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Abstract: Preoperative therapy is the gold standard for esophageal or gastroesophageal junction 
adenocarcinoma. Positron emission tomography (PET) is not only essential for tumor staging, but changes 
in glucose consumption correspond with response to therapy and correlated with prognosis. Therefore, 
with further refinement, PET parameter can serve as a tool for personalized therapy. For instance, the 
Municon trials suggested the possibility of PET-response guided therapy for esophageal adenocarcinoma 
(EAC) patients, however there are limitations. New PET parameters such as total lesion glycolysis (TLG) or 
magnetic resonance imaging (MRI) may provide better response prediction. Furthermore, PET parameters 
combined with genomic profiling might enhance better treatment selection, prediction, and prognostication. 
Here, we summarized the current state of understanding and future possibilities.
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Introduction

Esophageal cancer (EC) is the 8th most common of all 
cancers in the world (456,000 cases) and the 6th most 
common cause of cancer death (400,000 deaths) (1). 
Esophageal adenocarcinoma (EAC), one of the two 
common EC histologic types, has become quite prevalent 
in the western world (2). Despite the development of 
multimodality therapies, the prognosis of EAC patients 
remains dismal (3,4).

To date, preoperative chemotherapy or chemoradiation 
followed by esophagectomy is considered a standard option 
in cases where surgery is possible (5). After preoperative 
chemoradiation, ~25% patients achieve pathological 
complete response (pCR) (6). Patients who have pCR often 
experience a longer overall survival compared to those that 
achieve < pCR (7,8). Importantly, patients who are destined 

to have pCR may be able to avoid the esophagectomy (9). 
Therefore, predicting the response to preoperative therapy 
can be useful in the clinic and may allow novel algorithms. 

Computed tomography (CT), positron emission 
tomography (PET)-CT and upper endoscopy with 
endoscopic ultrasound (EUS) have been the standard for 
staging of localized EC. In addition, these have been used 
for restaging after preoperative therapy (10).

Predicting preoperative chemotherapy response 
by PET-CT

Several studies have assessed the value of PET-CT to predict 
response and prognosticate after preoperative chemotherapy 
(Table 1). Weber et al. reported that standardized uptake 
value (SUV) reduction of clinical responders was significantly 
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higher than that of non-responders (11). Subsequent studies 
confirmed these observations and suggested that that SUV 
reduction could be correlated with the degree of pathological 
response (12,13,15,16). MUNICON1 phase II trial 
prospectively evaluated whether PET is useful for predicting 
histopathological response and survival (14). When 35% 
SUVmax reduction was defined as PET-responder, major 
histological responses (less than 10% residual tumor) were 
detected in 29 of 50 PET-responders, but none in PET-non-
responders. But, SUV changes could not predict pCR. The 
median overall survival was significantly longer for PET-
responders than for PET-non-responders [hazard ratio (HR): 
2.13; 95% confidence interval (CI): 1.14–3.99; P=0.015] (14).  
A large retrospective single institution study of 301 patients 
observed a relationship between SUVmax reduction and 
pathological response (17). As pathologic response was 
defined by the Mandard tumor regression grades (TRGs) 
1–3 (19), SUV changes could identify pathologic response 
[odds ratio (OR) for each percentage reduction: 1.03; 95% 
CI: 1.01–1.06; P=0.003] (17). Thus, metabolic response 
could be correlated with pathological response. However, 
there is not standard cut-off value for metabolic response. 
PERCIST recommends 30% reduction as cut-off value, 
but this was applied other tumor types and not EAC (20). 
In EAC setting, 35% SUVmax reduction seem to be most 
commonly defined as metabolic responder as MUNICON 
trial (14).

