Newborn Screening, Inborn Errors of Metabolism

AB003. Prevalence of copy number and structural variants across Mendelian disorders

Swaroop Aradhya, Rebecca Truty

Department of Medical genetics, Invitae Corporation, San Francisco, California, USA

Background: Exonic copy number variants (CNVs) contribute to disease, but their prevalence is poorly understood.

Methods: We applied a next-generation sequencing method to simultaneously detect single-nucleotide variants and small indels (SNVs) as well as intragenic CNVs in a large population undergoing clinical testing for neurological, pediatric, hereditary cancer, or cardiac disorders.

Results: Testing more than 76,000 unrelated individuals for subsets of 1,002 genes (the equivalent of 2.2 million single-gene tests), we identified 1,307 clinically reportable CNVs in 221 genes. These findings included 830 deletions and 477 duplications that represented 679 unique variants. CNVs were observed in only 1.7% of the patients and accounted for 3% of clinically reported variants, but pathogenic CNVs were present in 9.3% of patients with a positive finding. Most deletions (93%) were pathogenic, but only 46% of duplications were. Moreover, 17% of the unique CNVs included an entire gene and, in several

instances, likely represented larger cytogenetic events encompassing several neighboring genes. Pathogenic CNVs were 7.3% of the pathogenic findings in pediatric and rare disorders, 32.2% in neurological disorders, and 4.8% in cardiology. These rates compare with 8.4% in oncology. a rate that has been well documented and helped justify universal del/dup analysis in hereditary cancer tests. We found that CNVs are prevalent in Charcot-Marie-Tooth disease, muscular dystrophy, neurofibromatosis, epilepsy, familial hypercholesterolemia, and other conditions. CNV variants were pathogenic at a rate (72.5%) greater than the fraction of small sequence variants that are pathogenic. In 67 individuals, a CNV was compound heterozygous with an SNV, and in 26 individuals, the two variants together constituted a definitive molecular diagnosis for a recessive disorder.

Conclusions: Our data suggest that universal exon-level CNV analysis is valuable, particularly in pediatrics and neurology, and provides clinicians a better view into CNV prevalence and the disproportionate frequency of CNVs among pathogenic variants.

Keywords: Copy number variant (CNV); Mendelian disorder; genetic testing

doi: 10.21037/atm.2017.s003

Cite this abstract as: Aradhya S, Truty R. Prevalence of copy number and structural variants across Mendelian disorders. Ann Transl Med 2017;5(Suppl 2):AB003. doi: 10.21037/atm.2017.s003