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Introduction and motivating example

Clinical studies utilizing electronic healthcare records 
(EHR) usually present a large number of variables. These 
variables frequently correlate with each other, which will 
introduce multicollinearity in the regression models (1). 
Although the problem of collinearity will not compromise 
the predictive ability of a regression model, it can interfere 
in determining the precise effect of each predictor. 
Additionally, the standard errors of the estimations affected 
by multicollinearity tend to be large, making the inference 
over such estimations less precise (wider confidence 
intervals and bigger P values). 

The problem of multicollinearity in clinical studies is 
ubiquitous, and there are many statistical methods being 
developed to handle it (2). One of the most used methods 
is the principal component analysis (PCA). This statistical 
approach reduces a set of intercorrelated variables into a 
few dimensions that gather a big amount of the variability 
of the original variables (3). These dimensions are called 
components and have the properties of collecting highly 
correlated variables within each component and being 

uncorrelated with each other (4). An example of the 
application of this method can be found in Witteveen et al.’s 
article (5). The authors performed an observational study 
aiming to investigate the value of early systemic inflammation 
in predicting ICU-acquired weakness (5). Systemic 
inflammation can be represented by a variety of inflammatory 
cytokines such as interleukin (IL)-6, IL-8, IL-10,  
IL-13, tumor necrosis factor (TNF)-α and interferon 
gamma (IFNγ). These cytokines are correlated with each 
other, and incorporation of them into a regression model 
will result in significant collinearity. One type of cytokine 
is regarded as one dimension, and there are dozens of 
dimensions in the original dataset. In the study, the authors 
employed PCA to reduce the dimension. They found that 
the variance of these ten cytokines can be accounted for by 
three principal components (PC). As a result, the model was 
remarkably simplified. The aim of this tutorial is to provide 
readers with a step-by-step guidance on the performance 
of PCA, highlighting the interpretation of the output from 
R codes. Also, the R syntaxes will be explained in as many 
details as possible, helping readers adapt the syntaxes to 
their own work.
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Dataset simulation 

In this article, a dataset is simulated to illustrate the 
performance of PCA using R. One advantage of simulation is 
that the underlying structure of the dataset can be controlled. 
In the example, we set two PCs (y1 and y2) accounting for 
the variance of the five independent variables X=[x1, x2, x3, x4, 
x5]. While x1 to x5 represent the observed values, y1 and y2 
are PCs and, therefore, they do not represent actual data that 
measures a concrete characteristic of the population under 
study. Dataset is simulated so that, predictors with subscript 
of odd number x1, x3 and x5 are responsible for the variation 
in y2, and predictors with subscript of even number are 
responsible for the variation in y1. 

> simData <- function(n) {

 y1 <- rnorm(n)

 y2 <- rnorm(n)

 z=y1+y2+rnorm(n)

 pr=1/(1+exp(-z))

 df <- data.frame(y=as.factor(rbinom(n,1,pr)))

 ySum <- list(y1,y2)

 for(i in 1:5) {

 vari <- ySum[[1+(i%%2)]] + rnorm(n)

 df[[paste("x",i,sep='')]] <- ncol(df)*vari+ncol(df)

 }

 df

 }

> set.seed(666)

> df<-simData(1000)

The database was simulated by using a function that 
was named as simData() with a single parameter n that 
represents the total number of observations we will include 
in the dataset (1,000 in our case). The linear predictor of 
the logistic regression model is defined as the sum of y1, 
y2 and a random variance term. Then the linear predictor 
is converted to the probability. Given the assumption that 
the outcome is binary and follows binomial distribution, the 
rbinom() function is employed to simulate the outcome y. 
The binary outcome variable y is converted to a factor with 
as.factor() function. The two PCs y1 and y2 are aggregated 
in a list to facilitate its use in for() loop. The symbol “%%” 
is a modulus operator that distinguishes even and odd 
numbers. To make the mean and variance of each x to be 
different, the variance of each x is scaled and centered by the 
number of columns at each loop. Notice that the number of 

columns is increased by one for each loop. Finally, a dataset 
with 1,000 observations is made up with set.seed() function 
to make sure that the results are reproducible.