Predicting preoperative chemoradiation 
response by PET-CT 

One drawback of this area of research is that most 
studies have small cohorts, they are retrospective, and 
conducted at single institution. Therefore, varying 
results have been reported (Table 2). Unlike preoperative 
chemotherapy, pCR can be highly anticipated after 
preoperative chemoradiation (9). A prospective cohort 
study with 138 EC patients (EAC 75%) showed that 
when complete metabolic response (cMR) was defined 
as maximal value of SUVmax of <4, only 27% patients 
who had cMR achieved pCR after chemoradiation (27).  
Elliot et al. also reported similar result. In 100 EAC patients, 
when cMR defined as SUVmax of <4 after preoperative 
chemoradiation, 46 patients (46%) achieved cMR, but 37 
patients (80%) had residual EAC in the resected specimen (24).  
These studies confirm the limitation of SUV after 
chemoradiation to predict pCR. 

Our group reported on consecutive 151 EAC patients 
and noted that SUVmax changes after chemoradiation 
was marginally associated with pCR (univariate OR: 1.01, 
P=0.06; multivariate OR: 1.03, P=0.07) (22). Kukar et al. 
reported in 77 patients and noted that less than 45% SUV 
decrease was a risk factor for residual disease (25). Another 
study with 53 EAC patients reported that a decrease of 
>23.5% SUV resulted in the sensitivity and specificity for 

Table 1 Previous study showing the relationship between SUV reduction after preoperative chemotherapy and histological response in EC

Study Year Tumor type
SUV reduction 

cut-off (%)
Definition of 
histological response

Pathological response rate P value

Weber et al. (11) 2001 N=40, AC 100% 35 TRG 1, 2 PET-responder: 8/15; non-PET-
responder: 1/22

0.01

Ott et al. (12) 2006 N=65, AC 100% 35 Less than 10% 
residual tumor cells

PET-responder: 8/18; non-PET-
responder: 2/38

0.01

Wieder et al. (13) 2007 N=24, AC 100% 33 Less than 10% 
residual tumor cells

PET-responder: 8/18; non-PET-
responder: 0/6

–

Lordick et al. 
(MUNICON) (14)

2007 N=110, AC 83% 35 Less than 10% 
residual tumor cells

PET-responder: 29/50; non-PET-
responder: 0/54

0.001

Kauppi et al. (15) 2012 N=66, AC 100% 67 Less than 10% 
residual tumor cells

Sensitivity: 79%; specificity: 75% –

Port et al. (16) 2007 N=62, AC 82% 50 Less than 10% 
residual tumor cells

PET-responder: 9/37; non-PET-
responder: 1/25

–

Findlay et al. (17) 2017 N=301, AC 83% 77.8 TRG 1, 2, 3 Sensitivity: 74%; specificity: 84% –

EC, esophageal cancer; AC, adenocarcinoma; SUV, standardized uptake value; TRG, tumor regression grade (18); PET, positron emission 
tomography.
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pCR prediction were 100% and 53%, respectively (26).  
Baksh et al. retrospectively reported SUV changes in 
187 EC patients who had preoperative chemoradiation 
and noted a significant correlation with TRG (18). 
However, Piessen et al., Vallbohmer et al., and Myslivecek 
et al. reported the no benefit of PET-CT parameter 
after chemoradiation to identify histological responders 
(21,23,28). 

Taken together, PET-CT parameter has a limitation in 
predicting pCR or histological response after preoperative 
chemoradiation. This limitation is considered due 
to inflammatory changes caused by chemoradiation. 
Inflammation and ulceration can increase SUV uptake (29,30). 
Further refinements are needed for better correlations. 

Volumetry PET parameter

SUVmax represents maximum metabolic activity at one 
point in the tumor bed. Therefore alternative parameters 
have been proposed to assess heterogeneity by computed 
volumetric analyses, such as tumor volume, tumor shape, 
total glycolytic volume, and spatial patterns (texture 
features) (31-33). TLG is calculated by the product of 
average of SUV and metabolic tumor volume (MTV) (34). 
Therefore, TLG can represent more accurate whole tumor 

