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Abstract: Previous studies suggest a relationship between hyperoxemia and ventilator-associated 
pneumonia (VAP). Hyperoxemia is responsible for denitrogenation phenomena, and inhibition of surfactant 
production, promoting atelectasis in mechanically ventilated patients. Further, hyperoxemia impairs the 
efficacy of alveolar macrophages to migrate, phagocyte and kill bacteria. Oxygen can also cause pulmonary-
specific toxic effect called hyperoxic acute lung injury leading to longer duration of mechanical ventilation. 
All these hyperoxic effects are well-known risk factors for VAP. A recent retrospective large single center 
study identified hyperoxemia as an independent risk factor for VAP. However, two recent randomized 
controlled trials evaluated the impact of conservative oxygen strategy versus a liberal strategy, but did not 
confirm the role of hyperoxemia in lower respiratory tract infection occurrence. In this review, we discuss 
animal and human studies suggesting a relationship between these two common conditions in mechanically 
ventilated patients and potential interventions that should be evaluated. Further large prospective studies 
in carefully selected groups of patients are required to confirm the potential role of hyperoxemia in VAP 
pathogenesis and to evaluate the impact of a conservative oxygen strategy vs. a conventional strategy on the 
incidence of VAP.
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Introduction

High concentrations of oxygen are routinely used during 
the supportive care in critically ill patients (1,2). Liberal 
oxygen therapy is supposed to prevent hypoxia and improve 
oxygen supply to the different affected organs. However, 
oxygen toxicity has recently raised concern regarding the 
liberal use of oxygen. Because of its unique properties as 
a final electron receptor, O2 allows high rate of adenosine 
triphosphate (ATP) synthesis in the respiratory chain 
pathway, making molecular O2 vital for mammalian cells. 
However, O2 is among the strongest oxidizing agents due 
to its high oxidizing chemical property that can damage all 

biological molecules (3,4).
Hyperoxemia commonly occurs because clinicians 

maintain super-normal PaO2 to provide a buffer or margin 
of safety in case of acute desaturation, forgetting that the O2-
carrying capacity of plasma is minor (0.003 mL/dL/mm Hg 
of PaO2), as compared with hemoglobin (1.39 mL/g/dL). 
The main end point should be tissue oxygenation that reflects 
the balance between oxygen delivery and tissue consumption. 
In most of cases hyperoxemia does not lead to adjustment of 
ventilator settings if inspired oxygen fraction (FiO2)  <0.40, 
level generally considered safe by clinicians (4,5).

Although existing data remain conflicting regarding the 
risk related to hyperoxemia in critical care, results from the 
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latest clinical studies suggest that hyperoxemia is probably 
associated with worse outcomes in some critically ill 
patients (6,7). Potential reasons for these conflicting results 
are significant heterogeneity between the studies regarding 
hyperoxemia definition, time of assessment, cutoffs, timing 
and duration of hyperoxemia. Two meta-analyses suggest 
that hyperoxemia is associated with increased mortality in 
different populations of critically ill patients (8,9), including 
post-cardiac arrest [OR =1.42 (1.04–1.92), I2=68%], stroke 
[OR =1.23 (1.06–1.43), I2=0%], and traumatic brain injury 
[OR =1.41 (1.03–1.94), I2=65%]. 

Previous studies suggested a relationship between 
hyperoxemia and ventilator-associated pneumonia (VAP). 
VAP is the most common intensive care unit (ICU)-acquired 
infection (10) and is associated with high mortality, duration 
of mechanical ventilation, and cost (11). Better understanding 
of pathophysiology and risk factors for VAP is a key issue in 
improving preventive strategies. The aim of this narrative 
review is to discuss animal and clinical studies regarding the 
possible relationship between hyperoxemia and VAP.

Experimental studies

Oxygen toxicity is mainly related to the formation of 
reactive oxygen species (ROS), especially during hypoxia/
re-oxygenation and long exposure to oxygen (12-14). The 
enhanced rate of ROS formation is directly related to the 
O

2 partial pressure. ROS have both toxic and vital potential 
for host defense and as signaling molecules (15,16). 

