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Defects in innate and adaptive immunity in patients with sepsis 
and health care associated infection
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Abstract: Recent advances in sepsis therapy exclusively involve improvements in supportive care, while 
sepsis mortality rates remain disturbingly high at 30%. These persistently high sepsis mortality rates arise 
from the absence of sepsis specific therapies. However with improvements in supportive care, patients with 
septic shock commonly partially recover from the infection that precipitated their initial illness, yet they 
frequently succumb to subsequent health care associated infections. Remarkably today the pathophysiology 
of sepsis in humans, a common disease in western society, remains largely a conundrum. Conventionally 
sepsis was regarded as primarily a disorder of inflammation. More recently the importance of immune 
compromise in the pathophysiology of sepsis and health care associated infection has now become more 
widely accepted. Accordingly a review of the human evidence for this novel sepsis paradigm is timely. Septic 
patients appear to exhibit a complex and long-lasting immune deficiency state, involving lymphocytes of 
both the innate and adaptive immune responses that have been linked with mortality and the occurrence of 
health care associated infection. Such is the pervasive nature of immune compromise in sepsis that ultimately 
immune modulation will play a crucial role in sepsis therapies of the future.
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Introduction

Sepsis is a common disease in western society. With an 
annual incidence of 2–3 per 1,000 population, sepsis 
may account for as many deaths as acute myocardial  
infarction (1). Sepsis affects all age groups but is more 
prevalent at the extremes of age, and particularly with 
increasing age. With an increasing proportion of older 
age groups in the developed world, sepsis is becoming 
increasingly prevalent in western society. While the case 
fatality rate of sepsis in western society is decreasing, as 
the incidence of sepsis increases, the overall mortality 
is increasing (2). However, despite recent advances in 
supportive care, sepsis mortality rates remain disturbingly 
high at nearly 30% (3). With improved support of failing 

organ systems for patients with septic shock, patients with 
severe sepsis and septic shock endure a prolonged illness, 
often characterised by recurring health care associated 
infections (4,5). Thus while patients with septic shock 
commonly recover from the infection that precipitated their 
initial illness, they frequently succumb to subsequent health 
care associated infections. Why does this happen?

Sepsis pathophysiology

Surprisingly the pathophysiology of sepsis in humans 
remains a conundrum. Early sepsis research focused 
intensively on the concept that septic shock, and sepsis-
related organ dysfunction, were induced by an exuberant 
pro-inf lammatory response to systemic bacteria l 
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products, notably the bacterial cell  wall molecule 
lipopolysaccharide (LPS). Evidence supporting this 
idea accrued from experiments involving blockade of 
molecular mediators of inflammation that improved 
outcome in experimental animal and bench models of 
sepsis (6,7). The results of these experiments formed 
the rationale for human trials investigating cytokine 
antagonism in sepsis. Subsequently clinical trials have 
failed to show a consistent benefit from this therapeutic 
approach, with some even demonstrating worse outcome 
in patients (8,9). 

These failures have given rise to increasing concerns 
regarding the broader applicability of various animal sepsis 
models to humans (10,11). The complex interplay between 
circulating bacteria and the innate immune response was 
further elucidated in studies examining human cytokine 
responses following exposure to live bacteria. Apparently 
the initial inflammatory response to pathogens may be 
beneficial, as it appears crucial in the priming of immune 
responses required to eventually clear infection (12). 
Furthermore an anti-inflammatory cytokine response 
to infection may not be beneficial, as for example the 
archetypic anti-inflammatory cytokine IL10, which is an 
important factor contributing to impairment of bacterial 
clearance in pulmonary sepsis (13).

New approaches

Gene arrays provide a useful platform to study genome-
wide transcription patterns in lymphocytes of patients 
wi th  seps i s .  A  sys temat ic  rev iew of  array-based 
transcription profiling in human sepsis, published in 
2010, reviewed 12 microarray based studies including 
784 patients, and performed between 1987 and 2010 (14). 
An immediate activation of both pathogen recognition 
receptors and associated signalling pathways is apparent 
from these studies. Yet there was no evidence supporting 
distinctive pro or anti-inflammatory phases of gene 
transcription in these studies of septic patients. It was 
also notable that in many of these genes array studies 
unequivocal evidence of immune suppression was 
observed, with non-survivors down-regulating genes 
linked to antigen presentation and those characterising  
T cell activation.

