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Background: Calcitonin gene-related peptide (CGRP), a ubiquitous neuropeptide, plays a diverse and 
intricate role in chronic low-grade inflammation, including conditions such as obesity, type 2 diabetes, and 
diabetes of the exocrine pancreas. Diabetes of exocrine pancreas is characterised by chronic hyperglycemia 
and is associated with persistent low-grade inflammation and altered secretion of certain pancreatic and 
gut hormones. While CGRP may regulate glucose homeostasis and the secretion of pancreatic and gut 
hormones, its role in chronic hyperglycemia after acute pancreatitis (CHAP) is not known. The aim of this 
study was to investigate the association between CGRP and CHAP. 
Methods: Fasting blood samples were collected to measure insulin, HbA1c, CGRP, amylin, C-peptide, 
glucagon, pancreatic polypeptide (PP), somatostatin, gastric inhibitory peptide, glicentin, glucagon-like 
peptide-1 and 2, and oxyntomodulin. Modified Poisson regression analysis and linear regression analyses 
were conducted. Five statistical models were used to adjust for demographic, metabolic, and pancreatitis-
related risk factors. 
Results: A total of 83 patients were recruited. CGRP was significantly associated with CHAP in all five 
models (P-trend <0.005). Further, it was significantly associated with oxyntomodulin (P<0.005) and glucagon 
(P<0.030). Oxyntomodulin and glucagon independently contributed 9.7% and 7%, respectively, to circulating 
CGRP variance. Other pancreatic and gut hormones were not significantly associated with CGRP.
Conclusions: CGRP is involved in regulation of blood glucose in individuals after acute pancreatitis. This 
may have translational implications in prevention and treatment of diabetes of the exocrine pancreas.
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Introduction

Diabetes of the exocrine pancreas has been recognised as 
an important clinical entity for decades (1,2). While its 
statistics were, until recently, largely confined to chronic 
pancreatitis and pancreatic cancer (3,4), emerging large 
scale population-based studies show that more than 60% 

of all cases of diabetes of the exocrine pancreas are due 
to new-onset diabetes after acute pancreatitis (NODAP) 
(5-7), and that the risk of NODAP may not depend on 
severity of acute pancreatitis (8,9). However, the molecular 
mechanisms underlying the pathophysiology of NODAP 
remain unclear. Clinical studies have shown that the 
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calcitonin family of peptides (more specifically, pro-
calcitonin and amylin) is associated with chronic low-
grade inflammation in individuals with obesity, diabetes, 
and after acute pancreatitis (10-14). Human adipose tissue 
depots have been identified as a major site of pro-calcitonin 
mRNA with recent studies reporting calcitonin secretion 
from adipocytes in obese individuals with associated insulin 
resistance (15,16). Increasing body of evidence shows 
that abdominal adiposity is also involved in metabolic 
dysregulations following an episode of acute pancreatitis 
(17-19). Further, elevated amylin levels have been reported 
in patients with chronic alcoholic pancreatitis and abnormal 
glucose metabolism (13), with similar findings reported in a 
study involving patients with acute pancreatitis that found 
a significant correlation between amylin and abnormal 
glucose metabolism (20,21).

Calcitonin gene-related peptide (CGRP) is another 
member of the calcitonin family of peptides that consists 
of 37-amino acids (14,22). There are two isoforms of 
CGRP (synthesized from two distinct genes): αCGRP, 
found predominantly in the central and peripheral 
nervous systems, and βCGRP ,  found mainly in the 
enteric nervous system (23). In humans, the two isoforms 
are >90% homologous and differ in only three amino  
acids (14). CGRP binds to a heteromeric receptor 
comprising of G-protein coupled receptor, called calcitonin 
receptor-like receptor (CLR), and a receptor activity-
modifying protein (RAMP) (14,24,25). Both αCGRP and 
βCGRP bind to the CGRP receptor (CGRPr)—a CLR/
RAMP1 complex, and with lower affinity to the receptors 
of other peptides of the family to mediate numerous 
functions (14,24). CGRP has been extensively investigated 
in the setting of infections and migraine, and acts as both 
a nociceptive and effector factor in the latter (14,23). It 
is also a well-established potent vasodilator and has a 
vascular protective role in cardiovascular diseases such as 
ischemia and arterial hypertension (14). Both isoforms 
of CGRP were found to be present in the pancreas, with 
βCGRP found to be co-localized with insulin and amylin in 
pancreatic β cells and interact with insulin receptors (26-28). 
However, findings from pre-clinical and clinical studies on 
the effect of CGRP on insulin secretion are contradictory. 
Evidence from pre-clinical studies suggests that CGRP 
stimulates insulin secretion (29-31) in a dose-dependent 
manner while data from clinical studies show an inhibitory 
effect of CGRP on insulin secretion (32,33). Recent 
studies suggest that certain pancreatic [insulin, amylin, 