metabolic activity than SUVmax. We reported a prospective 
phase II trial to assess the SUVmax or TLG could predict 
pCR, but noted that TLG was prognostic but none of 
the PET variables was predictive of pCR (35). However, 
this study was very small. A larger but retrospective study 
from our institution assessed whether baseline and post-
chemoradiation PET changes including texture analysis 
can improve prediction of pCR in 217 EAC patients (36). 
Especially TLG improved prediction of pCR, but was 
not sufficient for clinical implementation (36). Hatt et al. 
reported in 50 patients who underwent chemoradiation 
(EAC: 28%) and noted that initial SUV parameter was 
similar between clinical responders and no-responders, 
while TLG parameter was significantly less in patients with 
clinical CR (37). And pretreatment TLG of <58 predicted 
clinical CR with 75% sensitivity and 92% specificity, which 
was more valuable than SUV (37). Furthermore, Roedl  
et al. reported that a decrease of TLG by >78% had better 
predictive values (91% sensitivity and 93% specificity) than 
SUV did (38). However, another study with 79 patients 
who underwent preoperative chemoradiation could not 
demonstrate the correlation between TLG after treatment 
and pCR (39). A study of 50 EC patients with preoperative 
chemotherapy reported that a certain TLG change 
(>40% reduction) was an independent prognosticator in 

Table 2 Previous study showing the relationship between SUV reduction after preoperative chemoradiation and pathological response in EC

Study Year Tumor type Results

Vallbohmer et al. (21) 2009 N=119,  
AC 45%

Post SUV and SUV reduction were not associate with major histological response  
(less than 10% residual tumor cells)

Javeri et al. (22) 2009 N=151,  
AC 100%

The percentage SUV decrease correlated marginally with pCR (univariate OR: 1.01, 
P=0.06; multivariate OR: 1.03, P=0.07)

Piessen et al. (23) 2013 N=60,  
AC 48%

Post SUV and SUV change were not associate with major histological response  
(less than 10% residual tumor cells) (P=0.71, P=0.31)

Elliott et al. (24) 2014 N=100,  
AC 100%

20% of patients who had post SUV <4 achieved pCR; SUV change was not associate 
with pCR (P=0.87)

Baksh et al. (18) 2015 N=187,  
AC N/A

Rate of SUV change showed a significant correlation with TRG (r=0.178, P=0.017)

Kukar et al. (25) 2015 N=77,  
AC 100%

The mean pre-SUV (14.5 vs. 11.2; P=0.05), and % SUV change (0.6 vs. 0.4; P=0.02) were 
significantly higher in patients with pCR than non-pCR

Kim et al. (26) 2016 N=52,  
AC N/A

>23.5% SUV reduction predicted pCR with the sensitivity 100 % and specificity 52.6%

Heneghan et al. (27) 2016 N=138,  
AC 75%

27% of patients who had Post SUV <4 achieved pCR; % SUV reduction correlated with 
pCR (OR: 1.03; P=0.013)

AC, adenocarcinoma; SUV, standardized uptake value; pCR, pathological complete response; OR, odds ratio; TRG, tumor regression 
grade (18); PET, positron emission tomography.
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multivariable analysis (multivariate HR: 3.89; 95% CI: 
1.46–10.3; P=0.006), but SUV change was not independent 
prognosticator (40). Further studies are expected. 

PET guided treatment

If PET-parameters could identify exquisitely treatment 
sensitive tumors, we could avoid surgery in some patients. 
Conversely for patients with resistant tumor, we could avoid 
toxic and ineffective therapies. Therefore, PET-guided 
treatment algorithm in EAC has been evaluated. The Municon 
I trial is the first phase II trial which assessed the PET-
response guided treatment algorithm for EAC patients (14).  
PET responders (>35% SUV reduction) after one cycle 
chemotherapy continued the same chemotherapy then had 
surgery, but non-responder stopped chemotherapy and had 
surgery. The prognosis of responders was better than that 
for non-responders. In Municon II trial, non-responder 
received additional chemoradiation, but still the non-
responders had poor prognosis compared to responders (41).  
This suggests that empirically changing therapy cannot 
overcome primary resistance and in depth analyses are 
needed to derive benefits. 

