
Page 1 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

Big-data Clinical Trial Column

Development of scoring system for risk stratification in clinical
medicine: a step-by-step tutorial

Zhongheng Zhang1, Haoyang Zhang2, Mahesh Kumar Khanal3

1Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, China; 2Division

of Biostatistics, JC School of Public Health and Primary Care, The Chinese University of Hong Kong, Shatin, Hong Kong, China; 3Bangladesh

Institute of Health Sciences (BIHS), Dhaka, Bangladesh

Correspondence to: Zhongheng Zhang. Department of Emergency Medicine, Sir Run-Run Shaw Hospital, Zhejiang University School of Medicine,

No. 3, East Qingchun Road, Hangzhou 310016, China. Email: zh_zhang1984@zju.edu.cn.

Abstract: Risk scores play an important role in clinical medicine. With advances in information technology
and availability of electronic healthcare record, scoring systems of less commonly seen diseases and population
can be developed. The aim of the article is to provide a tutorial on how to develop and validate risk scores based
on a virtual dataset by using R software. The dataset we generated including numeric and categorical variables
and firstly the numeric variables would be converted to factor variables according to cutoff points identified
by the LOESS smoother. Then risk points of each variable, which are related to the coefficients in logistic
regression, are assigned to each level of the converted factor variables and other categorical variables. Finally,
the total score is calculated for each subject to represent the prediction of the outcome event probability. The
original dataset is split into training and validation subsets. Discrimination and calibration are evaluated in the
validation subset. R codes with explanations are presented in the main text.

Keywords: Scoring system; risk stratification; LOESS smoothing

Submitted Mar 16, 2017. Accepted for publication Aug 11, 2017.

doi: 10.21037/atm.2017.08.22

View this article at: http://dx.doi.org/10.21037/atm.2017.08.22

Introduction

One of the main task during medical practice is risk
stratification and triage. For cardiovascular diseases, the risk
stratification is of vital importance for accurate allocations of
prophylaxis and therapeutic interventions. In the emergency
department, the triage of patients is also essential to
make the most use of limited resources. Scoring system is
the most useful tool for such purpose. In cardiovascular
diseases, the well-known examples are the Framingham risk
score and QRISK2 (1,2), which can help to estimate the 10-
year risk of cardiovascular events. For critically ill patients,
there is also a variety of scoring systems such as simplified
acute physiology score (SAPS) II, acute physiological score
(APS) III, Logistic Organ Dysfunction system (LODS),
Sequential Organ Failure Assessment (SOFA), Oxford
Acute Severity of Illness Score (OASIS) and quick SOFA
(qSOFA) (3-7).

The development of these scores requires large sample
sizes from multiple centers. Due to rapid advances in
information technology and extensive use of electronic
healthcare records, more and more individual patient
data are available to investigators (8). As a result, there
is increasing interest on developing prediction scores in
some less common diseases and special subgroups, which
was impossible decades ago due to limited sample size.
However, there is a lack of step-by-step tutorials on how
to develop prediction scores. The present article aimed to
provide a detailed description of how to develop prediction
score using R (version 3.3.2).

The rationale for using R software

R is a language and environment designed for statistical
analysis and data management. It is freely available at

436

Zhang et al. Development of scoring system with R

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

Page 2 of 9

https://cran.r-project.org/. All functionalities required for
the development of scoring system are available by using
relevant packages. For instance, one important task in
assigning points to a continuous variable is to find cutoff
values to split it into intervals. It requires non-parametric
LOESS smoothing technique to describe the relationship
between the variable and the outcome. The ggplot2 package
is a useful plotting system to visualize the relationship
between continuous variable and the probability of the
outcome event. Furthermore, the R syntax for the overall
process of data management and statistical analysis are all
documented, which plays a crucial role during manuscript
revision and cross checking.