pancreatic polypeptide (PP)] and gut hormones (glicentin, 
oxyntomodulin) are altered in patients with abnormal 
glucose metabolism after acute pancreatitis (20,21,34). 
There is sufficient evidence, spanning nearly two decades, 
on the influence of CGRP on the secretion of pancreatic 
and gut hormones, in particular glucagon, somatostatin, and 
glucagon like peptide (GLP)-1 (26,27,35,36). Intravenous 
infusion of CGRP in rats results in a dose-dependent 
increases in basal secretions of glucagon, GLP-1 and  
GLP-2 (37,38). In the rat pancreas, CGRP is co-localized 
with somatostatin and is known to stimulate its release, 
though effect of CGRP on insulin inhibition does not 
appear to be modulated by the somatostatin pathway (28,39). 
While CGRP plays multifaceted roles in metabolism, its 
role in the pathogenesis of chronic hyperglycemia after 
acute pancreatitis (CHAP) remains to be investigated.

The primary aim of this study was to investigate the 
association between CGRP and CHAP, and the effect of 
covariates. The secondary aims were to investigate the 
associations between CGRP and panels of pancreatic and 
gut hormones known to play a role in glucose metabolism.

Methods

Study design

The study was a cross-sectional study of patients admitted 
to Auckland City Hospital (Auckland, New Zealand) with 
acute pancreatitis from 2010 to 2014. The study protocol 
was approved by the Health Disability Ethics Committee 
(13/STH/182).

Study population

Individuals who had a primary diagnosis of acute 
pancreatitis (based on two of the following three criteria: 
abdominal pain indicative of acute pancreatitis; and/or 
serum amylase (≥405 U/L) and/or pancreatic amylase  
(≥159 U/L) and/or lipase (≥201 U/L) levels at least three 
times the upper limit of normal; and/or radiological findings 
of acute pancreatitis), resided in Auckland at the time of 
the study, and were at least 18 years of age were eligible for 
the study. All eligible individuals who provided informed 
consent were invited to the hospital to participate in the 
study. For those individuals unable to attend the hospital, a 
certified phlebotomist conducted home visits. 

Individuals who had chronic pancreatitis, malignancy, 
post-endoscopic retrograde cholangiopancreatography 
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pancreatitis, intraoperative diagnosis of pancreatitis, pre-
diabetes or diabetes before the first hospital admission due 
to acute pancreatitis, cognitive disability, or were pregnant 
were excluded from the study.

Definitions

 Aetiology was categorised into biliary, alcohol-
induced, or other;

 Body mass index (BMI) (kg/m2) was determined 
using a medical scale with stadiometer; 

 Chronic hyperglycemia following acute pancreatitis 
was defined as glycated haemoglobin A1c (HbA1c) 
≥39 mmol/mol (1);

	 Duration was defined as time (months) from first 
attack of acute pancreatitis to the time of study;

	 Normoglycemia was defined as HbA1c ≤38 mmol/mol (1);
	 Recurrence: participants admitted with more than 

one episode of acute pancreatitis at the time of the 
study were determined as having recurrent acute 
pancreatitis;

	 Severity of acute pancreatitis was determined according 
to the 2012 Determinant-Based Classification (40).

Sample acquisition and storage

All participants were required to fast for at least eight hours 
prior to visiting the clinic at 8.00 am. Participants were then 
accompanied to LabPlus, an International Accreditation 
New Zealand accredited medical laboratory at Auckland 
City Hospital, where venous blood was collected by a 
certified phlebotomist. Blood was centrifuged at 4 ℃ for  
7.5 min at 4,000 g. Plasma was separated, aliquoted, and 
stored at −80 ℃ until use.

Laboratory assays

Insulin and HbA1c were analysed at LabPlus using the 
chemiluminescence sandwich immunoassay (Roche 
Diagnostics NZ Ltd., Auckland, New Zealand), and the 
boronate affinity chromatography assay (Trinity Biotech, 
Co. Wicklow, Ireland), respectively. 

The Merck-Mill ipore ELISA kits  were used in 
accordance with the user’s manual to measure CGRP, 
GIP, GLP-1 and -2 (ng/mL), oxyntomodulin (ng/mL), 
somatostatin, and glicentin (pmol/L). Aprotinin inhibitor 
was added to all assays upon blood withdrawal except for 

GLP-1, to which the DPP4 inhibitor was added. The 
Rayto Microplate Reader (V-2100C, Santa Fe, Granada, 
Spain), with an absorbance range of 405–630 nm was used. 
The intra- and inter-assay variation was <10% and 15%, 
respectively.

