).

In summary, data are available about subject-specific pre-
analytical warnings, but not for sample-specific issues. At 
this regard, data about myostatin should be contextualized 
for age and gender, although specific ranges should be still 

determined.

FSTL1

FSTL1 is a secreted glycoprotein, expressed by mesenchymal 
cells (38). It belongs to the SPARC (secreted protein 
acidic and rich in cysteine, also known as osteonectin) 
protein family and is a myostatin inhibitor. It is increased 
by cycle ergometer exercise in healthy subjects, and by 
swimming in mice (39,40). In murine and rat muscle 
cell lines, FSTL1 was decreased by insulin and during 
myogenesis (41-43). It is secreted by primary human SKM 
cells (44) and it promotes function and survival of ECs. 
FSTL1 overexpression in ECs enhances differentiation 
and migration and reduces apoptosis (45). Thus, FSTL1 
may mediate some of the protective effects of exercise 
by counteracting the harmful effects of proinflammatory 
adipokines (46).

High levels of FSTL1 are protective against to 
cardiovascular diseases (47): beside the revascularization 
signal, cardiomyocytes themselves express FSTL1 which 
acts as a survival signal for these cells (9).

Pre-analytical factors

Widera and colleagues found that FSTL1 is stable 48 h at 
RT in serum and whole blood (WB) (48). In citrate- and 
He-plasma FSTL1 concentrations were 18% and 17% 
lower, respectively, than serum (48). Moreover, FSTL1 
immunoreactivity was maintained after four freeze/
thaw cycles (48). The acute coronary syndrome has been 
associated with increased serum FSTL1 (48), as well as 
osteoarthritis with the highest levels in females (49). In 
summary, FSTL1 should be measured in serum and, 
precautionary, within 48h from sampling in fresh samples.

Irisin

Irisin is encoded by the FDNC5 gene, highly expressed 
in SKM and AT. The full-length protein consists of a 
signal-peptide, a fibronectin III-domain, a hydrophobic 
transmembrane domain, and a C-terminal domain. The 
proteolytic cleavage releases irisin which contains most 
of the fibronectin III-domain. Irisin is secreted during 
SKM contraction and is associated with increased energy 
expenditure because of its ability to stimulate the browning 
of white AT (WAT) (50,51). In myocardium, it is induced 
by ischemia and it protects against ischemia and reperfusion 
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heart injury, by improving post-ischemic ventricular 
function, coronary effluent recovery, and reducing the 
infarct size. Furthermore, irisin decreases the expression of 
apoptotic proteins including active caspase-3, cleaved PARP, 
and annexin V and increases p38 phosphorylation and 
SOD-1 expression in the post-ischemic myocardium (52). 

Pre-analytical factors

Circulating irisin levels vary greatly within species: in 
human serum or plasma, it ranges between 0.01 and  
2,000 ng/mL (53,54). Moreover, irisin immunoreactivity 
hugely differs among assays. Currently, the most reliable 
method is mass spectrometry (55).

Serum irisin concentration was unexpectedly inversely 
correlated with storage length (56). By analyzing the sample 
matrix effect, specificity and sensitivity were, respectively, 
55% and 90% for a cut-off value of 17.2 ng/mL for serum 
irisin, 90% and 60% for a cut-off value of 19.6 ng/mL for 
saliva irisin, 90% and 85% for a cut-off value of 17.2 ng/mL 
for urine irisin. However, these results indicate concerns 
about the assay method rather than the sample matrix (55).

Circulating irisin is affected by acute exercise [for 
review (57)], particularly, resistance training more than 
endurance training (58), although chronic exercising 
decreases irisin (59). Circulating irisin levels are predicted 
by biceps circumference, and they correlate with BMI, 
glucose, ghrelin, and IGF-1 and negatively with age, 
insulin, cholesterol, and adiponectin levels (60). However, 
Hecksteden et al. demonstrated that, in healthy subjects, 
only age and total cholesterol predicted irisin levels (56). In 
CKD patients it correlates with glomerular filtration rate 
(GFR) and plasma bicarbonate (61) and with nutritional 
status, body composition (62), and insulin resistance, as 
recently confirmed by a meta-analysis (62,63), in end-stage 
renal disease.