Data simulation

The following codes create a dataset containing five
variables, including a binary mortality outcome mort.y, two
factor variables and two numeric variables. The smoking
variable has three levels “never”, “ever” and “smoking”.
The gender variable has two levels “male” and “female”.

 library(dummies) #1

 set.seed(666) #2

 n <- 1500 #3

 lac<- round(rnorm(n,mean=5,sd=1.1),1) #4

 age<- round(rnorm(n,mean=67,sd=10)) #5

 smoking<- as.factor(sample(x=c("never","ever","smoking"), #6

 size=n, #7

 replace=TRUE, #8

 prob=c(0.5,0.3,0.2))) #9

 smoking<-relevel(smoking,ref="never") #10

 gender<- as.factor(sample(x = c("male","female"), #11

 size = n, #12

 replace = TRUE, #13

 prob = c(60,40))) #14

 lp<-cbind(1,dummy(smoking)[,-1]) %*% c(0.07,1.5,3.2)+ #15

 cbind(1, dummy(gender)[, -1]) %*% c(0.07,1.5)- #16

 0.2*age+0.003*age^2+ #17

 3*lac-0.25*lac^2-11 #18

 pi.x<- exp(lp) /(1 + exp(lp)) #19

 mort.y <- rbinom(n = n, size = 1, prob = pi.x) #20

 df <- data.frame(mort.y, smoking, gender,lac,age) #21

 df$dataset<-sample(x=c("train","validate"), #22

 size=n, #23

 replace=TRUE, #24

 prob=c(0.75,0.25)) #25

Line 1 calls the library() function to load the namespace of
the package dummies and attach it on the search list. Line 2
sets an arbitrary seed to make the results fully reproducible.
Line 3 defines the sample size of the working example. Line
4 generates a continuous variable called “lac” (lactate), which
is assumed to be normally distributed with the mean of 5
and standard deviation of 1.1. The variable age is created in
the same way. Smoking is created as a factor variable with
three levels. Line 8 makes the sampling among the three
levels with replacement. The prob argument receives a vector
of probability for sampling the three levels (line 9). Line
10 makes the “never” level as the base reference, which is
essential in regression analysis. Gender is created as a factor
variable in the same way. However, note that the vector of
values assigned to prob argument in line 14 does not sum to
one. It is equivalent to assign a vector c(0.6, 0.4). Line 15
creates a linear predictor of the regression equation. Here we
use dummy() function to convert factor variable into dummy
variables. The symbol “%*%” is the matrix operator for
multiplication. We assigned linear predictors conveniently for
each variable. For example, the coefficient 1.5 corresponding
to the level “ever” can be interpreted as an increase of 1.5
units in linear predictor scale for ever smokers as compared
to never smokers. A quadratic function opening upward
is assigned to age in line 17. The function between linear
predictor and variable lac is a parabola opening downward
(line 18). Line 19 converts linear predictor into probability
by logit transformation, and line 20 generates an outcome
variable mort.y which follows a binomial distribution. Line 21
combines all variables into a data frame. The whole dataset
is split into training and validation subsets by using sample()
function (line 22). Three quarter of the sample is used for
training and the remaining one quarter is used for validation.

LOESS smoothing curves for numeric variables

A challenge in developing scoring system is to convert
numeric variable to points. Since numeric variables may
not be linearly associated with mortality probability, simple
method to cut them into quartiles or quintiles can cause
problem. One solution is to plot probability of outcome
events against the numeric variable of interest, by using
LOESS smoothing function (9). LOESS is a locally
weighted scatterplot smoothing technique. Along the

Annals of Translational Medicine, Vol 5, No 21 November 2017 Page 3 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

x-axis, more weight is given to points near the point whose
response is being estimated. Since it is a non-parametric
technique, it requires no assumption and let the data tell
the relationship between response and predictor variables.
Here LOESS smoothing curves are examined to identify
cut points of a numeric variable that are associated with
remarkable changes in the risk of the outcome. These cut
points divide the numeric variable into several intervals, and
a score will be assigned to each interval.

