
Page 1 of 9

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2018;6(2):30atm.amegroups.com

Review Article

Mechanisms involved in brain dysfunction in mechanically 
ventilated critically ill patients: implications and therapeutics

Marc Turon1,2, Sol Fernández-Gonzalo1,3, Candelaria de Haro1,2, Rudys Magrans1,2, Josefina López-
Aguilar1,2, Lluís Blanch1,2

1Critical Care Center, Parc Taulí Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, Universitat Autònoma de Barcelona, 

Sabadell, Spain; 2CIBERES, Instituto de Salud Carlos III, Madrid, Spain; 3CIBERSAM, Instituto de Salud Carlos III, Madrid, Spain

Contributions: (I) Conception and design: None; (II) Administrative support: None; (III) Provision of study materials or patients: None; (IV) 

Collection and assembly of data: None; (V) Data analysis and interpretation: None; (VI) Manuscript writing: All authors; (VII) Final approval of 

manuscript: All authors. 

Correspondence to: Lluis Blanch, MD, PhD. Critical Care Center, Parc Tauli Hospital Universitari, Institut d’Investigació i Innovació Parc Taulí I3PT, 

Universitat Autònoma de Barcelona, Parc Taulí 1, 08208 Sabadell, Spain. Email: lblanch@tauli.cat. 

Abstract: Critical illness may lead to significant long-term neurological morbidity and patients frequently 
develop neuropsychological disturbances including acute delirium or memory impairment after intensive 
care unit (ICU) discharge. Mechanical ventilation (MV) is a risk factor to the development of adverse 
neurocognitive outcomes. Patients undergoing MV for long periods present neurologic impairment 
with memory and cognitive alteration. Delirium is considered an acute form of brain dysfunction and its 
prevalence rises in mechanically ventilated patients. Delirium duration is an independent predictor of 
mortality, ventilation time, ICU length of stay and short- and long-term cognitive impairment in the ICU 
survivors. Although, neurocognitive sequelae tend to improve after hospital discharge, residual deficits 
persist even 6 years after ICU stay. ICU-related neurocognitive impairments occurred in many cognitive 
domains and are particularly pronounced with regard to memory, executive functions, attentional functions, 
and processing speed. These sequelae have an important impact on patients’ lives and ICU survivors often 
require institutionalization and hospitalization. Experimental studies have served to explore the possible 
mechanisms or pathways involved in this lung to brain interaction. This communication can be mediated 
via a complex web of signaling events involving neural, inflammatory, immunologic and neuroendocrine 
pathways. MV can affect respiratory networks and the application of protective ventilation strategies is 
mandatory in order to prevent adverse effects. Therefore, strategies focused to minimize lung stretch 
may improve outcomes, avoiding failure of distal organ, including the brain. Long-term neurocognitive 
impairments experienced by critically ill survivors may be mitigated by early interventions, combining 
cognitive and physical therapies. Inpatient rehabilitation interventions in ICU promise to improve outcomes 
in critically ill patients. The cross-talk between lung and brain, involving specific pathways during critical 
illness deserves further efforts to evaluate, prevent and improve cognitive alterations after ICU admission, 
and highlights the crucial importance of tailoring MV to prevent adverse outcomes.
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Introduction

There is growing evidence that critical illness may lead 
to significant long-term morbidity. Recent studies have 
indicated the high prevalence of neurocognitive impairments 
persisting for years after hospital discharge among patients 
who have survive an episode of critical illness (1), and have 
emphasized the need to reduce the neurological morbidity in 
these patients. 

The pathophysiological mechanisms underlying these 
alterations may originate outside the central nervous system 
(CNS). The interrelation between predisposing factors 
(such as advanced age, multiple medical comorbidities and, 
especially, pre-existing cognitive impairments) and factors 
directly associated with critical illness such as hypoxemia (2), 
hypotension (3), sepsis (4), and blood glucose dysregulation (5,6) 
can contribute to these alterations. Furthermore, other factors 
associated with clinical management in the intensive care unit 
(ICU), including medication (7) and mechanical ventilation 
(MV) (6,8), inflammatory mediators, metabolic disturbances, 
neurotransmitter imbalances and cholinergic deficiency (9), can 
result in acute brain damage and should be taken into account. 
This review will focus specifically in the MV as a factor that may 
contribute to the development of cognitive alterations.

MV and the brain

Despite being a vital life support tool for many critical 
patients, MV is not without its complications. It may worsen 
lung injury or even induce it [a condition termed ventilator-
induced lung injury (VILI)] (10). VILI is triggered by the 
mechanotransduction of mechanical to biological signal 
at epithelial and endothelial levels in the lung. This leads 
to a deleterious inflammatory cascade, and inflammatory 
mediators can promote local tissue injury by a phenomenon 
termed biotrauma (10), which may even spread to other 
distal organs and systems, and eventually induce multiorgan 
failure. MV may also cause bacterial translocation from the 
lungs into the systemic circulation, thus producing distal 
organ failure (11,12). 