It has been well-established for more than a century 
that pulmonary O2 toxicity may cause severe pulmonary 
inflammation leading to hemorrhagic pulmonary edema 
and fibrosis (17-20). High level of FiO2 is responsible for 
denitrogenation phenomena and inhibition of surfactant 
production promoting expiratory collapse and atelectasis 
(21-23). Adsorption atelectasis occurs within few minutes 
after pure O2 breathing (23-25). In mechanically ventilated 
patients, atelectasis seriously impairs cough reflex and 
mucus clearance resulting in abundant secretions in the 
lower airways and higher risk for VAP (26,27). 

Prolonged hyperoxia impairs the efficacy of alveolar 
macrophages to migrate, phagocyte and kill bacteria (28-31),  
resulting in decreased bacterial clearance. Hyperoxemia 
markedly increased the lethality of both Legionella 
pneumophila and Pseudomonas aeruginosa in a mouse models 
of pneumonia (32,33). No mortality was observed in mice 
exposed to either bacterial inoculation or hyperoxemia 
alone, but this combination lead to loss of barrier integrity 

and systemic dissemination of bacteria (32). This increased 
mortality in animals occurred even at 40% to 65% of FiO2 
(31,34,35), levels generally considered safe by clinicians (36).

Additionally, O2 can cause pulmonary-specific toxic effect 
called hyperemic acute lung injury (HALI) (13), initially 
described by Smith et al. in 1899 (37,38). Hyaline membrane 
formation, pulmonary arteriole thickening, and alteration in 
the ventilation/perfusion fraction are the main mechanisms 
described (13). The pathophysiology of HALI is similar to 
that of acute respiratory distress syndrome (ARDS). 

All the above-discussed side effects of hyperoxemia, 
including pulmonary inflammation, atelectasis, and impaired 
bacteria clearance are well-known risk factors for VAP  
(39-43). The impact of these consequences of hyperoxemia 
on VAP occurrence is presented in Figure 1. 

Clinical studies

Observational studies reported that hyperoxemia was 
present in more than 50% of mechanically ventilated 
patients during the first 24 h after ICU admission (1,44). 
Although several observational studies suggested an 
association between hyperoxemia and poor hospital 
outcomes, recent meta-analyses were inconclusive due 
to the high data heterogeneity (4,8). However, recent 
randomized controlled trials also suggest that hyperoxemia 
might be harmful in critically ill patients. 

Girardis and colleagues performed a large randomized 
controlled trial to evaluate the impact of conservative (PaO2 
between 70 and 100 mmHg, or SpO2 between 94% and 
98%) versus conventional oxygen therapy (PaO2 values up 
to 150 mmHg, or SpO2 values between 97% and 100%) 
on mortality in ICU patients (6). ICU-mortality rate was 
significantly lower in the conservative compared with 
the conventional group [11.6% vs. 20.2%, absolute risk 
reduction 0.086 (95% CI: 0.017–0.150)]. Although the rate 
of new bloodstream infections was significantly lower in 
the conservative compared with the conventional group 
[absolute risk reduction 0.005 (95% CI: 0.000–0.009)], the 
rate of nosocomial respiratory infections was similar in 
the two groups. However, several confounders could have 
influenced the results reported by Girardis and colleagues 
regarding the absence of significant impact of hyperoxemia 
on respiratory infection rate. First, the authors used CDC 
criteria to define respiratory infections. These criteria are 
not specific, and the authors did not clearly differentiate 
ventilator-associated tracheobronchitis (VAT) from VAP. 
Although these infections are classified as respiratory 
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infections by CDC criteria, their impact on mortality is 
clearly different. A recent large observational multinational 
study showed that VAP, but not VAT, was associated with 
significantly higher mortality rate, compared with patients 
with no lower respiratory tract infections (45). Second, no 
information is given on the methods used to obtain the 
microbiological confirmation in patients with respiratory 
infections. It is well known that the use of quantitative 
methods substantially improves the specificity of VAP 
diagnosis. Third, the exclusion of immunosuppressed, 
ARDS, and COPD patients might have influenced their 
results, as these patients are at higher risk for VAP. Fourth, 
no information is give on incidence density of VAT and 
VAP (number of infections per 1,000 mechanical ventilation 
days) in study groups. 