 df.cont<- df[df$dataset=="train", #1

 c("mort.y","lac","age")] #2

 df.cat<- df[df$dataset=="train", #3

 c("smoking","gender")] #4

 ymark<-seq(0,1,0.1) #5

 library(ggplot2) #6

 for(var in names(df.cont)[-1]){ #7

 xvar<-seq(min(df.cont[,var]), #8

 max(df.cont[,var]), #9

 length.out=10) #10

 mypath <- file.path("/Users/apple/score", #11

 paste(paste("plot",var,sep = "_"), #12

 "pdf", sep = ".")) #13

 pdf(file=mypath) #14

 gg<-ggplot(df.cont, aes(x=df.cont[,var],y=mort.y))+ #15

 geom_jitter(size=1, alpha=0.2,height=0.05)+ #16

 stat_smooth(method="loess",colour="blue", size=1.5)+ #17

 xlab(var)+ #18

 ylab("Probability of Death")+ #19

 theme_bw()+ #20

 geom_hline(yintercept=ymark,col="red")+ #21

 scale_y_continuous(breaks=ymark)+ #22

 geom_vline(xintercept=xvar,col="green",alpha=0.5)+ #23

 scale_x_continuous(breaks=round(xvar,2)) #24

 print(gg) #25

 dev.off() #26

 } #27

Lines 1 to 4 separate the numeric variables from factor
variables because they would be treated differently. A vector
called ymark is created to label y axis with values that are
clinically relevant (line 5). We require ggplot2 package for
drawing the LOESS curves (line 6) (10). Next, we use a for
loop to draw the LOESS curves. In reality, there could be

dozens of numeric variables to be considered, thus use the
loop function may help to simplify the codes. Within the loop,
a vector object xvar is created as axis labels (lines 8 to 10).
Because all produced curves need to be automatically saved
to the computer disc, we specify the path (“/Users/apple/
score”) for saving in lines 11 to 13. Users can specify their
preferred path by substituting the contents within the double
quotes. The names of saved plots can be defined using paste()
function, and the suffix of the plots are “.pdf”. The pdf()
function starts graphic device driver for producing Portable
Document Format (PDF) graphics. Lines 15 to 25 constitute
the main body of the plot function. The ggplot() function
first declares the data frame df.cont for a graphic, and then
specifies a set of aesthetics intended to be common throughout
all subsequent layers (line 15). The geom_jitter() function
adds a small amount of variation to the location of each point
(line 16). Otherwise, all points would be located at 0 or 1
and overlap with each other. The argument alpha makes the
points transparent and height argument specifies the amount
of vertical jitter. The function stat_smooth() adds a LOESS
smoother with the argument method=“loess” (line 17). Line
21 adds horizontal lines at specified points at y-axis to facilitate
determination of cut points. Vertical lines are added with
geom_vline() function for the same purpose (line 23). Line 25
prints the ggplot object called “gg”, and line 26 shuts down the
current device.

Choosing cut points and base reference

After running the above R codes, you will find two PDF
files at your saving path called “plot_age.pdf” and “plot_lac.
pdf” (Figures 1 and 2).