Pathogen or host

The relative importance of the pathogenic attributes of 

infecting microorganisms in the pathophysiology of sepsis 
may have been overstated, particularly in comparison 
to the significance of the human immune response to 
infection. Evidence for this is provided by results of gene 
expression profiling, again using microarrays, in patients 
with staphylococcal infection (15). In this study the clinical 
characteristics of infection were associated with host 
gene transcription patterns, rather than any bacteriologic 
virulence factor. This hypothesis, that the human host 
response is of pivotal importance in the pathophysiology 
of sepsis in patients, and of equal or greater importance 
than the type of infection, is supported by other studies 
demonstrating similar gene expression patterns in patients 
with gram positive and gram negative infections (16,17). 
Lastly a recent study comparing cytokine gene expression in 
an enriched pool of monocytes and T lymphocytes reported 
a highly significant link between pattern of cytokine gene 
expression and clinical disease severity, regardless of the 
nature of the infectious pathogen (18). 

Immunity

As an appreciation of the importance of immune compromise 
in the pathophysiology of human sepsis and health care 
associated infection is gaining more widespread acceptance, 
at this juncture it is worthwhile reviewing the evidence for 
specific aspects of immune deficiency in septic patients (19).

In human immunity monocytes are the principle 
lymphocytes of innate immunity, and act as antigen 
presenting cells (APC), to activate T lymphocytes of 
the adaptive immune system. It is crucially important to 
understand that regulation of T lymphocyte activation is 
mediated by monocyte surface human leukocyte antigen 
DR (HLA-Dr) expression, and by monocyte costimulatory 
ligands and cytokines. Activation of adaptive immune 
T lymphocytes is required to clear bacterial infection in 
humans.

Monocytes
Monocyte, macrophages and dendritic cells are classed as 
professional APCs, by nature of their ability to present 
antigens bound by surface HLA molecules, thereby 
activating T cells of the adaptive immune system.  
Co-stimulatory molecules that are present on the monocyte 
surface are essential co-factors for T cell activation. 
Human circulating monocyte populations may be broadly 
characterised on the basis of the expression of the antigens 
CD14 and CD16 (20,21). Although the CD14+/CD16+ 



Annals of Translational Medicine, Vol 5, No 22 November 2017 Page 3 of 9

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2017;5(22):447atm.amegroups.com

monocyte subset are responsible for production of cytokines 
important in sepsis immune responses (22-24), monocytes 
contribute little to the overall levels of increased cytokines 
that are found in the blood of septic patients, despite their 
known function as cytokine secreting cells (25). 

Monocytes of patients with sepsis express surface 
receptors that typify an overall activation state. These 
receptors include the immunoglobulin receptor CD64, 
in addition to CD163 (a scavenger receptor for the 
haemoglobin/haptoglobin complex) and CD206 (a mannose 
receptor) (26). Both surface expression of Toll receptors, 
and expression of Toll receptor genes TLR-2 and TLR-4,  
are increased on monocytes of patients with sepsis (27). 
Collectively these receptors characterise an appropriate 
activation state that is to be expected as a normal response 
in a patient with an infection (26,28).

Monocytes of patients with sepsis are however less 
responsive than those from healthy controls (29). LPS-
induced monocyte tumor necrosis factor α (TNF-α) 
production is decreased in patients with sepsis, and has 
been used as an index of immune responsiveness in patients 
with sepsis, identifying patients likely to benefit from an 
immune adjuvant, such as granulocyte monocyte-colony 
stimulating factor (GM-CSF) (30). Furthermore, increased 
gene expression of inhibitory Toll receptor signalling 
molecules that have been reported in monocytes in patients 
with sepsis may predict subsequent mortality (31), and may 
be predictive of both subsequent staphylococcal bacterial  
co-infection and mortality in children with influenza (32). 

Cytokine production by monocytes is inhibited by 
IL10, and archetypic anti-inflammatory cytokine that is 
over expressed in patients with sepsis. Thus IL6, TNFα 
and IL12p40 gene expression in human monocytes are 
inhibited by IL10, and this effect is mediated in part by 
miRNA-187 (33).

Thus while some cell surface receptor expression suggest 
monocyte activation in sepsis, monocyte responsiveness in 
patients with sepsis appears to be very abnormal.