The MILLIPLEX MAP Human Metabolic Hormone 
magnetic bead panel based on the Luminex xMAP 
technology was used to measure amylin, C-peptide, 
glucagon, and PP (ng/mL). The protease inhibitor 
cocktail was added to amylin and the aprotinin inhibitor to 
glucagon. The intra- and inter-assay variation for amylin 
was <10% and 20%, respectively while for C-peptide, 
glucagon, and PP, it was <10% and 15%, respectively.

Statistical analyses

All analyses were conducted using SPSS for Windows 
Version 24 (IBM Corp., Armonk, New York, USA) and P 
values <0.05 were accepted as statistically significant.

The chi-square test and student’s t-test were used to 
investigate the differences in categorical and continuous 
baseline characteristics, respectively, between patients with 
normoglycaemia and CHAP. Data were either presented 
as frequency or mean ± standard deviation (SD). The 
subsequent statistical analyses were conducted in three 
steps.

First, a modified Poisson regression analysis was 
conducted to investigate the association between CGRP 
and CHAP. CGRP was categorised into quartiles based 
on predetermined concentration ranges (calculated using 
the frequency function). To calculate the P-trend, each 
participant was assigned the median value in their quartile 
which was assessed as a continuous variable. CGRP was 
investigated as an independent variable in one unadjusted 
and four adjusted models (41). Model 1 was the unadjusted 
model. Model 2 was adjusted for age, sex, ethnicity, and 
BMI. Model 3 was adjusted for pancreatitis-related risk 
factors (recurrence, severity of acute pancreatitis, duration, 
and aetiology). Model 4 was adjusted for all potential 
confounders: age, sex, ethnicity, BMI, recurrence, severity 
of acute pancreatitis, duration, aetiology, smoking, and 
physical activity. Model 5 was adjusted for those risk factors 
found to be statistically significant in model 4. Pearson’s 
chi-square and robust estimator were fit as the scale 
parameter and covariance matrix, respectively to account for 
any over-dispersion and to obtain the most robust estimates. 
The offset value was set at 1. A main-effects model was fit 
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for all five models in order to derive the most conservative 
estimates. Data were presented as prevalence ratios (PR) 
with corresponding 95% confidence intervals (CI) and  
P values.

Second, a linear regression analysis was conducted to 
investigate the association between CGRP and pancreatic 
hormones (amylin, glucagon, insulin, PP, and somatostatin) 
and derivative (C-peptide), and gut hormones (GIP, 
glicentin, glucagon, GLP-1, GLP-2, and oxyntomodulin). 
Each pancreat ic  hormone and gut  hormone was 
investigated as a dependent variable in the above mentioned 
one unadjusted and four adjusted models. All data were 
presented as β coefficients with corresponding 95% CI and 
P values.

Last, a linear regression analysis was conducted to 
investigate the contribution of each of the pancreatic and 
gut hormone to the variance of CGRP. Each pancreatic 
hormone and gut hormone was investigated independently 
and in combination with every other pancreatic and gut 
hormone. The most robust R2 value for each model was 
reported.

Results

Study population

Table 1 shows the baseline characteristics of all study 
participants. Eighty-three individuals were recruited into 
the study. Of these, 51 (61%) were men. The mean age 
of the entire study cohort was 51±15 years. Nineteen 
participants (23%) developed CHAP while 64 did not. 

Association between CGRP and chronic hyperglycemia

CGRP was significantly associated with CHAP in all five 
models (Figure 1). Compared with the lowest quartile, a 
PR (95% CI, P-trend) of 0.75 (0.65–0.87; P-trend <0.001) 
in the highest quartile differed most significantly in model 
1, followed by a PR of 0.79 (0.68–0.92; P-trend =0.002) in 
model 2, a PR of 0.78 (0.67–0.91; P-trend =0.002) and 0.78 
(0.67–0.92; P-trend =0.002) in models 3 and 4, respectively, 
and a PR of 0.78 (0.67–0.92; P-trend =0.003) in model 5. 