agecut<-c(50,60,70,75,80) #1

ageb<-"[40,50]" #2

laccut<-c(3,3.7,4.7,6.6) #3

lacb<-"[1.5,3]" #4

cont.to.cat<-data.frame(id=c(1:nrow(df.cont))) #5

for (var in names(df.cont)[-1]) { #6

 cat<-cut(df.cont[,var], #7

 breaks=c(min(df.cont[,var]), #8

 get(paste(var,"cut",sep="")), #9

 max(df.cont[,var])),include.lowest= TRUE) #10

 cat<-relevel(cat,ref=get(paste(var,"b",sep=""))) #11

 cont.to.cat<-cbind(cont.to.cat,cat) #12

} #13

Zhang et al. Development of scoring system with R

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

Page 4 of 9

By examining the Figures 1 and 2, cut points for age
and lac are chosen (lines 1 and 3). The base reference
corresponds to a range with the lowest mortality risk. They
are 40 to 50, and 1.5 to 3 for age and lac, respectively. Note
that the lowest value should be included in square brackets.
Then we need to convert the numeric variable to factor
variables by cut points we have just chosen. Again, a for loop
is employed for the ease of adaptation to the situation when
there is a large number of numeric variables (line 6). Within
the loop the cut() function (line 7) is used and the cut points
are passed to the function using breaks argument. Note that
the minimum and maximum values of the numeric variable
should also be added (lines 8 and 10). The cut points in
between are accessed with get() function (line 9). Then
the base level of newly produced factor variable should be
reset by referring to the base reference level determined
previously (line 11). Line 12 combined returned factor
variables together one by one (e.g., one cycle produces one
variable).

Calculating scores for each level

Now that numeric variables have been converted to factor
variables, scores for each level can be obtained by fitting a
logistic regression model.

df.cont.to.cat<-cont.to.cat[,-1] #1

names(df.cont.to.cat)<-names(df.cont)[-1] #2

df.final<-cbind(cbind(df.cat,df.cont.to.cat), #3

 mort.y=df.cont$mort.y) #4

mod<-glm(mort.y~., #5

 df.final, family="binomial") #6

score<-round(coef(mod)[-1]) #7

score.cat<-score[1:3] #8

score.cont<-score[4:length(score)] #9

Lines 1 and 2 rename the factor variables that have just
been converted from numeric variables. The first variable
is created without meaning and dropped here (line 1).
Similarly, the first variable in df.cont is mort.y, which is also
dropped. Then we combined converted factor variables
and original categorical variables to form a data frame
that will be used in logistic regression model. Next, the
logistic regression model is fit with glm() function (line 5).
Note that the family argument should be “binomial” to

age
40.00

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

46.44 52.89 59.33 65.78 72.22 78.67 85.11 91.56 98.00

P
ro

ba
bi

lit
y

de
at

h

lac
1.50 2.23 2.97 3.70 4.43 5.17 5.90 6.63 7.37 8.10

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

P
ro

ba
bi

lit
y

de
at

h

Figure 1 LOESS smoothing curve plotting the probability of
death against age. Note the age is not linearly associated with the
probability and we need to identify cut points at which y value
changes the most.

Figure 2 LOESS smoothing curve plotting the probability of
death against lac.

Annals of Translational Medicine, Vol 5, No 21 November 2017 Page 5 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

fit a logistic regression model (line 6). Coefficients of the
regression model can be accessed with coef() function. Also,
the coefficient is rounded off to the nearest integer (line 7).
The scores are further divided into those for factor variables
and those for numeric variables (lines 8 and 9). Now we can
take a look at the points assigned to each category.

> score

smokingever smokingsmoking gendermale

1 3 1

lac(3,3.7) lac(3.7,4.7) lac(4.7,6.6)

1 2 2

lac(6.6,8.1) age(50,60) age(60,70)

2 3 4

age(70,75) age(75,80) age(80,98)

6 8 9

It appears that ever smoker takes 1 point, and current
smoker takes 3 points. For age groups, those older than 80
takes 9 points and younger patients such as those younger
than 60 but older than 50 take 3 points. The base levels,
younger than 50 for age and less than 3 for lac, take zero
point.

Calculating scores for numeric variables

The total score will be calculated for each patient in both
training and validation cohorts. We need to convert the
score to a probability of mortality outcome. Also, the
discrimination and calibration of the score should be
evaluated in the validation cohort. Now let’s see how to
calculate total score for each patient. The manipulation of
strings in R looks a little difficult for newbies, interested
readers can consult the reference for more details

(http://www.gastonsanchez.com/Handling and Processing Strings in R.pdf). Here we just explain some symbols relevant to
the current example.