Monocyte-T cell interactions
The interaction between the monocyte co-stimulatory 
protein CD40 and CD40 ligand (CD40L) on CD4+ 
T lymphocytes is an important step in T lymphocyte 
activation. This interaction also enhances surface expression 
by monocytes of other co-stimulatory molecules, namely 
CD80 and CD86. Expression of surface CD40 on 
monocytes in patients with sepsis is decreased (34). Surface 
expression of CD80 is markedly lower on monocytes from 

septic patients (35), and fails to increase in response to 
CD40/CD40L ligation. Gene expression of yet another 
co-stimulatory molecule CD86 is also down-regulated 
in patients with sepsis (36). Collectively these studies 
demonstrate that, despite evidence for monocyte activation 
in sepsis, downstream monocyte signalling is nonetheless 
impaired in septic patients.

Programmed cell death-1 (PD-1) and programmed 
death-1ligand (PD-L1)
The programmed cell death receptor PD-1 and its ligand 
PD-L1 are important in regulating the interaction between 
monocytes and T cells. The PD-L1 ligand is expressed 
on APCs in response to stimulation, and also expressed 
on T and B lymphocytes upon activation. Formation 
of a PD-1 receptor/PD-L1 ligand complex transmits 
inhibitory signals, involved in reducing proliferation of 
T lymphocytes. In patients with sepsis, CD4+ and CD8+ 
T lymphocyte expression of PD-1 is increased, as is 
monocyte PD-L1, facilitating this immune inhibitory 
signalling pathway (37). Blockade of this receptor-ligand 
interaction reduces apoptosis in T cells, increases TNFα 
and IL6 production, and decreases production of IL10 
by monocytes. Greater expression of monocyte PD-1 
itself is reported in association with health care associated 
infection and mortality in patients with severe sepsis (38,39). 
Modulation of the PD-1/PD-L1 pathway in patients with 
sepsis is currently being evaluated as a potential sepsis 
immune therapy. 

Monocytes, HLA-Dr and sepsis
The expression by monocytes of the MHC class II 
antigen presenting molecule HLA-Dr, which is crucial 
for T lymphocyte activation and expansion, is markedly 
downregulated in humans with severe sepsis, and remains 
so for at least 28 days after the onset of sepsis (40). After 
major trauma, this decrease in HLA-DR expression is 
related to the occurrence of subsequent sepsis and health 
care associated infection (41,42). However, this decrease 
in HLA-Dr expression does not consistently predict 
clinical outcome in trauma patients (43). By contrast, the 
decrement in monocyte HLA-Dr expression is reliably 
predictive of mortality and the occurrence of health care 
associated infection in patients with severe sepsis (44-46). 
Therefore, quantification of monocyte HLA-Dr expression 
has been advocated both as a sepsis biomarker, and as a tool 
to identify profoundly immune suppressed sepsis patients, 
who are at risk for health care associated infection, and for 
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inclusion in clinical trials of immune adjuvant therapies, 
such as GM-CSF (46,47). 

Stimulation by the cytokine interferon gamma (IFNγ) 
restores monocyte HLA-DR expression, and attenuates the 
reduction in LPS induced TNFα production. On this basis, 
IFNγ has also been proposed as an immune adjuvant for 
patients with sepsis (48). 

Monocytes and the IL12 family cytokines
The IL12 family of cytokines regulate the interaction 
of innate and adaptive immune responses: IL12, IL23 
and IL27 are members of this cytokine family that are 
produced by APCs (49). These cytokines regulate CD4+ 
T cell differentiation into specific phenotypes. IL12 
promotes CD4+ T cell differentiation to a Th1 phenotype 
with production of IFNγ, which is of pivotal importance in 
clearing intracellular bacterial infection in humans. IL12 
production by monocytes has been extensively studied 
in humans: IL12 is composed of two subunits, p35 and 
p40 (p40 is also a component of IL23). In postoperative 
surgical patients, production of IL12p40 subunit by 
monocytes is reduced (50). Pre-term neonates produce 
less IL12p40 than mature infants, with the decrement in 
production being more marked in neonates who develop 
sepsis (51). In trauma patients, inducible monocyte IL12 
production is decreased in patients who develop health 
care associated infection and sepsis (52). The importance 
of IL12 in immunity is also reflected by a case of recurrent 
paediatric sepsis linked to an underlying deficiency in 
IL12 production, where in vitro studies of circulating 
lymphocytes noted near complete absence of IFNγ 
production (53). 