Associations between calcitonin-gene related peptide and 
pancreatic hormones

CGRP decreased with a change in concentration of 

Table 1 Baseline characteristics of study participants

Characteristic
Normoglycemia 

(n=64)

Chronic 
hyperglycemia 

(n=19)
P

Age (years)* 48±15 61±12 0.001#

Sex 0.020#

Male 35 16

Female 29 3

Ethnicity 0.024#

Europeans 35 12

Maori 3 3

Pacific Islanders 3 0

Asian 5 4

Other 18 0

BMI (kg/m2)* 27.42±5.20 30.05±6.51 0.072

Aetiology 0.775

Biliary 28 9

Alcohol 15 3

Other 21 7

Recurrence 0.393

No 45 14

Yes 19 5

Severity 0.008#

Mild 57 11

Moderate 5 6

Severe/Critical 2 2

Duration from 1st 
attack of AP (months)*

28±29 32±18 0.613

Smoking 0.577

Yes 51 14

No 13 5

Physical activity 0.668

Yes 17 6

No 47 13

*, data are presented as mean ± standard deviation (SD); #,  
P values <0.05. AP, acute pancreatitis; BMI, body mass index.
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glucagon in all five models (Table 2). For every ng/mL 
change in glucagon, CGRP decreased by 37.15 ng/mL in 
model 3 (P=0.010), by 32.33 ng/mL in models 1 (P=0.027) 
and 5 (P=0.027), by 30.53 ng/mL in model 2 (P=0.024), and 
by 29.52 ng/mL in model 4 (P=0.014) (Table 2).

No change in CGRP concentration was observed with a 
change in concentrations of amylin, C-peptide, insulin, PP, 
and somatostatin in any of the five models (Table 2).

Associations between CGRP and gut hormones

CGRP increased with a  change in concentrat ion 
of oxyntomodulin in all five models (Table 3). For  
every ng/mL change in oxyntomodulin, CGRP increased by  
10.77 ng/mL in model 3 (P=0.002), by 10.86 ng/mL in 
model 2 (P=0.003), by 10.70 ng/mL in models 1 (P=0.003) 
and 5 (P=0.003), and by 10.45 in model 4 (P=0.004)  
(Table 3).

No change in CGRP concentration was observed with 

Model 1 Model 2 Model 3 Model 4 Model 5
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Figure 1 Association between calcitonin gene-related peptide and 
chronic hyperglycemia after acute pancreatitis. CGRP, calcitonin 
gene-related peptide; CI, confidence intervals; PR, prevalence ratio.

Table 2 Associations between calcitonin gene-related peptide and 
pancreatic hormones 

Pancreatic hormones
Calcitonin gene-related peptide

β (95% CI) P

Amylin

Model 1 −9.44 (−25.46 to 6.59) 0.248

Model 2 −8.31 (−24.61 to 8.00) 0.340

Model 3 −11.43 (−27.01 to 4.15) 0.150

Model 4 −9.58 (−25.51 to 6.36) 0.239

Model 5 −9.44 (−25.46 to 6.59) 0.248

C-peptide

Model 1 −455.10 (−1,002.74 to 92.53) 0.103

Model 2 −456.02 (−1,010.86 to 98.82) 0.107

Model 3 −517.49 (−1,060.93 to 25.95) 0.062

Model 4 −507.14 (−1,054.65 to 40.36) 0.069

Model 5 −395.28 (−9,40.02 to 149.46) 0.155

Glucagon

Model 1 −32.33 (−61.08 to −3.59) 0.027#

Model 2 −30.53 (−62.83 to −4.51) 0.024#

Model 3 −37.15 (−65.31 to −8.98) 0.010#

Model 4 −29.52 (−65.81 to −7.41) 0.014#

Model 5 −32.33 (−61.08 to −3.59) 0.027#

Insulin

Model 1 −17.89 (−46.67 to 7.90) 0.174

Model 2 −7.38 (−30.52 to 15.75) 0.532

Model 3 −17.06 (−41.60 to 7.48) 0.173

Model 4 −7.27 (−28.18 to 13.64) 0.496

Model 5 −6.99 (−29.22 to 15.24) 0.537

Table 2 (continued)

Table 2 (continued)