Various experimental studies have suggested that ventilatory 
strategies which cause overstretching of lung regions or 
that produce repetitive opening and closing of lung units 
are harmful (10,13,14). Patients undergoing these ventilator 
strategies may be at risk of VILI and also of ventilation-
induced development of multiorganic systemic failure (15). 

Experimental studies have revealed the importance of 
the brain-lung interaction in the context of MV (14,16,17). 

Quílez et al. described how MV induced differential c-fos 
expression in several areas in the brain, depending on the 
ventilatory pattern, tidal volume (VT) and level of PEEP, 
thus supporting the hypothesis that an iatrogenic effect of 
MV may affect the brain (14,18). Chen et al. found that 
prolonged MV (6 h) in mice induced cognitive decline 
and increased activation of microgliosis and apoptotic 
cascades after surgery, thus indicating the detrimental 
effects of prolonged MV in the brain (19). González-López 
et al. identified a novel mechanism driven via vagal and 
dopaminergic pathways that triggers hippocampal apoptosis 
in response to lung stretch in mice undergoing MV (20). 

Lungs can “sense” mechanical stimuli through their 
mechanoreceptors which communicate this information to 
the brain by a variety of mechanisms, possibly involving the 
autonomic nervous system (14). This communication can 
be mediated via a complex web of signaling events involving 
neural, inflammatory, immunologic and neuroendocrine 
pathways. Lung injuries due to inadequate ventilator 
settings may produce an inflammatory response, releasing 
pulmonary inflammatory mediators into the bloodstream 
and triggering a brain response. Systemic endothelial 
activation and inflammation can also be explained by the 
activation of sympathetic nerve terminals in organs distal 
to lung parenchyma (21). Furthermore, MV may impair 
regional blood flow and brain oxygenation, due to increased 
mean airway pressure, reduced lymphatic drainage and 
activation of the autonomic system (22). Patient-ventilator 
asynchrony results in increased work of breathing and raises 
the mechanical ventilator load; inspiratory loading has 
been associated with modified cortical activities, and with 
activation of the premotor cortical areas, which may have 
important pathophysiological implications (23).

Whatever the pathway involved, this release of inflammatory 
mediators associated with VILI may increase functional and 
metabolic activity in the brain (14), among other organs. Several 
trials in patient survivors of acute respiratory distress syndrome 
(ARDS) have described cognitive deterioration, including 
memory, language and cognitive decline. Patients undergoing 
MV for long periods present neurologic impairment with 
memory and cognitive alteration (24,25). 

Implications of brain dysfunction for critically ill 
survivors

Delirium

Delirium is defined by the American Psychiatric Association’s 
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Diagnostic and Statistical Manual of Mental Disorders 
(DSM-V) as a disturbance of attention, awareness and 
cognition that tends to fluctuate in severity during the 
course of a day: these disturbances are not better explained 
by a pre-existing, established or evolving neurocognitive 
disorder, and there is evidence that they are a direct 
physiological consequence of another medical state. 
This condition is understood as an acute form of brain 
dysfunction that affects 14–24% of hospital admissions 
and 15–53% of postoperative patients; it is, manifested 
by hypoactive and hyperactive states, occurring even in 
the same patients (26,27). In the critical care context, the 
prevalence of delirium rises to between 60% and 80% 
in ICU patients undergoing MV (28-31), and delirium 
duration has emerged as an independent predictor of 
mortality, ventilation time, ICU length of stay (28,32,33) 
and short- and long-term cognitive impairment (34) in 
critically ill patients and ICU survivors. Its presence has also 
been associated with a 39% increase in ICU costs (35). 

The list of risk factors for delirium in ICU patients is 
extensive and wide-ranging. They are generally classified 
into two types: predisposing factors, which refer to the 
characteristics of the patients and chronic pathology such 
as advanced age, previous cognitive impairment, respiratory 
disease or hypertension; and precipitating factors, related 
to the environment and the acute illness status. The latter 
are considered more modifiable conditions, and are thus 
potential targets for preventing ICU delirium. MV, acute 
physiologic derangements, infection, coma, illness severity 
and benzodiazepine administration are included in this 
category (2,36-40).

The pathophysiological mechanisms of ICU delirium 
are poorly understood, but two of the main triggers that 
have been proposed are neurotransmitter imbalance and 
inflammation (41). In fact, both seem to be plausible and 
may be related. The neurotransmitter imbalance hypothesis 
arises from the presence of multiple neurotransmitter 
systems related to the control of cognition, behavior and 
mood in human beings. Disturbances in those systems, 
specifically the dopaminergic and cholinergic systems, have 
been associated with delirium (42,43). On the other hand, 
critical illness and its management cause inflammation that 
may lead to multiple organ dysfunction (44). Inflammatory 
mediators initiate a cascade of events than may produce 
endothelial damage, microvascular compromise and 
neuroinflammation (45,46).