We can have a look at the mean and variance with the 
following codes. 

> lapply(df[,-1],function(x) {

  df.sum<-data.frame(mean=mean(x),

  sd=sd(x))

 })

$x1

mean sd

1 1.0419681 1.496501

$x2

mean sd

1 1.876087 2.844405

$x3

sd mean

1 3.133103 4.176136 

$x4

mean sd

1 4.147199 5.601982 

$x5

mean sd

1 5.249925 7.115041 

The lapply() function applies user defined function to 
the corresponding element of df[,-1]. Here the function 
is applied to each column of the data frame df[,-1]. The 
lapply() function returns a list of the same length as the 
number of df[,-1]. The means are increased approximately 
by at a step of 1 from x1 to x5. The standard deviations 
of x1 to x5 are also increasing. The purpose of this step 
it to mimic the real world setting where variables are not 
centered at the mean of 0 and scaled to the unit variance. 

Principal components analysis (PCA)

The most popular function to perform PCA is the prcomp() 
function shipped with the base R installation. 

The first decisions that should be made are:
(I) Which variables will be included in the PCA: in this 

case the 5 correlated independent variables included in the 
PCA are x1 to x5. 

(II) Rotation of the variance-covariance matrix: rotation 
of the variance-covariance matrix usually facilitates the 
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interpretation of the components. However, this is not 
always the case. It is advisable to try the PCA with and 
without rotation and select the most easily interpretable 
output. In this case we are using the rotated results.

 
> prcom<-prcomp(~.-y,df,scale.=T,center=T)

> prcom

Standard deviations:

[1] 1.4300133 1.2221462 0.7316328 0.6887995 0.6720784

Rotation:

PC1 PC2 PC3 PC4 PC5

x1 0.58079283 -0.004483858 0.34042830 0.2263993 -0.7039258

x2 0.05066609 -0.705158055 0.54549778 0.2330974 0.3850751

x3 0.56929755 0.085674284 -0.46255853 0.5305290 0.4160995

x4 0.02697392 -0.703686343 -0.60316141 -0.1863703 -0.3249005

x5 0.57903829 0.014746535 0.09368381 -0.7604039 0.2783999

The first argument of prcomp() function is a formula 
without outcome variable. Only numeric variables are 
allowed. The second argument specifies the data frame 
that contains the variables in the formula. The “scale.=T” 
indicates that the variables are scaled to have unit variance, 
and “center=T” is to shift the mean to zero. By default, the 
rotated variables will be returned by setting “retx=T”. The 
standard deviations of the five principal components are 
shown at the beginning of the R output. It is noted that the 
first two components have the largest standard deviations. 

The loadings that characterize the role of each variable (x1–
x5) in each component (PC1–PC5) are conveyed afterwards. 
As can be observed, PCA analysis reports as many PCs as 
the number of variables included in the analyses. Loadings 
have two properties: (I) their sum of squares within each 
component are the component’s variance (eigenvalue); and 
(II) they are coefficients in linear combination predicting a 
variable by the (standardized) components (see calculation 
of PC1 and PC2 below).

The rule is to select principal components with the 
largest variance. Consider a dataset in x-y coordinate 
system, if we want to tease out variation, PCA finds a new 
coordinate system in which every point has a new (x,y) 
value. The axes PC1 and PC2 make up a new coordinate 
system, and they are combinations of the x-y (Figure 1). 
It is obvious that the points projected to PC1 have larger 
variance than that projected to PC2. As a result, PC1 is a 
better representation of these data. 

The eigenvalue measures the explanatory “strength” of 
a particular PC. The variance of each PC can be visualized 
with screeplot() function. Usually a few PC explain a high 
amount of the variability and some of them need to be 
selected. The screeplot is used to make this decision as 
explained below. 