IL27 appears to inhibit bactericidal potency of 
polymorphs in humans (54). Elevated IL27 has been 
observed in patients with sepsis, and indeed has been 
advocated as a biomarker in paediatric sepsis (55,56). 
However it is not clear whether IL27 is a marker of any 
infection, or whether it is linked with the occurrence of 
severe sepsis (18). 

IL23, produced by monocytes, promotes CD4+ T 
lymphocyte differentiation to an activated Th17 phenotype, 
which is crucially important in the clearance of extracellular 
bacterial and fungal infections. Thus inherited defects 
in IL17 and its receptor are associated with chronic 
mucocutaneous candidiasis (57). Decreased IL23 gene 
expression has been linked with the occurrence of sepsis 
in patients with infection, and with health care associated 
respiratory infection after thoracic surgery (56,58).

Dendritic cells
Dendritic cells (DCs) differentiate into professional APCs 
from monocytes (59). Phenotypically, circulating DCs 
are commonly divided into CD11c+ myeloid dendritic 
cells (mDCs) and CD123+ plasmacytoid dendritic cells 
(pDC) based on surface expression of these antigens (60). 
Both mDCs and pDCs have been shown to be decreased 
in patients with septic shock. Furthermore, persistent 
depletion of mDCs was associated with both mortality and 
with developing health care associated infection in existing 
ICU patients (61,62).

Ancillary features linking monocyte activation and 
sepsis
Other factors such as polymorphisms in TNF promoter 
regions have been shown to influence susceptibility 
to pathogens such as meningococcus, through effects on 
monocyte TNFα production (63). Further, regulation 
of  TNFα  production by monocytes ,  at  the post-
transcriptional level by miRNA-125b, has been recently 
reported in the setting of neonatal sepsis (64). In addition 
molecules such as CTLA-4 (cytotoxic T lymphocyte 
antigen-4) and BTLA (B- and T-lymphocyte attenuator) 
have been shown to impair innate and adaptive immune 
cell responses in sepsis (65).

Thus mechanisms of lymphocyte activation by monocytes 
appear to be crucially deranged in patients with sepsis.

T lymphocytes
T lymphocytes play a pivotal role as facilitators and 
effectors of the adaptive immune response to infection. An 
effective functioning pool of T lymphocytes is essential to 
control and then eradicate infection. CD4+ T lymphocytes 
expand and are activated in response to antigen presentation 
by monocytes, in combination with the interaction of 
costimulatory ligands with their cognate receptors.

The gamma chain cytokines (IL2, IL7 and IL15) are 
important regulators of T lymphocyte homeostasis and 
expansion. Inherited defects in receptors for these cytokines 
account for many cases of severe combined immune 
deficiency (66). Septic patients and patients with health care 
associated infection after thoracotomy exhibit inappropriate 
down regulation of these gamma chain family cytokines IL2 
and IL7 (67).

CD4 Th1
T lymphocytes have a capacity to differentiate into 
distinct phenotypes. The Th1 T lymphocyte phenotype 
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characteristically secretes IFNγ and is essential to the 
clearance of intracellular bacterial infection. Interestingly 
in trauma patients, the CD4+ T cell phenotype is skewed 
toward a Th2 phenotype, in contrast to the typical Th1 
responses that should be seen in the setting of bacterial 
infection. 

CD4 Th17 lymphocytes
CD4+ T cells expressing IL17 (Th17 phenotype) are 
important in host defences at mucosal surfaces, but 
represent less that 1% of the total population of CD4+ cells 
in sepsis patients (28). There are few human studies of the 
role of IL17 expressing CD4+ cells in sepsis (68). In patients 
with severe thermal injury, blood levels of IL17 were 
increased in paediatric patients. Furthermore, IL17 levels 
in whole blood were detected in greater concentrations in 
adults than in children (69,70). However, when CD4+ cells 
were studied in thermally injured adults, there was a marked 
decrease in the number of CD4+ cells expressing IL17, with 
this finding mirrored by a reduction in inducible CD4+ 
IL17 production (71). Furthermore, thermally injured adult 
patients exhibited a marked decrease in expression of RORt 
(the signature CD4+Th17 transcription factor) in response 
to T cell receptor stimulation and following challenge with 
Candida albicans. Thus although the role of CD4+Th17 T 
lymphocytes in sepsis is presently unclear, there appears to 
be an association between down regulation of CD4+TH17 
pathways and sepsis in humans.