Recently, Asfar and colleagues performed a two-by-two 
factorial, randomized controlled clinical trial (HYPERS2S) 
to determine the impact of hyperoxemia and fluid 
resuscitation with hypertonic saline solution in patients 
with septic shock, versus normoxemia and isotonic saline 
on mortality (7). The trial was stopped early for safety 
reasons, and the authors concluded that in patients with 
septic shock setting FiO2 to 1.0 to induce hyperoxemia 
might increase the risk of mortality, and hypertonic saline 
did not improve survival. Interestingly, the percentage 
of patients with atelectasis doubled in patients with 

hyperoxemia compared with those with normoxemia (12% 
vs. 6%, P=0.04). However, no significant difference was 
found in nosocomial pneumonia rate between the two 
groups (15% vs. 14%, P=0.78). ICU-acquired pneumonia 
was not the primary outcome of this trial. Moreover, 
several other factors preclude any valuable conclusion on 
the relationship between hyperoxemia and ICU-acquired 
pneumonia (46). First, no clear definition is given for ICU-
acquired pneumonia, and if the same definition of ICU-
acquired pneumonia was used in the different participating 
ICUs (n=22) is not reported. Second, the density rate of 
ICU-acquired pneumonia is not provided. Third, whether 
quantitative microbiological confirmation was required in 
all patients is unknown. Although the incidence of ICU-
acquired pneumonia is in line with rates reported by 
French ICUs, applying different diagnostic criteria to the 
same patient population can result in wide variation in the 
incidence of nosocomial pneumonia. A recent study showed 
that the incidence of VAP ranged from 4% to 42% when 
using the six published sets of criteria in the same cohort 
of patients (47). Further, it is well known that the use of 
quantitative methods substantially improves the specificity 
of VAP diagnosis.

Rachmale and colleagues (48) prospectively evaluated the 
electronic medical record of 289 ICU patients with acute 
lung injury to assess excessive oxygen exposure and its effect 
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Figure 1 Relationship between hyperoxemia and VAP. VAP, ventilator-associated pneumonia; HALI, hyperoxic acute lung injury.
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on pulmonary outcomes. Excessive FiO2 was defined as FiO2  
>0.5. Results showed that 74% of the included patients were 
exposed to hyperoxemia. A correlation between prolonged 
FiO2 exposure and worsening of oxygenation index in 48 
hours, as well as an association between hyperoxemia and 
longer duration of mechanical ventilation and ICU stay 
were demonstrated (48). Another recent large multicenter 
cohort study found severe hyperoxemia to be associated 
with fewer ventilator-free days and higher mortality (4). 
Longer duration of mechanical ventilation is a well-known 
a factor risk for VAP (49).

Our group performed a large single center cohort study 
to determine the relationship between hyperoxemia and 
VAP (50). VAP was diagnosed using clinical, radiological 
and quantitative microbiological data in 28% (128 out 
of 503) of study patients. Multivariate analysis identified 
number of days spent with hyperoxemia [OR =1.1, 95% CI: 
(1.04–1.2) per day, P=0.004], simplified acute physiology 
score (SAPS) II [OR =1.01, 95% CI: (1.002–1.024) per 
point, P<0.05], red blood cell transfusion (OR =1.8, 95% 
CI: 1.2–2.7, P=0.01), and proton pomp inhibitor use (OR 
=1.9, 95% CI: 1.03–1.2, P<0.05) as independent risk factors 
for VAP. Other multiple regression models also identified 
hyperoxemia at ICU admission (OR =1.89, 95% CI: 1.23–
2.89, P= 0.004), and percentage of days with hyperoxemia 
(OR =2.2, 95% CI: 1.08–4.48, P=0.029) as independent 
risk factors for VAP. However, the study was retrospective, 
performed in a single center, and the definition used for 
hyperoxemia (at least one PaO2 value >120 mmHg per day) 
could be a matter for debate.

Future research and potential interventions

Conservative O2 strategy

The results of recent studies highlight the importance of 
clinical management strategies that prevent hypoxemia 
while minimizing the incidence of hyperoxemia (51). 
Even now, nearly 240 years after the discovery of O2, what 
constitutes the safe upper limits and duration of FiO2 
remains uncertain. Toxicity rose more rapidly as FiO2 is 
increased above 0.6 and also as exposure time is prolonged 
(4,18,37,38). Available data showed a U-shaped relationship 
between mortality and arterial PaO2 (52). Mortality sharply 
increased at PaO2 <65 and >225 mmHg (1). Based on these 
concerns and the fact that optimizing oxygenation targets 
may improve patients’ outcome, oxygen titration should 
be done. With appropriate safeguards, lower oxygenation 

targets may be acceptable and possibly beneficial in many 
critically ill patients. 