Pancreatic hormones
Calcitonin gene-related peptide

β (95% CI) P

Pancreatic polypeptide

Model 1 −44.32 (−104.81 to 16.16) 0.151

Model 2 −34.79 (−92.26 to 22.68) 0.235

Model 3 −51.93 (−109.10 to 5.23) 0.075

Model 4 −42.08 (−98.94 to 14.77) 0.147

Model 5 −44.32 (−104.81 to 16.16) 0.151

Somatostatin

Model 1 0.113 (−0.246 to 0.471) 0.538

Model 2 0.066 (−0.311 to 0.443) 0.730

Model 3 0.167 (−0.182 to 0.516) 0.348

Model 4 0.138 (−0.240 to 0.516) 0.474

Model 5 0.113 (−0.246 to 0.471) 0.538

Data are presented as β coefficients (95% CI). #, P values <0.05. 
Model 1 was the unadjusted model; model 2 was adjusted for 
age, sex, ethnicity, and BMI; model 3 was adjusted for aetiology, 
duration, severity of AP, and recurrence; model 4 was adjusted 
for age, sex, ethnicity, BMI, aetiology, severity, duration, and 
recurrence; model 5 was adjusted for those confounders 
found to be significant in model 4. No confounders were found 
to be statistically significant in model 4 of amylin, glucagon, 
pancreatic polypeptide, and somatostatin. Model 5 of insulin 
was adjusted for BMI and severity. BMI, body mass index.
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a change in concentrations of GIP, glicentin, GLP-1, and 
GLP-2 in any of the five models (Table 3).

Contribution of pancreatic hormones and gut hormones to 
the variance of CGRP

Figure 2 shows the contribution of each pancreatic hormone 
and gut hormone, both independently and in combination 
with each other, to the variance of CGRP. Of all the 
studied pancreatic and gut hormones, the three hormones 
independently contributing most to variance of circulating 
CGRP were oxyntomodulin (9.7%), glucagon (7.0%), and 
C-peptide (3.9%). All the studied pancreatic hormones 
cumulatively contributed 13.5% to the circulating CGRP 
variance while all the studied gut hormones cumulatively 
contributed 9.7% to the circulating CGRP variance  
(Figure 2).

Discussion

This is the first clinical study to investigate the role of 
CGRP in dysregulation of glucose homeostasis following 
acute pancreatitis, as well as to study the associations 
between CGRP and comprehensive panels of pancreatic 
and gut hormones. The findings of this study show that 
circulating CGRP levels are significantly decreased in 
individuals with CHAP, consistently across all five statistical 
models. Further, CGRP was significantly associated with 
glucagon and oxyntomodulin, in all the studied models. 
Also, glucagon and oxyntomodulin were the largest 
independent contributors to circulating variance of 
CGRP. These findings may have important translational 
implications allowing timely identification of individuals 
with NODAP and possible prevention of this condition. 

The significant association between CGRP and CHAP is 
a novel finding. The role of CGRP in glucose homeostasis 
is diverse and complex, given its presence in the central, 
peripheral, and enteric nervous system, as well as the 
pancreas (23,27). Studies conducted predominantly in 
obese and type 2 diabetic rats have shown that infusion 
of pharmacological doses of CGRP induces insulin 
resistance and decreases peripheral glucose clearance  
(15,24,42-47). Whether this holds true in patients with 
CHAP is not known. Nonetheless, there are several 
possibilities as to how CGRP may be involved in glucose 
homeostasis in patients after acute pancreatitis. The first 
possibility is that CGRP, known to be densely present 
in the pituitary tissue (48), interacts with α melanocyte 