> screeplot(prcom, npcs = 5,type = "lines")

The first argument of screeplot() is an object containing 
a sdev component, which is returned by the prcomp() 
function. The “npcs=5” specifies the number of PCs to be 
plotted. The type of plot is specified with type = “lines” 
argument. The plot shows a deep drop for PC1 and PC2 
that stabilizes from PC3 onwards, indicating that the first 
two PCs collect most of the total variance (Figure 2). The 
importance of each PC can be viewed in the summary() 
output. 

> summary(prcom)

Importance of components:

PC1 PC2 PC3 PC4 PC5

Standard deviation 1.430 1.2221 0.7316 0.68880 0.67208

Proportion of Variance 0.409 0.2987 0.1071 0.09489 0.09034

Cumulative Proportion 0.409 0.7077 0.8148 0.90966 1.00000

The standard deviation of each component is shown in 
the first row of the output table. The second row shows the 
proportion of variance explained by each component. It 

Figure 1 Schematic illustration of how the principal components 
analysis works. 
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appears that the first two PCs account for 70% of the total 
variance. The last row shows the cumulative proportion of 
variance. 

To decide which variable is represented by each PC, a cut 
point for the values of the loadings is selected that might 
vary depending on the type of study. For biological markers, 

this cut point usually is around |0.5| (5), for nutritional data 
usually is around |0.3| (6,7) and for other type of studies 
it might be different depending on the natural correlation 
between the independent variables included in the PCA. 
In the current example, if the cut point is set at 0.5, it can 
be clearly seen that PC1 represents the variability of x1, x3 
and x5 and PC2, represents the variability of x2 and x4. In 
this case PC1 and PC2 will be kept in representation of x1–
x5 and the scores that measure the degree of compliance of 
each of the 1,000 observations of the sample with both of 
them will be calculated as follows:

The observations that score high in PC1, show high 
values of x1, x3 and x5 (positive loadings over the cut point 
of 0.5).

The observations that score high in PC2, have low 
negative values of x2 and x4 (negative values below the cut 
point |0.5|).

This two PCs are linearly uncorrelated ( . 
Results of PCA for real data might be more challenging. 

Usually the number of predictors included in the PCA is 
bigger and, in consequence, the number of PCA selected 
might also be bigger and difficult to assess. The general 
rule is to select the principal components with the largest 
variance with the help of the screeplot and keep only those 
that, explaining enough variance, make epidemiological 
and/or clinical sense. 

Advanced visualization tools

A biplot is a graphical display of multivariate data and can 
be used in PCA (8). The biplot() shipped with prcomp() 
function is a good example to display multivariate data in a 
2-D plane. 

> biplot(prcom)

The biplot() takes the object prcom returned by prcomp() 
function. The number of each observation is displayed in 
the figure, together with the original five axes (Figure 3). 
The figure is a projection of high dimension space onto a 
2-D plane. Note that the xs with odd subscript point to the 
right, whereas the xs with even subscript point downward. 

prcom
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Figure 2 Screeplot representing the variances of all principal 
components. 

Figure 3 Graphical display of multivariate data with biplot. 
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The biplot can be modified to show points with different 
outcome status. The package for the purpose is available 
from the Github. 

> library(devtools)

> install_github("ggbiplot", "vqv")

> library(ggbiplot)

> g <- ggbiplot(prcom, obs.scale = 1, var.scale = 1, 

 ellipse = TRUE, groups=df$y,

 circle = TRUE)

> g <- g + scale_color_discrete(name = '')

> g <- g + theme(legend.direction = 'horizontal', 

 legend.position = 'top')

> print(g)

Points with outcome 0 are displayed in red and those 
with outcome 1 are in green. The axis labels show that 
PC1 explains 40.9% of the total variance, and PC2 explains 
29.9% (Figure 4). 

Variable loadings can be visualized. The data must be 
preprocessed before calling plotting functions. 