Lymphocyte subpopulations
Additional T lymphocyte subpopulations, including 
CD4+CD25+Foxp3+ T regulatory cells (T reg), gamma delta 
(γδ) T cells and NK-T cells, are increasingly recognised 
as of importance in immune responses in injury and sepsis 
(72,73). This importance may be attributed to the capacity 
of these rare niche lymphocytes that are not dependent 
upon APCs for activation, to interact with both innate and 
adaptive arms of the immune system.

In general absolute lymphocyte numbers are reduced in 
sepsis. Activated CD4+ Th1 and CD4+ Th17 cells appear to 
be reduced, as are the population of circulating γδ T cells, 
in patients with sepsis, while the population of inhibitory 
CD4+T reg cells is increased or unchanged (28,74,75). 

Interestingly persistent T cell lymphopenia in sepsis, 
resulting in changes in proportions of CD4+ T cell subsets, 
has been recently observed in an elderly patient cohort. In 
this study a reduction in immunocompetent CD4+CD28+ 
T cells (rather than inhibitory and regulatory T cells) 

was linked to poor prognosis (76). Lymphopenia is also 
observed in patients with infection who are not septic: 
one study demonstrated decreased active and naïve CD4+ 
and CD8+ lymphocytes in patients with acute respiratory 
infection from Legionella species. Complete recovery of 
lymphocyte counts was observed following resolution of the 
acute infection (77). Thus while lymphopenia appears to be 
a feature of all infections, persistent lymphopenia as seen in 
sepsis is linked with adverse outcomes.

T cell function
T lymphocytes in patients with sepsis express both the 
lymphocyte activation marker CD69 and Ki67 as a marker 
of proliferation (78). Apoptotic markers were also more 
prominent in CD4+ but not CD8+ cells of patients with 
sepsis. Hence, the population of CD4+ cells of patients 
with sepsis includes the full gamut of proliferating T cells, 
activated T cells and T cells undergoing apoptosis.

A study measuring cellular ATP content in CD4+ T cells 
from sepsis patients showed a decrease in CD4+ T cell ATP 
levels in non-survivors, thus linking mortality in sepsis with 
a failure of T lymphocyte activation (79). In patients with 
severe sepsis, T cell receptor diversity is markedly reduced 
and this reduction in T cell receptor diversity correlates 
with the occurrence of health care associated infection (80). 
This study again linked a failure of T cell activation and 
expansion with mortality in human sepsis.

Further evidence of a link between T lymphocyte 
dysfunction and sepsis was gleaned from a study of patients 
who developed sepsis after trauma. T lymphocytes in 
patients who subsequently developed sepsis, sampled at 
the time of splenectomy prior to the onset of infection, 
exhibited a decrease in inducible IFNγ (81). This study is 
interesting as it supports the hypothesis that an attenuated 
immune response is present before the onset of sepsis, and 
thus may be causal rather than coincidental in nature.

Thus sepsis in patients has consistently been associated 
with persistent lymphopenia and failure of T lymphocyte 
activation, which in turn have been linked with health care 
associated infection and excess mortality in patients. 

Neutrophils
Neutrophil function has also been shown to be impaired in 
sepsis. Activation of TLR2 by LPS can induce neutrophil 
apoptosis (82). Low neutrophil counts are associated with 
poorer outcomes in sepsis, and detection of phenotypically 
immature granulocytes has been proposed as a biomarker 
of severity (83,84). Despite expressing increased activation 
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markers, neutrophil trafficking is nonetheless impaired 
in sepsis. This may be due to lower levels of expression 
of the adhesion molecule CXCR2 which is important for 
neutrophil chemotaxis. For example, lower levels of CXCR2 
expression were observed in neutrophils of patients who 
died of sepsis. IL33, a recently identified member of the 
IL1 cytokine family, has been shown to prevent this TLR 
mediated reduction in CXCR2 dependent chemotaxis (85).

Conclusions

In conclusion, septic patients, and patients who develop 
health care associated infection, appear to exhibit a 
profound complex and long lasting immune deficiency 
state, involving lymphocytes of both the innate and adaptive 
immune responses. In time immune modulation must play a 
crucial role in sepsis therapies of the future. 
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