Table 3 Associations between calcitonin gene-related peptide and 
gut hormones

Gut hormones
Calcitonin gene-related peptide

β (95% CI) P

Gastric inhibitory peptide

Model 1 −20.77 (−67.51 to 25.98) 0.384

Model 2 −17.36 (−62.37 to 27.65) 0.450

Model 3 −19.54 (−63.64 to 24.57) 0.385

Model 4 −14.61 (−58.19 to 28.96) 0.511

Model 5 −17.23 (−62.48 to 28.02) 0.455

Glicentin

Model 1 1.50 (−8.53 to 0.09) 0.770

Model 2 2.22 (−7.86 to 12.29) 0.666

Model 3 0.34 (−9.37 to 10.06) 0.945

Model 4 1.24 (−8.44 to 10.93) 0.801

Model 5 1.50 (−8.53 to 0.09) 0.770

Glucagon-like peptide-1

Model 1 30.34 (−29.35 to 90.03) 0.319

Model 2 24.63 (−35.26 to 84.52) 0.420

Model 3 27.09 (−30.50 to 84.67) 0.357

Model 4 26.73 (−29.92 to 83.38) 0.355

Model 5 36.70 (−21.79 to 95.20) 0.219

Glucagon-like peptide-2

Model 1 1.10 (−1.80 to 3.99) 0.458

Model 2 1.03 (−1.87 to 3.92) 0.488

Model 3 1.38 (−1.48 to 4.23) 0.344

Model 4 1.16 (−1.67 to 3.99) 0.422

Model 5 1.10 (−1.80 to 3.99) 0.458

Oxyntomodulin

Model 1 10.70 (3.67 to 17.73) 0.003#

Model 2 10.86 (3.74 to 17.97) 0.003#

Model 3 10.77 (3.79 to 17.74) 0.002#

Model 4 10.45 (3.40 to 17.51) 0.004#

Model 5 10.70 (3.67 to 17.73) 0.003#

Data are presented as β coefficients (95% CI). #, P values <0.05. 
Model 1 was the unadjusted model; model 2 was adjusted for 
age, sex, ethnicity, and BMI; model 3 was adjusted for duration, 
aetiology, severity of AP, and recurrence; model 4 was adjusted 
for age, sex, ethnicity, BMI, aetiology, severity, duration, and 
recurrence; model 5 was adjusted for those confounders found 
to be significant in model 4. Model 5 of glucagon-like peptide-1 
was adjusted for smoking. None of the confounders were 
adjusted for in model 5 of glicentin, glucagon-like peptide-2, 
and oxyntomodulin. Model 5 of GIP was adjusted for recurrence. 
BMI, body mass index.
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stimulating hormone (MSH) (48-50) to stimulate the 
release of glucoregulatory peptides such as oxyntomodulin 
from the enteroendocrine L cells. The melanocortin-4 
receptor (MC4R), expressed in up to 150 regions in the 
brain, is one of the most enriched G-protein coupled 
receptor in oxyntomodulin-expressing L cells. Mutations 
causing loss of MC4R function are known to result in 
hyperinsulinemia among other things (48). A pre-clinical 
study by Panaro et al. (51) showed that intraperitoneal 
administration of αMSH induces a MC4R-dependent 
release of peptide YY, another neurotransmitter that is 
co-localized with CGRP, as well as proglucagon-derived  
GLP-1 (from L cells). This is further supported by the 
findings of this study that CGRP was significantly associated 
with CHAP and with oxyntomodulin—another proglucagon 
derivative. While there is a large body of evidence 
on interaction between calcitonin and pro-glucagon  
(12 ,52-54) ,  the  a s soc ia t ion  between  CGRP and 
oxyntomodulin, with oxyntomodulin alone contributing 
9.7% to circulating CGRP variance, has been reported 
for the first time in this study. Lack of clinical studies 
investigating these peptides and their associations prevented 
progress in understanding the underlying mechanisms of 
what drives changes in these peptides. However, in the light 
of emerging evidence, it is not unreasonable to suggest 
that the cross-talk between the gut and the nervous system, 

termed the gut-brain axis, could be a key player in mediating 
glucose homeostasis in individuals with CHAP. While 
food ingestion is thought to be the primary trigger of gut-
brain axis under physiological conditions, this study found 
detectable fasting blood levels of each studied pancreatic 
and gut hormone in more than 90% of individuals. Given 
that the effect of food can be ruled out, findings reported in 
this study suggest that there must be other stimulators, such 
as neurotransmitters and αMSH involved in production and 
secretion of these glucoregulatory peptides. Given these 
findings, and taking into account that both CGRP and 
oxyntomodulin are produced in the gut and the brain, we 
believe it is now important to focus research efforts on the 
communication between the gut and the brain in patients  
with CHAP.

The second possibility as to how CGRP may be involved 
in glucose homeostasis in patients after acute pancreatitis 
is that CGRP plays a role in gut barrier dysfunction. Gut 
microbiota along with disrupted gut barrier function is an 
important component in metabolic disorders in particular 
obesity, hepatic steatosis, and diabetes—all characterised by 
persistent low-grade inflammation (55). Pre-clinical studies 
showed that procalcitonin precursors circulate freely in the 
blood under normal physiological conditions with elevated 
circulating levels at time of severe infection or systemic 
inflammation. The main stimuli for production and 

Pancreatic hormones Gut hormones
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PP 0.086 0.086 0.085 0.055 0.030

Somatostatin 0.135 0.125 0.114 0.086 0.038 0.007

G
ut

 h
or

m
on

es

GIP 0.135 0.125 0.115 0.087 0.045 0.029 0.009

Glicentin 0.145 0.127 0.121 0.103 0.050 0.034 0.014 0.001

GLP-1 0.149 0.132 0.126 0.109 0.058 0.040 0.027 0.012 0.012

GLP-2 0.162 0.143 0.126 0.125 0.064 0.043 0.029 0.013 0.014 0.007

Oxyntomodulin 0.251 0.232 0.246 0.217 0.194 0.169 0.097 0.082 0.102 0.098 0.097

Cells shown in yellow report an R2 value of 0.000 to 0.050; cells shown in green report an R2 value of 0.051 to 0.100; cells shown in blue report an R2 value of 
0.101 to 0.200; and cells shown in red report an R2 value of >0.200. For example, amylin contributes 2.0% to variance of circulating CGRP while insulin, PP, and 
somatostatin together contribute 8.6% to the variance of circulating CGRP. GIP, gastric inhibitory polypeptide; GLP-1, glucagon like peptide-1; GLP-2, glucagon 
like peptide-2; PP, pancreatic polypeptide.