A Phase II trial evaluating induction chemotherapy 
followed by concurrent chemoradiation in EC showed that 
PET responder for induction chemotherapy (>35% SUV 
reduction) had higher frequency of pCR and favorable 
prognosis (42). Ongoing CALGB 80803 study has evaluated 
the strategy of changing concurrent chemotherapy with 
chemoradiation based on PET response to induction 
chemotherapy (43). A total of 257 EAC patients assigned to 
the FOLFOX or Carbo/Taxol group, and then PET non-
responder were crossed over to alternative regimen. pCR 
rate of PET responder was 26% and that of PET non-
responder was 18%, but this is not significant. This study 
design is not ideal to figure out if pCR can be improved by 
changing concurrent chemotherapy. In the ideal design, one 
would continue would have two non responding cohorts: 
one cohort will receive the same chemotherapy with 
radiation and the other cohort will receive the alternate 
chemotherapy. 

Ancillary analysis of the CROSS trial reported whether 
the early assessment could predict response for preoperative 
chemoradiation (44). PET-CT was performed before 
treatment and 14 days after the start of treatment. The 
median SUV reduction of histopathologic responders (less 
than 10% residual tumor) was significantly higher than that 
of non-responders; 30.9% for histopathologic responders 

and 1.7% for non-responders (P=0.001). This confirms 
previous reports. However, when 0% SUV reduction 
was used as cutoff value, PET identified histopathologic 
response with 91% sensitivity and 50% specificity. This low 
specificity indicates difficulty of predicting non-responder 
by early PET evaluation (44). 

Magnetic resonance imaging (MRI)

Diffusion-weighted MRI (DW-MRI) has been evaluated for 
prediction of treatment response in various cancers (45-47). 
The apparent diffusion coefficient (ADC) is calculated by 
diffusion or microstructural density (48). Because diffusion 
within tumor is interrupted by cellular membranes or 
macromolecular structures, presence or residual tumor cell 
can be detected as ADC decrease, conversely treatment 
response can be detected as ADC increase (49). So far, three 
studies evaluate the benefit of DW-MRI for predicting 
preoperative treatment (50-52). A prospective study found 
that change in ADC during preoperative chemoradiation 
was associated with pCR (50). One study reported similar 
result that change in ADC was associated with TRG (52), 
but another study did not (51). These studies were small, 
therefore a multi-center study assessing the value of MRI 
and PET-CT for predicting of preoperative treatment 
response (NCT02125448).

Discussion

Approximately 25% patients achieve a pCR after 
preoperative chemoradiation (6). If pCR could be 
predicted before surgery, one could consider an esophageal 
preservation strategy. Our group reported that clinical 
CR defined as negative endoscopic biopsies and PET with 
physiologic uptake led to favorable OS, but did not predict 
pCR (53,54). Therefore, we recommend that all operable 
EAC patients proceed to surgery. To date, the proposed 
Surgery-as-Needed Approach in Esophageal Cancer 
(SANO) trial is ongoing, evaluating whether clinical CR 
at 2-point evaluation (PET and EUS) after preoperative 
chemoradiation could predict pCR (55). New PET 
parameter including texture analysis or MRI might provide 
better pCR prediction.

Identifying who might achieve pCR after chemoradiation 
is important, but PET parameters are currently unable. 
Early PET changes can potentially play a role (14,41). 

Recently, whole genome analyses of EAC are shedding 
light on subtypes that exist (56-60). Several gene expression 
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analyses are exploring predictive biomarkers including 
glucose transporters-1 and hexokinase (61-64). 

Conclusions

This review describes the current state of understanding 
and future possibilities of images for predicting preoperative 
therapy response and for guiding personalized therapy in 
EAC patients. New PET parameters such as TLG or MRI 
may provide better response prediction. Furthermore, PET 
parameters combined with genomic profiling might enhance 
better treatment selection, prediction, and prognostication. 
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