library(stringr) #1

var.cont<-as.character(1) #2

for(var in names(score.cont)){ #3

 var.red<-sub("(\\(|\\[)[0-9]+.*", "", var) #4

 var.cont<-c(var.cont,var.red) #5

} #6

var.cont<-unique(var.cont)[-1] #7

for(var in var.cont){ #8

 df[,paste(var,"points",sep=".")]<-as.numeric(NA) #9

} #10

for (var in names(score.cont)){ #11

 var.red<-sub("(\\(|\\[)[0-9]+.*", "", var) #12

 var.low<-as.numeric(str_extract(var,'(?<=(\\(|\\[))[0-9]+\\.*[0-9]*(?=\\,)')) #13

 var.upper<-as.numeric(str_extract(var,'(?<=\\,)[0-9]+\\.*[0-9]*(?=\\])')) #14

 df[,paste(var.red,"points",sep=".")]<-ifelse(#15

 df[,var.red]<=var.upper&df[,var.red]>=var.low, #16

 score[var],df[,paste(var.red,"points",sep=".")]) #17

} #18

for(var in var.cont){ #19

 df[,paste(var,"points",sep=".")]<-ifelse(#20

 is.na(df[,paste(var,"points",sep=".")]), #21

 0,df[,paste(var,"points",sep=".")] #22

) #23

} #24

Zhang et al. Development of scoring system with R

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

Page 6 of 9

In the vector score.cont, the original numeric variable
names are followed by a range with brackets, which needs
to be reduced to its original name. Someone may ask why
not directly call variable names from the original df.cont. For
the current study, there is no problem with this method, but
for others only statistically significant variables in logistic
regression model would be selected. In other words, not all
continuous variables will be used as score components. In
such a circumstance, the use of this automated for loop will
simplify the work (line 3). The sub() function replace the
first occurrence of a pattern in a given text (line 4). That is
to reduce the names in score.cont to their original variable
names. Brackets “(” and “[” are metacharacters that if their
literal meanings are wanted, one needs to escape them with
a double backslash “\\”. The vertical bar “|” is a logical
operator for OR. “[0-9]” matches any digits that appear
following brackets. The plus “+” symbol is a qualifier which
indicates that the preceding item (e.g., digits in the example)
will be matched one or more times. The period symbol
“.” matches any single character. The following symbol
“*” indicates the preceding item will be matched zero or
more times. Note that the returned object var.cont from
the loop may contain duplicated variable names because
each numeric variable contains more than one range. Thus,
the unique() function is used to drop duplicated variable
names (line 7). The for loop beginning from line 8 creates
variable names (e.g., age.points and lac.points) for the points
of each numeric variable in the whole dataset (df) and fills
them with NA values. Then age.points and lac.points will be
assigned specific numeric values depending on the values
in age and lac variables (line 11). Within the for loop, the
upper and lower limits are extracted from variable names
in score.cont. Then the limits are compared to the values of
corresponding variables in df data frame (lines 15 to 18).
The function ifelse() is employed to assigned points to each
range (line 15). At last, all base levels are given zero point
(line 19 to 23).

Calculate scores for factor variables and take
a sum

Calculating points for factor variables are similar to that for
numeric variables because the latter has been converted to
factor variables.