Figure 2 Contribution of pancreatic and gut hormones to the variance of calcitonin gene-related peptide
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secretion of calcitonin precursors, from nearly every tissue 
in the body, are endotoxin and cytokines, which are also 
involved in maintaining gut barrier function (56). Given 
that calcitonin and CGRP are derived from the same gene, 
encoded on chromosome 11, and have similar biological 
functions (56), we speculate that endotoxin and cytokines 
also stimulate secretion of CGRP. Ammori et al. (56), 
based on a study involving 60 acute pancreatitis patients, 
hypothesised that early derangement of gut barrier function 
and the rise in systemic endotoxin exposure may act as a 
stimulus for secretion of calcitonin precursors. Although 
the role of endotoxin in CHAP has never been investigated, 
numerous studies have reported elevated cytokine levels 
in patients with abnormal glucose metabolism after acute 
pancreatitis (57,58). Further, it is also known that gut barrier 
dysfunction occurs in almost 60% of acute pancreatitis 
patients (irrespective of the severity of disease) and results 
in amplified effect of intestinal microbiota on gut-brain 
communications (59). Given that CGRP is present in 
the central, peripheral, and enteric nervous system, and 
is a procalcitonin derivative, we suggest that CGRP may 
modulate glucose homeostasis via the gut barrier function 
pathway. To substantiate this hypothesis, future studies 
investigating associations between tight-junction proteins 
of the gut, such as occluding and zonula occludens 1, and 
CGRP are required. 

Enteroendocrine peptides present an attractive track 
among mechanisms involved in regulating gut permeability 
and gut microbiota (60). Pre-clinical studies by Cani  
et al. (55), Pachikian et al. (61), and Neyrinck et al. (62) 
showed that, upon administering a GLP-2 antagonist 
in obese and type 2 diabetic mice, gut barrier function 
improved and endotoxinaemia reduced. The authors thus 
suggested that proglucagon derived peptides, particularly 
GLP-2, are responsible for regulating intestinal epithelial 
proliferation and gut barrier integrity. Given that 
oxyntomodulin is a proglucagon derivative and co-localized 
with GLP-1 and GLP-2 in the L cells, it is possible that 
decreased oxyntomodulin and CGRP levels, as well as 
elevated levels of pro-inflammatory cytokines (57), may act 
as early indicators of a gut barrier dysfunction-associated 
chronic hyperglycemia. Although no clinical study to date 
has investigated the association between gut barrier function 
and diabetes of the exocrine pancreas, significant association 
between insulin resistance, HbA1c, fasting blood glucose 
and gut microbiota has been reported in clinical studies 
involving type 2 diabetes patients (60,63,64). Prebiotics, 
shown to improve glucose homeostasis, gut permeability, 

endotoxinaemia, inflammation, body weight, fat mass 
accumulation, and lipid metabolism—all associated with 
and implicated in the pathogenesis of acute pancreatitis, 
also induce changes in circulating levels of GLP-1, GIP, 
ghrelin, and peptide YY (65,66). Studies investigating 
specifically the role of gut microbiota in patients with 
CHAP, and prebiotics as a potential therapeutic option, are 
now warranted.

The third possibility is that amylin, an evolutionary 
homologue of CGRP, competes with CGRP to bind to 
CGRPr and mediate glucose homeostasis, and that the 
decrease in circulating CGRP levels could be attributed 
to its inutility and short half-life (<10 min) (24). Amylin, 
first isolated from amyloid deposits of insulinoma 
and type 2 diabetes pancreas (67) in late 1980s, shares 
43% and 46% homology with α-CGRP and β-CGRP,  
respectively (68). Evidence from numerous pre-clinical 
studies shows that (28,69-73), whereas amylin acts to reduce 
glucose-stimulated insulin release in non-insulin dependent 
diabetic rat islets, increased amylin causes peripheral insulin 
resistance possibly by acting directly on insulin secretion 
within the islet. Although the authors of aforementioned 
studies suggest that CGRP likely impairs insulin secretion 
and induces insulin resistance in the same manner as amylin 
(28,69-73) in non-insulin dependent diabetes, our findings 
suggest that CGRP may be involved in glucose homeostasis 
only in the absence or non-functionality of amylin. This is 
supported by recent evidence that shows amylin levels are 
elevated in patients with abnormal glucose metabolism after 
acute pancreatitis (20,21), and are significantly associated 
with pro-inflammatory cytokines, in particular interleukin-6 
and monocyte chemoattractant protein-1 (21). Taken 
together, these suggest that amylin contributes significantly 
to glucose dysregulation in patients after acute pancreatitis. 