48 h fasting decreases blood irisin in normal rats (64). 
Irisin is lower in amenorrheic than in eumenorrheic athletes 
and non-athletes (65); however, menstrual cycle does not 
affect the exercise-induce response of irisin (66). Resting 
serum irisin does not differ between men and women (lean 
or obese) but, after acute exercise, it increased significantly 
more in lean women than in men. In obese, resting irisin is 
significantly higher than in lean subjects but the response to 
exercise is blunted (67).

In summary, no indications are available about the 
sample-related pre-analytical warnings. However, besides 
the above mentioned analytical issues, irisin concentration 

should be carefully contextualized within the subject 
metabolic conditions and the training status.

IL-6, IL-8, IL-15, CXCL2 and other cytokines

IL-6 is a pleiotropic cytokine bridging innate and adaptive 
immunity. Although synthesized by all cell types, main 
sources are: hepatocytes, T-cells, macrophages, smooth and 
SKM cells. It regulates acute-phase response, inflammation, 
and hematopoiesis (68). IL-6 receptor (IL-6R) is expressed 
by a limited number of cell types [e.g., bone cells, and 
myocytes (69)] while the co-receptor gp130 is ubiquitously 
expressed and is activated by all the IL-6 family members 
[leukemia inhibitory factor (LIF), cardiotrophin-1  
(CT-1), oncostatin M (OSM), IL-11, ciliary neurotrophic 
factor (CNTF)] (70). Soluble IL-6R, released by the action 
of ADAM10 and 17, binds IL-6 and activates gp130; cells 
expressing these enzymes [cardiomyocytes (71)] modulate 
IL-6 signaling (72). Activated gp130 induces the JAK/STAT 
signaling which promotes cardiomyocytes survival and 
stimulates angiogenesis (70).

Acute and chronic inflammation induced IL-6 in liver 
(73,74). Instead, SKM contraction generates spiking IL-6 
increases [mode-, intensity-, and duration-dependently 
(75,76)] activating energy metabolism [stimulate glucose 
sensitization (77,78), insulin signaling (79-81), and lipolysis 
in WAT (2)] and exerts anti-inflammatory effects (2,82). It 
is independent of TNF-α (83) and it is not associated with 
myocyte damage (76) but it drives muscle regeneration and 
recovery from atrophy (84,85). In AMI, short-term IL-6 
signaling has protective effects, while long-term signaling, 
or IL-6R over-expression, perpetuates the damage (68).

I L - 8  b e l o n g s  t o  t h e  c h e m o k i n e  C X C  f a m i l y  
(CXCL-8). Although produced by all cell types, the main 
sources are monocytes/macrophages and ECs; it acts as a 
chemoattractant for monocytes and neutrophils and as a 
pro-angiogenic factor (86,87). It is resistant to enzyme-, 
temperature-, and acid-dependent proteolysis and, hence, 
it persists (days/weeks) within the inflammation site (88). 
As for the other CXC chemokines, IL-8 is induced by 
IL-6: in mice, CXCL-1 (the murine homolog of IL-8) is 
induced, in serum, muscle, and liver, by an exercise bout; 
this response is abolished following IL-6 KO and enhanced 
by IL-6 overexpression. Muscle IL-8 mRNA, but not 
plasma IL-8, is increased by a 2.5 h cycling in well-trained  
cyclists (89) and strenuous endurance activities (i.e., 
marathons and ultramarathons) markedly induce IL-8 and 
IL-6 (90,91).
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IL-15 is a cytokine supporting survival and proliferation 
of T lymphocytes (92). It is abundantly expressed by 
SKM and fairly by AT (93). Although considered a pro-
inflammatory cytokine, the negative correlation of 
circulating IL-15 with obesity, WAT mass and T2DM 
suggest a role as a myokine (94). IL-15 mRNA, but not 
protein, and IL-15Rα expression in SKM is increased 
by endurance and resistance exercising (75,95). It is also 
expressed at high levels during early myoblast differentiation 
in culture, indicating a possible role in myogenesis (96).