var.cat<-names(df.cat) #1

for(var in var.cat){ #2

 df[,paste(var,"points",sep=".")]<-as.numeric(NA) #3

} #4

for (var in var.cat){ #5

 score.var<-score.cat[grep(var,names(score.cat))] #6

 names(score.var)<-sub(var,"",names(score.var)) #7

 for(i in 1:(length(levels(df[,var]))-1)){ #8

 df[,paste(var,"points", #9

 sep=".")]<-ifelse(#10

 df[,var]==names(score.var)[i]& #11

 is.na(df[,paste(var,"points",sep=".")]), #12

 score.var[i], #13

 df[,paste(var,"points",sep=".")] #14

) #15

 } #16

 } #17

 for(var in var.cat){ #18

 df[,paste(var,"points",sep=".")]<-ifelse(#19

 is.na(df[,paste(var,"points",sep=".")]), #20

 0,df[,paste(var,"points",sep=".")] #21

) #22

} #23

Suppose all categorical variables are included as component
scores, then we don’t need to extract variable names with a
loop function. Line 1 extracts all categorical names and saves
them to an object var.cat. Lines 2 to 4 create empty variables
for categorical points, and they are named “smoking.points”
and “gender.points”. Some factor variables contained several
levels and we need to loop through all levels (lines 8 to 16).
With the ifelse() function, we assigned points for each level of
individual patient (lines 10 to 14). Note that we only replace
NA values (line 12). The process loops through all factor
variables (line 5). Next, we need to replace all base reference
with zero point (lines 18 to 23).

> df$score<-rowSums(df[,grepl("\\.+points",names(df))])

> head(df[,7:11])

lac.points age.

points

smoking.

points

gender.

points

score

1 2 9 1 1 13

2 2 3 1 1 7

3 2 8 1 0 11

4 2 4 0 1 7

5 0 4 0 1 5

6 2 4 3 0 9

Annals of Translational Medicine, Vol 5, No 21 November 2017 Page 7 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

The last step is to sum all component points to a total
score that can be used for risk stratification. As it is noted
that all component points have the suffix “.points”, we sum
all variables with this suffix. The grepl() function matches
a pattern in a string vector and returns a logical vector.
Then we can take a look at the results. To save space, only
component points and total scores are shown.

Converting the score to probability of mortality
and comparing it to observed number of deaths

Converting the score to relevant probability of the outcome
event is clinically meaningful. The score is used in logistic
regression model to estimate the coefficient of the score. Then
the regression equation is used to predict the probability of
outcome events, given the scores of individual patients.

glmod<-glm(mort.y~score, #1

 df[df$dataset=="train",], #2

 family="binomial") #3

newx<-seq(min(df[df$dataset=="train",]$score), #4

max(df[df$dataset=="train",]$score)) #5

prd<-predict(glmod, #6

 newdata=data.frame(score=newx), #7

 type="response", #8

 se.fit=T) #9

count<-as.matrix(table(cut(df[df$dataset=="train",]$score, #10

 breaks=seq(min(df[df$dataset=="train",]$score), #11

 max(df[df$dataset=="train",]$score)), #12

 include.lowest = T), #13

 df[df$dataset=="train",]$mort.y)) #14

Logistic regression model is fit with glm() function by
passing “binomial” to the family argument (lines 1 to 3). The
object newx is a vector of score values ranging from minimum
to the maximum at an increasing step of 1. The predict()
function is used to estimate predicted probability at each value
of score (line 6). The type of prediction, by default, is on the
scale of linear predictor. The “response” type is on the scale
of the response variable (line 8). The argument se.fit is set to
be true to obtain standard error (line 9). The object count is a
matrix containing the number of survivors and non-survivors
for each score value (lines 10 to 14).

Visualization of the relationship between scores
and probability of outcome events

Barplot is used to show the number of survivors and non-
survivors, stratified by scores. Also, the predicted probability
of outcome event is depicted on the same plot.