The other possibility is that in patients with CHAP, the 
CGRP-glucagon pathway is compromised. A clinical study 
by Kraenzlin et al. (36), involving six healthy individuals 
in the fasted state, investigated the effect of CGRP on 
gastrointestinal hormones. The study showed that, upon 
intravenous infusion of CGRP (0.32–2.56 pmol/kg/min) 
at every 15 for 45 min, there was a significant decrease in 
GIP and enteroglucagon levels. Further, this inhibition was 
sustained for at least 60 min after stopping CGRP infusion 
while no significant change was observed in plasma insulin 
levels (36). Findings of our study differ from those reported 
in the study by Kraenzlin et al. in that glucagon was not 
significantly associated with an increase in CGRP levels, 
but a decrease; not to mention it alone contributed to 7% 
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(which was more than half (52%) of the contribution of all 
studied gut hormones cumulatively) of circulating CGRP 
variance. Another study by Beglinger et al. (26), involving 
nine healthy male volunteers in the fasted state, investigated 
the effect of synthetic CGRP on pancreatic secretions. The 
study reported no significant change in basal pancreatic 
hormone concentrations upon intravenous administration 
of CGRP, though fasting blood glucose levels increased 
with higher dose of CGRP. Under physiological conditions, 
glucagon is released from pancreatic α-cells to stimulate 
glucose secretion and inhibit insulin secretion. However, 
patients with acute pancreatitis demonstrate elevated 
glucose and insulin levels (20). This difference in findings 
reported in the previous clinical studies and our study may 
be attributed to the fact that the previous clinical studies 
investigated effects of CGRP in healthy individuals only.

Although a novel study with several strengths such as a 
relatively homogeneous population at high risk of deranged 
glucose metabolism, a large sample size, robust statistical 
methodology, and comprehensive panel of pancreatic and 
gut hormones, there are several limitations that need to be 
acknowledged. First, only circulating plasma CGRP levels 
were measured. Tissue-specific CGRP levels would be a 
more accurate measure of physiological effect of CGRP, 
as plasma CGRP levels might be due to spillover (22).  
Pre-clinical studies showed that increased pancreatic storage 
of CGRP results in insulin resistance (43,74). However, 
studies using radioimmunoassay, radio-receptor assay, and 
immunoradiometric assay demonstrated a strong correlation 
between the levels of CGRP in plasma and tissue extracts of 
rats and humans (22,24). Also, CGRP levels were detectable 
in >90% of the individuals involved in the present study, 
which reduces the chances that the detected levels in plasma 
were just due to spillover. Second, CHAP may be induced 
due to the genetic milieu of CGRP and insulin given that 
both are derived from chromosome 11 and are evolutionary  
homologues (14). Although, to the best of our knowledge, 
none of  the  pat ients  in  this  s tudy had genet ica l 
predisposition, we did not specifically screen for this. Third, 
we did not measure other calcitonin-family peptides, such 
as adrenomedullin and calcitonin, in our study population. 
Given that all procalcitonin derived peptides compete for 
CGRPr (14,24), the potential effect of other peptides on 
glucose homeostasis in patients after acute pancreatitis may 
not be insignificant. Last, it is unknown whether decrease in 
circulating CGRP levels is due to reduced utility of CGRP 
or increased storage of CGRP in pancreatic tissue resulting 
in reduced spillover from perivascular nerves (14). A study 

conducted on Zucker rats showed that capsaicin-induced 
sensory nerve blockade benefits glucose tolerance (75). 
Pancreatic CGRP nerves are capsaicin-sensitive and, upon 
capsaicin-induced destruction, may have a beneficial effect 
on insulin secretion (76). The capsaicin-receptor antagonist, 
TRPV-1, also known to bind to CGRP (76,77), should 
be investigated in future studies to better understand the 
mechanisms underlying the association between CGRP and 
glucose homeostasis. 

Conclusions

CGRP is a ubiquitous peptide that may prove to be an 
early marker of diabetes of the exocrine pancreas, given its 
decrease in patients with CHAP and its association with 
glucagon and oxyntomodulin. This is further supported 
by the fact that glucagon and oxyntomodulin contribute 
considerably to circulating CGRP variance. Future studies 
investigating tissue-specific levels of CGRP, its role in gut 
barrier dysfunction, and the role of other calcitonin-derived 
peptides in glucose homeostasis are now warranted.
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