Pre-analytical factors

IL-6 and TNF-α measured by radioimmunoassay (RIA) 
were stable in WB stored at 4 ℃ and/or after rapid 
separation (97). Contrarily, when assayed by high-sensitivity 
ELISA, they were not altered over time in separated 
samples while decreased already after 4h in unseparated 
WB (98). IL-6, IL-8, and TNF-α were stable for up to  
8 h in WB collected in EDTA from patients with systemic 
immune activation. While IL-6 was comparably stable, 
regardless the matrix (serum, lithium heparin plasma, 
and ammonium heparin plasma), IL-8 and TNF-α were 
increased in He-plasma and serum tubes (99). Other 
authors reported that serum IL-6 was unchanged after 
storage at 4, 20, and 30 ℃, while it was significantly 
decreased following storage for 11 days at 40 ℃. sIL-6R was 
more unstable since it was decreased after 14 days of storage 
at 20 ℃ and already after 1 day at 30 and 40 ℃. Storage 
at −20 and −70 ℃ maintained IL-6 and sIL-6R stable for 
years (100). However, Hardikar demonstrated that IL-6 was 
slightly decreased after 13 year-long storage at −80 ℃ (101). 
Hermann et al. reported that storage of unseparated WB 
at RT (25 ℃) for 6 h resulted in a low-to-good recovery 
of IL-6 (84.5%), while sample processing after 6 and  
24 h resulted in an unacceptable increase in IL-8 recovery 
(197.2% and 1453.3%, respectively) (102). Immediate post-
venipuncture centrifugation and storage for 0, 6, 24, and  
48 h at 4 ℃ resulted in recovery rates for myokines 
comprised between 70% and 130%; while storage at RT 
caused greater changes (102).

In NaHe-plasma, obtained after stimulation with 
lipopolysaccharide (LPS) and phytohemagglutinin (PHA) 
of WB, stored at −80 ℃, showed degradation of IL-8 and 
IL-15 already after 1 year while IL-6 concentration was 
halved after 3 years of storage (103). CXCL-2 (MIP-2α) 
concentrations were unaffected by storage over 7 days at  
4 ℃ or RT (25 ℃) (104).

Thavasu et al. demonstrated that IL-6 and TNF-α 
measured in EDTA-plasma samples performed most 
consistently than He-plasma and serum, with no 
improvement neither after adding Trasylol® nor under 
sterile, non-pyrogenic conditions. Moreover, recovery 
of spiked IL-6 and TNF-α was lower in serum than  
plasma (97). Contrarily, Flower found that serum and 
EDTA-plasma samples gave comparable results for IL-
6, whereas high variability was found in LiHe and Na-
citrate tubes (98). Similarly, Friebe and Volk found that 
IL-6 was stable in separated serum/plasma stored for  
24 h at 4, −20, and −70 ℃ with great reproducibility among 
repeated measures (99). Sample matrix did not affect the 
IL-6 measurement, tested by ELISA, in plasma (EDTA, 
He, citrate) and serum samples were drawn from healthy 
subjects and rheumatoid arthritis (RA) patients (105).

In non-fasting blood, from pre-menopausal women, 
co l lec ted  in  d i f ferent  tubes  [K2-EDTA,  p lasma 
preparation tube (PPT), P100, serum separator tube (SST) 
with clot activator, and no additive serum tube] IL-6 
immunoreactivity was decreased by delayed centrifugation 
(median 5.5 h) whereas it was unaffected by delayed 
freezing of separated samples for up to 72 h (106). In a 
multiplex assay, IL-6 concentrations were higher in citrate-
plasma, compared to EDTA-plasma, NaHe-plasma and 
serum, whereas IL-8 was increased in serum. No matrix 
effect was, instead, observed for IL-15 (103). However, 
a significantly higher recovery was found in serum for 
IL8 (113%) whereas slightly lower for IL-6 in serum as 
compared to plasma. NaHe- and EDTA-plasma showed a 
stable recovery of all cytokines, with the exception of IL-
15 which was lower in EDTA plasma. The recovery of IL-
15 was significantly lower compared to the other samples. 
In citrate-plasma, IL-6 gave the lower recovery whereas 
NaHe-plasma showed the most constant recovery of all 
cytokines tested and therefore, the authors, suggested the 
use of this anticoagulant for cytokine measurement (103). 
Within a panel of biomarkers, IL-6, IL-8, TNF-α, tested 
through the immuno-based fluorescent multiplex assay, 
displayed a relative recovery in EDTA-plasma in relation to 
serum around 100% indicating a good correlation between 
the two matrices (102). Delayed processing of WB, from 0 
to 24 h at RT, but not a 4 ℃, caused a comparable decrease 
of IL-6 immunoreactivity in serum and plasma already 
after 45min, but only in healthy donors. Contrarily, plasma 
and serum samples from RA patients displayed a greater 
variability (105).