> prcom5<-prcom$rotation

> df.prcom = as.data.frame(prcom5)

> df.prcom$varName = rownames(df.prcom)

> library(tidyr)

> df.long.prcom = gather(df.prcom, "PC", "loading",

 starts_with("PC"))

As above-mentioned the rotation is a matrix of variable 
loadings which is extracted and assigned to an object called 
prcom5. Then the prcom5 object is converted to a data 
frame. We add an additional variable called varName to 
store the row names of the df.prcom. Finally, we called the 
gather() function from tidyr package and reshape the data 
frame into a “long” format. 

> library(ggplot2)

> ggplot(df.long.prcom,

 aes_string(x="varName", y="loading", ymax="loading"))+

 geom_point() + 

 geom_linerange(aes(ymin=0))+

 facet_wrap(~PC,nrow=1) + 

 coord_flip() + 

 ggtitle("variable loadings for principal components") 

The plot is drawn with the ggplot system, in which the 
elements of a figure can be added layer-by-layer. There 
are five panels in the figure, each representing one PC. 
The horizontal axis is the loading values, and the vertical 
axis is the variable names. It appears that PC1 is primarily 
contributed by x1, x3 and x5, whereas PC2 is mainly 
accounted for by x2 and x4 (Figure 5).

Regression analysis after PCA

After dimension reduction, the next step is usually to 
perform regression analysis to explore the association 
of PCs with outcome variable y. Instead of including 
the five correlated independent variables (x1–x5) in the 
model, the two uncorrelated PCs are included, solving the 
multicollinearity problem. 

> df.projected <- as.data.frame(predict(prcom,df[,-1]),

 stringsAsFactors = FALSE)

> df.projected$y<-df$y

> ncomp = 2

> regvar = paste(paste("PC", 1:ncomp, sep=''), 

 collapse='+')

> fmla = paste("y ~", regvar)

The projected values in each PC must be obtained from 
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Figure 4 Graphical display of multivariate data with biplot. 
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Table 1 Regression analysis showing the association between the 

selected principal components and outcome 

PC Odds ratio (95% CI) Main loadings of PC

PC1 1.65 (1.49–1.83) x1, x3, x5

PC2 0.60 (0.53–0.68) x2, x4

PC, principal component; CI, confidence interval. 

PCA. They can be obtained using predict() function, or the 
x component of the prcom object (prcom$x). Both of these 
functions calculate the PC1 to PC5 scores as specified in the 
formulas above. The df[,-1] contains variables with which 
the predict() function predicts values in each PC for each 
subject. Then the matrix is converted to a data frame by 
as.data.frame() function. The returned object df.projected 
has 1,000 rows and 5 columns. Each one of the columns 
contain a score that measures the level of compliance of 
the 1,000 observations with each of the 5 components. The 
outcome y is then attached to the df.projected data frame. 
The number of components are set to 2. The function 
paste() is used to connect names of PCs. The returned 
string will be used as a formula in building the regression 
model. 

> mod.com <- glm(fmla,family=binomial,data=df.projected)

> exp(coef(mod.com))

(Intercept) PC1 PC2

0.9709691 1.6487058 0.5998146

> exp(confint(mod.com))

2.5% 97.5%

(Intercept) 0.8480303 1.1116326

PC1 1.4878175 1.8339611

PC2 0.5305955 0.6753215

 The glm() function is used to fit a generalized linear 
model. By setting the family argument to “binomial”, 
the glm model is a logistic regression model. The glm() 
function first takes a formula “y ~ PC1+PC2”, in which 
only two PCs are included in the model. The results show 
that both PC1 and PC2 are significantly associated with 
outcome y. The exponentiation of regression coefficient 
gives the odds ratio, which is clinically interpretable. The 
results can be presented as that in Table 1 and interpreted 
as follows: A high compliance with PC1 (high values of x1, 
x3 and x5) increases a 65% the odds of having the outcome 
and a high compliance with PC2 (low values of x2 and x4) 
decreases a 40% the odds of having the outcome.
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