The cytokine signal can be transmitted to the brain 
by, direct neural pathways (via primary autonomic 

afferents), transport across the blood-brain barrier, or 
entry via the circumventricular region. Increased TNFα 
levels in the brain have been associated with microglial 
activation that may affect astrocytic and neural function. 
These mechanisms could explain the neurobehavioral 
manifestation of delirium; moreover, if the microglial 
activation persists or the cholinergic inhibitory control of 
microglia is impaired (due to incipient neurodegenerative 
process, pharmacological treatment, or even advanced 
normal aging…) the neurotoxicity of this inflammatory 
response may be associated with further cognitive 
impairments (47). 

Cognitive impairments on discharge

MV is widely used in the ICU, and has been identified as 
a pervasive risk factor for cognitive dysfunction among 
ICU survivors. Currently, 22 studies have been published 
on the incidence of neurocognitive impairments after 
critical illness (1), 14 of which included only MV patients, 
and eight mixed MV and non-MV ventilated populations. 
Most included patients with postoperative complications, 
acute lung injury, ARDS, COPD exacerbations and trauma 
conditions. The results of these studies show that MV and 
its duration predict adverse neurocognitive outcomes after 
discharge (6,8). 

Whether these impairments represent new sequelae 
of critical illness or worsening of previously existing 
impairments is difficult to ascertain because baseline 
data on cognitive functioning are generally unavailable 
or underestimated. Differences in study populations, 
definitions of cognitive impairment, neuropsychological 
tests, and follow-up make it difficult to compare studies; 
however, it is widely agreed that around three-quarters 
of critically ill survivors develop new neurocognitive 
impairments, which correspond to mild-moderate dementia 
in around one third (7). Neurocognitive sequelae may 
improve within 6 to 12 months after discharge, but residual 
deficits tend to become chronic thereafter, persisting in 
around 47% of survivors after 2 years and in 25% after 
6 years (3,48). ICU-related neurocognitive impairments 
occurred in many cognitive domains and are particularly 
pronounced with regard to memory, executive functions, 
attentional functions, and processing speed (2,3,5,7,48-50).

These long-lasting neurocognitive impairments have 
an important impact on patients’ lives, as they affect 
ability to perform activities of daily living, impede their 
ability to return to work, and reduce quality-of-life both 
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for the patients themselves and for their relatives (51,52). 
Importantly, these neurocognitive impairments also create 
a major public health burden since ICU survivors often 
require institutionalization and hospitalization (53).

Respiratory patterns

Analysis of the variability of the respiratory pattern

Breathing in normal conditions is generated by central 
pattern generators which are special networks of neurons 
located in specific regions of the CNS. Although breathing 
is normally treated as a rhythmic process, the variability 
in cycle-to-cycle measurements is substantial in awake, 
healthy adult humans (54). Experimental studies with rats 
(55,56) have shown that alterations in internal (metabolic 
or physiological) and external conditions, due to the 
reorganization of the brain stem respiratory network 
dynamics, creates new rhythmogenic mechanisms in order 
to adapt and respond to these changes. MV can affect these 
respiratory networks, and many respiratory variables which 
can be modified by the ventilatory pattern such as VT, end-
expiratory lung volume (EELV), total time respiratory 
cycle (Ttot) or respiratory rate (RR) may contribute to 
the significant breath-to-breath variability (54,57). The 
mechanisms underlying breath-to-breath variability arise 
from the nonlinear dynamical behavior of neuromechanical 
reflex loops (58). The central processing of vagal afferent 
activity is nonlinear and this nonlinear feedback effect 
may increase the dimension of breathing (59). A variety of 
methods from nonlinear dynamics and chaos theory can 
be used to characterize the complexity of the respiratory 
pattern. The most popular are: (I) phase space plots to 
discover the phase space trajectory for the system under 
study, and the short- or long-term relationship between 
the current state (e.g., the current respiratory cycle) and 
future states; (II) correlation dimension (Grassberger & 
Procaccia algorithm), a measure which reflects the extent 
that an object occupies the space in which it is embedded; 
(III) entropy measures (60-62) to assess the degree of 
regularity of the breath-to-breath variability time series; 
(IV) detrended fluctuation analysis (DFA) (63) to study the 
fractal properties of time series and the short- and long-
term correlations involved in its dynamic; and (V) surrogate 
data analysis (64) to extract the nonlinear components 
involved in the dynamics of the breath-to-breath variability.