Clendenen and colleagues demonstrated that IL-6, IL-
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15, and TNF-α, along with many other cytokines and 
growth factors, measured by Luminex technology, were 
comparable in EDTA-plasma and serum. Contrarily, IL-
6R and IL-8 (but also: IL-7, IL-12p70, sTNFR2) were 
higher in serum than in EDTA-plasma (107). CXCL-
2 levels were comparable in serum and K2EDTA-plasma 
chronic hepatitis B patients (104). Different studies have 
demonstrated that up to ten freeze-thaw cycles did not 
affect the immunoreactivity of IL-6 (97,98,100,105). 
Whereas TNF-α was increased by 17.0%±3.7% already 
after three cycles (98).

According to Lee et al., up to five freeze/thaw cycles do 
not affect plasma and serum IL-8 concentrations measured 
by multiplex assay; IL-15 was unaffected when measured 
in plasma, while in serum it was significantly decreased. 
For comparison, TNF-α was decreased in plasma after five 
freeze/thaw cycles and increased in serum already after 
three cycles (108). In multiplex assay, over four freeze/thaw 
cycles of LPS/PHA-stimulated NaHe-plasma, IL-6 was 
stable while IL-8 and IL-15 were decreased already after 
two cycles (103).

CXCL-2 immunoreactivity was unaffected by three 
freeze/thaw cycles in serum samples stored at −80 ℃ (104).

PA is the main determinant for IL-6, IL-8, and IL-
15 (57) although serum IL-6 response to exercise, for 
instance, was blunted in RA patients (105). IL-6, as the 
whole cytokine asset, is influenced by long-term dietary 
regimen (or lifestyle habits) rather than to a single meal or 
a specific group of nutrients (109). Indeed, fasting does not 
affect IL-6 concentration (110). Cytokines also follow a 
circadian rhythm: in serum from healthy subjects, TNF-α 
peaks at 3 am and IL-6 peaks at 6 am; in RA patients, the 
peak of both cytokines is shifted forward: at 6 a.m. for 
TNF-α, at 7 am to IL-6. Furthermore, the IL-6 peak was 
10-fold higher in RA patients than in controls (111). Also, 
a circannual rhythm is present, with a wintertime increase 
of IL-6, as for many other inflammatory markers (112,113). 
IL-6 levels, as for the other pro-inflammatory mediators, 
increase during aging contributing to the biological decline 
(114,115). Similarly, proinflammatory cytokine increased 
after menopause, highlighting the importance of estrogens 
in regulating inflammation (115,116). However, IL-6 
does not change during the menstrual cycle (117). IL-6 
concentrations are comparable in men and women (118), 
however increased IL-6 levels are differently associated 
with different pathologies in women or in men [e.g., 
hypertension in women and insulin resistance in men (119)].

Summarizing, based on the available data, in order 

to preserve the stability of IL-6, IL-8, and IL-15, WB 
collected in serum or EDTA tubes should be separated 
immediately. Separated plasma/serum samples are more 
stable and can be stored at −20 ℃ for a decade.

Fibroblast growth factor 2 (FGF2) and FGF21

FGF2, also known as basic FGF, is an angiogenic factor 
induced by exercise, consequently to the reduction 
in oxygen tension, within the activated SKM (120). 
Mechanically-induced FGF2 release is a key autocrine 
mechanism for transducing the stimulus of mechanical load 
into a SKM growth response (121). However, the FGF2 
response depends on age (122).

FGF21 is mainly produced by the liver (123) and 
it acts as a nutrient stress sensor (124) regulating the 
metabolism of carbohydrates and lipids. Circulating FGF21 
is associated with insulin resistance, glucose intolerance and 
dyslipidemia (125). FGF21 is also expressed by the SKM 
stimulated by insulin via the PI3kinase-Akt pathway (126) and 
hyperinsulinemia, in youth, increases SKM-derived plasma 
FGF21 (127). FGF21 activates the βKlotho co-receptor which 
is highly expressed in AT but not in SKM (128). Also AT 
expresses FGF21 which might be implicated in CVD since 
it is associated with cardio-metabolic risk factors, increased 
intima-media thickness of carotid and iliac arteries, high 
levels of C-reactive protein, dysglycemia, dyslipidemia, 
and decreased adiponectin levels (129,130). As for IL-6, 
the existence of different tissue sources of FGF21 suggests 
tissue-specific physiological functions (131).