par(mar=c(5,4,4,5)+.1) #1

barplot(t(count), #2

 main="Scores versus probability of death", #3

 xlab="Scores", #4

 ylab="Observed number of patients", #5

 space=0, #6

 col=c("yellow","lightblue")) #7

legend("topleft",fill=c("yellow","lightblue",NA), #8

 lty = c(NA,NA,1),lwd=c(NA,NA,2), #9

 legend=c("Survivors","Non-survivors", #10

 "Predicted Prob."), #11

 col=c("black"), #12

 border = c("black","black",NA)) #13

par(new=TRUE) #14

plot(prd$fit~newx, #15

 type="l",col="black", #16

 lwd=2,xaxt="n",yaxt="n", #17

 xlab="",ylab="") #18

polygon(c(rev(newx), newx), #19

 c(rev(prd$fit+1.96*prd$se.fit), #20

 prd$fit-1.96*prd$se.fit), #21

 col = adjustcolor('grey80',alpha=0.5), #22

 border = NA) #23

lines(newx, prd$fit+1.96*prd$se.fit, #24

 lty = 'dashed', col = 'red') #25

lines(newx, prd$fit-1.96*prd$se.fit, #26

 lty = 'dashed', col = 'red') #27

axis(4) #28

mtext("Predicted probability of death", #29

 side=4,line=3) #30

The function par() is used to set graphical parameters
so that the number of lines (e.g., more lines will make the
margin wider) on four sides of the plot can be specified
(line 1). The first argument of barplot() is a matrix of values

Zhang et al. Development of scoring system with R

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

Page 8 of 9

describing bars (line 2). Values in a column of the matrix
count correspond to the height of stacked sub-bars making
up the bar. The argument col gives a vector of colors for
sub-bars (line 7). The legend() function is to add a legend
to the plot. Here, we add the legend to the top left and the
boxes for survivors and non-survivors are filled with colors
consistent with sub-bars (line 8). The last element of the
fill argument is to add a line corresponding to predicted
probability, and no color is assigned to it (line 8). Both lty
and lwd are arguments for the probability line and NA value
is passed to boxes (line 9). The legend argument gives a
vector of characters for the description of sub-bars and the
line. The border argument specifies the border color of the
boxes (line 13).

The argument new in the par() function is set to true so
that the next high-level plotting command will not clean the
previous plot (line 14). This is essential if one wants to plot
two high-level plots on the same figure. This time the fitted
probability values are plotted against the score values (line 15).
The x and y axes are suppressed (line 17), and there is no
label for both axes (line 18). The polygon() function draws
the confidence interval for the predicted probability of death
(line 19). Also, two dashed lines are added to the lower
and upper limits of the confidence interval (lines 24 to 27).
The axis() function adds an axis to the current plot on the
right side which is on the scale of probability (line 28).
The mtext() function adds text to the right margin of the

current plot (line 29). The “line=3” argument indicates the
text is added to the third margin line. The margin lines start
from 0 counting outward (line 30). The results are shown in
Figure 3.

Validation of the score

Score validation involves the evaluation of discrimination
and calibration of the model. The discrimination evaluates
the ability of the score to distinguish between survivors and
non-survivors, and is typically represented by the area under
receiver operating characteristics (AUC). The calibration
evaluates the agreement between predicted and observed risks.

library(rms) #1

ddist <- datadist(df) #2

options(datadist='ddist') #3

f.score<-lrm(mort.y~score, #4

 df[df$dataset=="train",], #5

 x=TRUE,y=TRUE) #6

phat.score<-predict(f.score, #7

 df[df$dataset=="validate",], #8

 type="fitted") #9

v.score<-val.prob(phat.score, #10

 df[df$dataset=="validate",]$mort.y, #11

 m=20) #12

The rms package is employed for the evaluation of model
validation. The datadist() function determines summaries
of variables for effect and plotting ranges (line 2). The
distribution summaries for all variables are stored before
model fit, and are applicable for subsequent plots. Logistic
regression model is fit for the training dataset with lrm()
function. Note the x and y arguments are set to be true,
causing the expanded design matrix and response variables
to be returned under the names x and y, respectively (line 6).
The predict() function returns predicted probability for the
validation cohort (line 7). The val.prob() function is used
to validate predicted probability against binary outcomes.
It receives a vector of predicted probability that is returned
by predict() function, and a vector of binary mortality
outcomes (line 10).

The results are shown in Figure 4. The predicted
probability is plotted against the observed probability and
the deviation from the ideal line indicates a difference
between predicted and observed risks (11). A variety of

Scores versus probability of death

Scores

O
bs

er
ve

d
nu

m
be

r
of

 p
at

ie
nt

s

P
re

di
ct

ed
 p

ro
ba

bi
lit

y
of

 d
ea

th

Survivors
Non-survivors
Predicted prob20

0
15

0
10

0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

[0,1] [2,3] [4,5] [6,7] [8,9] [10,11] [13,14]

50
0

Figure 3 Predicted probability of death versus the number of
observed survivors and non-survivors.