Dellaca et al. (57) found long-range correlations in 
the fluctuations of the cycle-to-cycle variations of several 

respiratory parameters. Using a neuromechanical model, 
they proposed that correlations in the timing and amplitude 
of the physiological parameters originated from the brain 
with the exception of EELV which showed the strongest 
correlations due to the contribution of the viscoelastic 
properties. 

Figure 1 shows a broad attempt to characterize the 
complexity of the breathing pattern through RR variability 
time series in a representative tracheotomized patient in our 
center. 

Therapeutics to prevent brain dysfunction

MV to protect the brain 

The application of protective ventilation strategies in the 
care of brain injured patients seems mandatory, especially 
because of the relative frequent occurrence of ARDS in 
these patients (65). In fact, Elmer et al. (66) demonstrated 
an association between high VT ventilation and the 
development of ARDS after intubation for intracerebral 
hemorrhage, and more recently Beitler et al .  (67) 
showed that lower VT after out-hospital cardiac arrest is 
independently associated with favorable neurocognitive 
outcome, more ventilator-free days, and more shock-free 
days. Some studies indicate that MV should be implemented 
in patients with established brain injury, in order to protect 
both the brain and the lung, but it is no clear how to 
ventilate the lungs in order to avoid brain injury. Avoiding 
hypoxemia and maintaining appropriate arterial pressure 
may have a positive effect on neurological outcome. Some 
authors have found that PEEP-induced overdistension and 
an associated elevation of arterial carbon dioxide tension 
was followed by an increase in intracranial pressure and 
consequent brain injury (68). The application of protective 
ventilation strategies, especially those that minimize lung 
stretch, have been positively evaluated in populations 
such as ARDS patients, but the effect on the brain was 
not explored. These strategies may improve outcomes in 
the general population, avoiding failure of distal organ, 
including the brain, but may also have harmful effects in 
patients with intracranial hypertension due to hypercapnia. 
The effect of the different MV strategies will vary 
depending on the patient and the pathology. Therefore, 
it is difficult to make any general recommendations, and 
individualized treatment is mandatory. Protective MV 
must provide safe oxygenation and alveolar ventilation and 
simultaneous must prevent neuroinflammation.
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Other therapies 

There is some evidence that long-term neurocognitive 
impairments experienced by critically ill survivors may 
be mitigated after rehabilitation. In a sample of ICU 
survivors, Jackson et al. (69) found that combined cognitive 
and physical therapy improved executive functions and 
instrumental activities of daily living. However, delaying 
interventions until after ICU discharge may be less 
effective, and introducing interventions only when cognitive 
and physical decline has already appeared seems insufficient 
in order to reverse deficits completely (70,71). For this 
reason, early interventions have received increased attention 

in recent years. Inpatient rehabilitation interventions in 
ICU promise to improve outcomes in critically ill patients, 
and may decrease the incidence and duration of delirium, 
shorten ICU and hospital stay, and ultimately reduce costs 
while improving cognitive function and quality of life after 
discharge. The most common rehabilitation strategies 
during ICU stay have mainly involved physical interventions 
such as early mobilization (72,73) and occupational  
therapy (74) aimed to enhance functional recovery, and the 
early detection of delirium (75). Only recently have early 
rehabilitation strategies in the ICU been extended beyond 
physical therapy to include cognitive interventions (76-78). 

Figure 1 Complexity of the breathing pattern. This figure shows a broad attempt to characterize the complexity of the breathing pattern 
through respiratory rate variability time series in a representative tracheotomized patient in our center. (A) RR during the 24 hours before (red 
trace) and 24 hours after (blue trace) a tracheotomy procedure. The variability was similar in the two periods; this was attributed to the value 
of the coefficient of variation, CV. However, approximate entropy, ApEn decreased for the post period, suggesting a time series with a less 
irregular (or more predictable) pattern of fluctuations; (B) the power law relationship between the fluctuation function F(s) and window size s, 
F(s) ~ sα, appears as a straight line with slope (i.e., the scaling exponent), α, on the log-log graph, exhibiting a 1/f fractal-like behavior in both 
cases. RR, respiratory rate.
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Nevertheless, the results about neurocognitive interventions 
in the ICU are limited and the issue of whether these 
interventions can prevent or improve long-term cognitive 
impairments in ICU survivors has not yet been elucidated. 

Conclusions

During critical illness there is always cross-talk between 
lung, brain and other organs involving specific pathways 
even when the organs are not apparently impaired. Brain 
injury predisposes to lung injury and vice versa; therefore, 
the treatments applied must protect both organs. Today, 
lung protective MV is an accepted supportive treatment 
for patients with concomitant brain and lung injury. The 
evidence suggests that critical illness often results in long-
term neurocognitive impairments in one-third of survivors 
and that these impairments have a significant impact on 
daily living, quality of life and economic costs. Further 
efforts must be made to evaluate, prevent and improve 
cognitive alterations after ICU admission.
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