Acute exercise strongly induces FGF21 expression in both 
SKM and liver, resulting in increased blood FGF21 (132-
134). However, this response is blunted in obese (135) and 
T2DM patients (136). FGF21 increases the thermogenic 
capacity of the AT by inducing browning of the WAT (137): 
primary adipocytes treated with FGF21 dose-dependently 
increased BAT markers expression (i.e., UCP-1α), oxygen 
consumption and infrared-detected thermogenesis (138). 
Accordingly, BAT has been demonstrated as an important 
source of FGF21 in men. FGF21 and irisin have synergistic 
effects on WAT browning (132,137).

Pre-analytical factors

Hermann et al. reported that storage of unseparated 
WB for 6 and 24 h as well as 48 h long storage of 
separated serum at either RT or 4 ℃ did not affect 
FGF2 immunoreactivity (102). In 1998, Webb reported 
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that FGF2 should be measured in plasma, since it could 
be released in serum during clotting (139). However, in 
multiplex assay, the relative recovery in EDTA-plasma 
in relation to serum was around 100%, indicating a good 
correlation between the two matrices (102) and confirming 
previous results obtained by Larsson et al. with ELISA (140). 
Since FGFs are heparin-binding proteins, the use of He-
EDTA should be avoided. There is no available information 
about sample-related pre-analytical issues for FGF21 as 
well as the effect of freezing/thawing on FGF2 and FGF21 
immunoreactivity.

FGF21 is acutely responsive to nutrients intake, hence it 
should be measured under fasting condition. Moreover, as 
for IL-6, the established dietary and lifestyle habits affect 
FGF21 circulating levels (141). FGF21 has been recently 
depicted as superior to other adipokines in predicting 
incident diabetes (142).

Circu la t ing  FGF21 i s  a s soc ia ted  wi th  severa l 
pathophysiological  conditions and particularly in 
metabolic dysfunctions (142), hypertension (143), oxidative  
stress (144), vascular function (131), atherosclerosis (145), 
aging (146). Therefore, although reference ranges have not 
still defined, data about FGF21 levels should be opportunely 
contextualized.

FGF21 has no precise circadian rhythm, but it displayed 
oscillations (pulsatile release) during the 24 h. The average 
duration of oscillation is 2.52 h and the frequency of the 
oscillations was higher during the light-off period than 
during the light-on one (2.4 vs. 7.3 times). The frequency 
of oscillation does not differ among lean and obese subjects 
but the amplitude is greater in obese (147). In contrast, 
previous findings demonstrated a night-time peak (2:30 am) 
in female under 72 h fasting (148) and Yu and colleagues 
demonstrated that regardless from fasting, FGF21 peaked 
in the first hours of the day with a minimum in early 
afternoon. The magnitude of the nocturnal rise was blunted 
in obese subjects. This rhythm resembled that of fatty acids 
and cortisol and it was opposite to insulin and glucose (149).

A single paper in 2001 described the circadian rhythm 
of FGF2 in women with breast cancer: acrophase 
around 1 p.m., a peak-to-trough interval of 18.2%, and a 
superimposed 12 h frequency (150). Rusnati et al. showed 
that FGF2 was unchanged during the menstrual cycle but 
it increased significantly after menopause (151). More 
recently, however, it has been demonstrated that FGF2 had 
two peaks the first at day 1 and the day 9 (152).

In summary, FGF2 can be measured within 48 h in serum 
or EDTA-plasma; no information is available for FGF21. 

FGF2 and FGF21 concentrations should be carefully 
contextualized in the pathophysiological conditions of the 
subjects.

Vascular endothelial growth factor (VEGF)

VEGF is a key mediator in all conditions in which 
angiogenesis is relevant (153): e.g., tumor growth, through 
asthma, exudative age-related macular degeneration (154).