Annals of Translational Medicine, Vol 5, No 21 November 2017 Page 9 of 9

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2017;5(21):436atm.amegroups.com

statistics are displayed on the top left. For example, Dxy
refers to the Somer’s rank correlation, whose value equals
1 when all pairs of the variables agree (12). C (ROC) is the
area under ROC curve and is an index of discrimination.

Acknowledgements

None.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1. Anderson KM, Odell PM, Wilson PW, et al.
Cardiovascular disease risk profiles. Am Heart J
1991;121:293-8.

2. Hippisley-Cox J, Coupland C, Vinogradova Y, et al.

Predicting cardiovascular risk in England and Wales:
prospective derivation and validation of QRISK2. BMJ
2008;336:1475-82.

3. Le Gall JR, Lemeshow S, Saulnier F. A new Simplified Acute
Physiology Score (SAPS II) based on a European/North
American multicenter study. JAMA 1993;270:2957-63.

4. Minne L, Abu-Hanna A, de Jonge E. Evaluation of SOFA-
based models for predicting mortality in the ICU: A
systematic review. Crit Care 2008;12:R161.

5. Le Gall JR, Klar J, Lemeshow S, et al. The Logistic
Organ Dysfunction system. A new way to assess organ
dysfunction in the intensive care unit. ICU Scoring Group.
JAMA 1996;276:802-10.

6. Johnson AE, Kramer AA, Clifford GD. A new severity
of illness scale using a subset of Acute Physiology
And Chronic Health Evaluation data elements shows
comparable predictive accuracy. Crit Care Med
2013;41:1711-8.

7. Raith EP, Udy AA, Bailey M, et al. Prognostic Accuracy
of the SOFA Score, SIRS Criteria, and qSOFA Score for
In-Hospital Mortality Among Adults With Suspected
Infection Admitted to the Intensive Care Unit. JAMA
2017;317:290-300.

8. Riley RD, Ensor J, Snell KI, et al. External validation
of clinical prediction models using big datasets from
e-health records or IPD meta-analysis: opportunities and
challenges. BMJ 2016;353:i3140.

9. Cleveland WS. Robust Locally Weighted Regression and
Smoothing Scatterplots. J Am Stat Assoc 2012;74:829-36.

10. Ito K, Murphy D. Application of ggplot2 to
Pharmacometric Graphics. CPT Pharmacometrics Syst
Pharmacol 2013;2:e79.

11. Steyerberg EW, Vergouwe Y. Towards better clinical
prediction models: seven steps for development and an
ABCD for validation. Eur Heart J 2014;35:1925-31.

12. Somers RH. A New Asymmetric Measure of Association
for Ordinal Variables. Am Sociol Rev 1962;27:799-811.

Cite this article as: Zhang Z, Zhang H, Khanal MK.
Development of scoring system for risk stratification in
clinical medicine: a step-by-step tutorial. Ann Transl Med
2017;5(21):436. doi: 10.21037/atm.2017.08.22

Figure 4 The predicted probability is plotted against the observed
probability. A variety of statistics are displayed on the top left.

Dxy 0.806
C (ROC) 0.903
R2 0.607
D 0.604
U 0.000
Q 0.604
Brier 0.123
Intercept 0.215
Slope 1.031
Emax 0.036
E90 0.034
Eavg 0.026
S:z -0.086
S:p 0.931

0.0

0.0

0.2

0.4

0.6

0.8

1.0

0.2 0.4 0.6 0.8 1.0

Ideal
Logistic calibration
Nonparametric
Grouped observations

Predicted probability

A
ct

ua
l p

ro
ba

bi
lit

y