Conservative oxygen therapy with careful oxygen 
titration is aimed at the prevention of iatrogenic 
hyperoxemia while preserving adequate tissue oxygenation. 
Several studies have now compared so-called conservative 
oxygen strategies targeting lower PaO2 or SpO2 values 
with conventional oxygen administration and reported no 
significant differences in terms of organ dysfunction or 
ICU and 90-day mortality (6,8,9,53). Suzuki et al. reported 
a lower atelectasis score and shorter duration of mechanical 
ventilation in the conservative oxygen therapy group, as 
compared with the liberal group (54,55). Also, in the study 
of Helmerhorst et al., ventilator-free days were greater 
higher in the conservative oxygen therapy, as compared with 
liberal oxygen group (4,56). Further, conservative oxygen 
strategy seems to be safe and feasible (53,54,56). 

Permissive hypoxemia

The conservative oxygen strategy has led to the concept 
of permissive hypoxemia (with hemoglobin concentration 
9–10 g/dL and normal cardiac index 4.7 L/min/m2, in 
order to maintain normal O2 tissue delivery) in some 
selected patients with a high risk of hyperoxemia like 
severe ARDS patients. This oxygen administration strategy 
works as a lung-protective strategy that aims to minimize 
the detrimental effects of the usual ventilatory support in 
the ICU (57). Although studies supported the feasibility 
of permissive hypoxemia, evidence is still lacking in terms 
of the efficacy (53,58). Recently, the UK and Australian 
Benefits of Oxygen Saturation Targeting (BOOST) II 
trials showed an oxygen saturation target of 85% to 89%, 
rather than 91% to 95%, may increase the risk for death or 
disability at 2 years corrected age in infants born before age 
28 weeks (59). No study in adults is yet available.

Automated FiO2 adjustment

With the use of pulse oximetry and computer technology, 
several attempts have been made to automate the 
adjustment of FiO2, especially in neonatology, because of 
the frequent and unpredictable change of oxygenation and 
risks of hyperoxemia in premature babies (60) as well as for 
titrating the FiO2 for COPD patients requiring long-term 
oxygen therapy (61). These systems proved a reduction in 
oxygen use without inducing hypoxemia compared with 
conventional adjustments. Last, a recent mode of ventilation 
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allows full control of both pressure-targeted breaths and the 
level of FiO2 in a closed-loop manner (62-64).

Antioxydants supplementation

Antioxidant supplementation has been used to reduce 
hyperoxemia-compromised host defense by scavenging 
hyperoxemia-induced excessive intracellular ROS. 
Treatment of hyperoxemia-exposed macrophages with 
antioxidants, such as superoxide dismutase can preserve 
act in cytoskeleton organizat ion and increase the 
phagocytosis of bacteria (31,65). Hyperoxemia-exposed cells 
overexpressing antioxidant enzyme manganese superoxide 
dismutase, have increased phagocytic activity, attenuated 
ROS-induced damage and reduced bacterial adherence 
(65,66). In a mice model exposed to hyperoxemia, ascorbic 
acid supplementation significantly improved bacterial 
clearance of P. aeruginosa (67). Another recent animal study 
suggests that hyperoxemia increases mortality in mice with 
Acinetobacter baumannii pneumonia, and that procysteine 
improves survival by increasing the phagocytic activity of 
alveolar macrophages (68). These findings suggest that 
supplementation with antioxidants during supportive 
oxygen therapy may be an effective intervention to 
attenuate or prevent the development of VAP in critically ill 
patients. A better understanding of the signaling pathways 
induced by hyperoxemia may provide valuable insights on 
its pathogenesis and may help in designing more effective 
therapeutic approaches.

Conclusions

Animal and clinical studies suggest a link between 
hyperoxemia and VAP. However, further large prospective 
studies in carefully selected groups of patients are required 
to confirm these findings and to evaluate the impact of a 
conservative oxygen strategy vs. a conventional strategy on 
the incidence of VAP.
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