A single exercise bout transiently increases VEGF mRNA 
and protein expression (155-157) with levels returning to 
baseline after 4–6 h of recovery (158,159). In young healthy 
individuals and animals, VEGF protein increases during the 
first few weeks of aerobic training (157,160) and returns to 
baseline after 4-week-training (161). However, the exercise-
dependent response of VEGF differs in individuals with 
lifestyle-related diseases (162) and aging (163,164). Muscle 
VEGF content is lower in elderly than in youth but it is 
enhanced by training (165). During SKM activation, also 
EC, pericytes, and fibroblasts produce VEGF (165). In 
myofibers, high amounts of VEGF are stored in vesicles; 
synthesis of VEGF is not required for secretion but likely 
occurs after contraction to replenish muscle stores (166). 
Currently, mechanisms underlying exercise-dependent 
VEGF secretion from SKM have yet to be fully determined. 
However, VEGF cannot act alone, and other factors are 
essential and need to be co-regulated to elicit angiogenesis. 
Furthermore, VEGF exists in different homodimeric 
isoforms: VEGF121, VEGF145, VEGF165, VEGF189, 
and VEGF206. They all play a role in angiogenesis, but 
VEGF165 has been found to be the most important 
proangiogenic factor in SKM (165).

Pre-analytical factors

In 2001, Dittadi et al. reported that clotting time increased 
the release of VEGF, which reached the maximum within 
2–4 h [median increase: 327% (range, 118–4515%)] 
compared to samples centrifuged within 10 min from  
drawn (167). Hermann et al. reported that storage of 
unseparated WB for 6 and 24 h before centrifugation as 
well as 48 h long storage of separated serum at either RT or 
4 ℃ did not affect VEGF immunoreactivity (102).

The degradation rate of VEGF in serum samples 
increased at higher temperatures although a good recovery 
is obtained after 40 days at 4 ℃. The degradation rate 
of VEGF-R2 was temperature-dependent: after 35 days 
there was a 12% decrease in sera stored at 4 ℃ and a 
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77% decrease after 21 days at 40 ℃. VEGF-R2 was stable 
under cryogenic conditions (up to decades at −75 ℃, but 
only 3 months at −20 ℃) while VEGF was unstable even 
at −75 ℃. Therefore, serum stored for long periods is not 
suitable for assessing VEGF (168). Hetland et al. observed 
an increase in VEGF in serum stored at RT but not in  
EDTA-plasma (169).

With very low platelet activation, VEGF was not 
different in Edinburgh-plasma (a mixture of EDTA, PGE1, 
theophylline) and CTAD-plasma (citrate, theophylline, 
adenosine, and dipyridamole), while it was significantly 
higher in Na-citrate-plasma. In CTAD-plasma, VEGF 
levels were not correlated with platelets or leukocytes 
counts while in serum VEGF correlated with platelet  
count (167). In a multiplex assay, VEGF was unaffected by 
sample matrix when EDTA-plasma was compared to serum 
(mean recovery of about 100%) (102). These results were 
in line with those previously published by Larsson et al. by 
using ELISA (140).

Recently, Walz and coworkers found that, compared 
to other anticoagulants (CTAD, PECT), EDTA gave 
significantly higher results and up to 6-h-storage before 
centrifugation had no effects (154). They suggested that 
the type of centrifuge (fixed-angle vs. swing-out rotor) 
could be an important pre-analytic parameter for VEGF 
measurement: pellet formation and pellet density in fixed 
angle vs. swing-out rotor centrifuges may lead to different 
degrees of contamination of plasma with cell components 
containing VEGF: slightly higher VEGF-A levels in 
samples centrifuged with a fixed angle vs. a swing-out rotor 
centrifuge in association with higher PF-4 levels, indicative 
of thrombocyte activation (154).

VEGF-R2 was stable in both EDTA-plasma and serum 
over five freeze/thaw cycles. On the contrary, VEGF 
concentrations increased by 15% in both matrices (108). 
Similarly, Hetland et al. found that up to ten freeze/thaw 
cycles of serum and EDTA-plasma samples from patients 
with RA, after 2 years of storage at −80 ℃, had no effects 
on VEGF immunoreactivity (169). These findings were 
in contrast with previous observations by Kisand and 
colleagues who showed that VEGF is very sensible to 
freeze/thaw: 67% decrease already after the first cycle. 
Contrarily, VEGF-R2 was slightly but significantly increased 
after three freeze/thaw cycles (168). Similar results were 
obtained by Bünger and colleagues who used a biochip-
based measurement in biobanked sera from colorectal 
cancer patients (170).

VEGF is affected by exercise, however, but depending 

on the pathological status: plasma VEGF was increased 
immediately after bicycling in the healthy persons (16%) 
and in patients with erosive RA (64%) but not in early 
RA (169). VEGF is not affected by age and gender (140). 
During the menstrual cycle VEGF peaks between days −1 
and 1 and on day 9, suggesting a role in the preparation 
of the endometrium to reproduction (152). Hetland and 
colleagues showed that VEGF has a peak at 7 a.m. and two 
nadirs at 1 and 4 p.m. with no differences among healthy 
subjects and RA patients. No circannual rhythm was, 
instead, found (169).

In summary, it has been suggested that VEGF levels 
should be measured in plasma, possibly CTAD (154), 
since platelets activation during clotting could potentially 
contribute to VEGF release (139). Moreover, since the 
evidenced instability, WB should be processed immediately 
and plasma should be stored at −80 ℃. Finally, VEGF 
should be assayed within a few months since the possible 
instability also under cryogenic conditions.

Brain-, neuron-, glial cell line-derived neurotrophic 
factors (GDNFs)

Brain-derived neurotrophic factor (BDNF) belongs to 
the neurotrophins subfamily which exerts various effects 
on the nervous system. Particularly, BDNF plays a role 
in the development of the nervous system and influences 
many aspects of neuronal function in the adult brain (171). 
Other than from neurons, BDNF is produced at consistent 
levels by SKM cells. Indeed, exercise promotes the release 
of BDNF from brain (through the blood-brain barrier) 
and from muscles and increases BDNF blood levels in 
healthy individuals. The increase of circulating BDNF is 
directly proportional to exercise intensity (172-174). BDNF 
increases induced by exercise accounts for at least a portion 
of the neuroprotective effects of exercise (175).

BDNF is considered a biomarker for mental disorders 
such as bipolar disorder; as these patients have a high 
risk of developing cardiovascular disease, BDNF could 
be a link between the two diseases (176). Manni and 
colleagues demonstrated that serum BDNF was reduced 
in patients with acute coronary disease (ACD), hence, 
this neurotrophin may be implicated in the pathogenesis 
of cardiovascular disease (177); low serum BDNF were 
also found in patients with ACD during an oral glucose 
tolerance test (OGTT) (178).

Neuron-derived neurotrophic factor (NDNF) is a 
neurotrophic factor containing a fibronectin type III 
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domain. NDNF is expressed in neurons and may act 
through an auto- or paracrine loop. NDNF is also expressed 
at high level in Cajal Retzius cells, neurons contributing 
to the formation of the cerebral cortex and promotes 
differentiation and migration of neurons (179). Recently, 
NDNF has been found to promote vascularization since 
expressed at high levels by EC of the ischemic muscle 
in mice. Intramuscular NDNF overexpression increases 
perfusion and capillary formation in a murine model of 
ischemia, while NDNF knock-out resulted in an overall 
reduction of the EC network (180).

GDNF belongs to the TGF-β superfamily and it is mainly 
expressed by astrocytes. It is necessary for maintenance and 
development of the nigrostriatal dopaminergic neurons 
but it may have several functions since is detected in many 
brain structures (181). It is induced by PA: after 2 weeks 
of involuntary exercise, GDNF protein content was 
upregulated in rat Soleus hind limb SKM and down-
regulated in extensor digitorum longus, compared to 
controls. The contrary happened following 4 h of ex-vivo 
field stimulation of muscles (182). Higher levels of GDNF 
were also found in glomus cells of the carotid body of 
hypertensive rats compared to control, indicating a possible 
involvement in the onset of hypertension (183).

Pre-analytical factors

In plasma (EDTA, He, citrate) BDNF concentrations 
increased over 48 h of storage at 4 or 25 ℃, while in serum 
they were stable (184). BDNF has a short half-life in plasma 
of rats (0.92 min) (185). According to Lommatzsch et al. 
BDNF displayed a wide range of concentrations in serum 
(median: 22.6 ng/mL), platelets (median: 92.7 pg/106 
platelets) and plasma (median: 92.5 pg/mL). Maximal and 
moderate exercise increased serum BDNF in sedentary 
and trained subjects, although the return to baseline was 
faster in the latter (186). At this purpose, Pareja-Galeano 
and colleagues highlighted the need to adjust BDNF by 
hemoconcentration in exercise studies. Moreover, they 
also showed that the effects of exercise on BDNF levels 
is associated with length of clotting: in serum coagulated 
for 24 h, corrected by hemoconcentration, BDNF was 
increased by exercise but in serum coagulated for 10 min 
and in plasma. Plasma showed the most variable results 
regardless platelets presence (187). Resting BDNF levels 
were inversely associated with the cardiorespiratory  
fitness (174).

Plasma, but not platelet, BDNF levels in plasma were 

inversely associated with age and weight. There were 
no gender-associated differences in plasma BDNF when 
matched for weight; however, women displayed significantly 
lower platelet BDNF than men. Moreover, platelet 
BDNF levels changed during the menstrual cycle with 
highest levels during the luteal phase (188). The difference 
between serum and plasma were confirmed by other  
authors (189,190).

In healthy males, plasma BDNF follows a circadian 
rhythm, similarly to cortisol (191): peak in the morning 
(8:00) and nadir in the night with a minimum between  
10:00 pm and midnight (191-193). Interestingly, this 
rhythm was significant only in plasma in men; diurnal 
variation was found neither in plasma BDNF of women, 
during the menstrual cycle, nor in serum BDNF level in 
both men and women (192).

Diet affects BDNF concentrations: raising free fatty 
acids levels decreased both serum (43%) and plasma (35%) 
BDNF levels after 360 min; parallel, at the same time-point, 
a high-fat meal decrease plasma BDNF levels by 28% (194). 
On the contrary, a weekly oral assumption of α-linoleic 
acid increased plasma BDNF levels, particularly in  
women (195). OGTT-induced hyperglycemia also decreased 
plasma but not serum BDNF and return to baseline was 
faster in normoglycemic subjects than in borderline/diabetic 
ones (190).

Plasma and partially serum, BDNF levels were modified 
in several diseases and conditions such as: fibromyalgia 
[increased (196)], hemodialysis [increased, especially in 
diabetic patients (197)], metabolic syndrome and T2DM 
[increased (198)], bipolar disorder [decreased (199)], as well 
as with mood, cognition and motor function (200), alcohol 
consumption [decreased (201)], antidepressant treatments 
[increased (202)].

A recent meta-analysis suggested that serum, but 
not plasma, GDNF concentrations are associated with 
depression (203). GDNF stability was assessed by Wang 
and colleagues who tested GDNF immobilized onto 
electrospun scaffold in different conditions: GDNF is 
stable for prolonged periods without degradation, even in 
presence of protease. GDNF is also resistant to repeated 
freeze/thaw cycles (204). Plasma GDNF concentrations 
have been associated with mood state, bipolar disorder and 
age [increased (205)], late-life depression [reduced (206)], 
adolescent depression [decreased (207)], attention deficit 
[increased (208)].

In summary, BDNF should be measured in serum within 
a few hours after sampling, or immediately stored at −20 ℃. 
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Also, GDNF should be assayed in serum since the revealed 
association with mental disorders. Overnight fasting should 
be suggested. However, since the association with mood, 
care should be taken in interpreting the data. No pre-
analytical warnings are available for NDNF.

Conclusions

The issue of pre-analytical management of the sample in 
the field of myokines is still far to be solved. However, as 
emerged from this review article it is clear that there are 
several variables that can affect the measurement of the 
superclass of molecules.

A very important issue derives from the fact that several 
studies focused on myokine measurements are based 
on biobanked samples. In biobanking and longitudinal 
studies, samples are collected over time, stored freezers  
(−20 or −80 ℃), and then simultaneously analyzed in order 
to minimize inter-assay variability (209,210). However, 
as described in this article, the biomarkers are subject to 
variability arising from sampling and storage procedures (169). 
Erroneous sampling or handling and improper storage 
may lead to degradation of these markers, limiting their 
clinical reliability (211). The more is the interval between 
collecting and testing, the more is the weight of this 
problem. Importantly, such pre-analytical variation, when 
not appropriately considered, already during experimental 
planning, would reduce or overestimate the diagnostic 
power of a biomarker with serious implications in its 
translation in clinics (212).

In conclusion, if from one hand care should be taken    
when literature data about myokines are considered, on the 
other hand stronger effort should be done in order to make 
more reliable the measurement of these future biomarkers.
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