
Page 1 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

Big-data Clinical Trial Column

Tutorial: development of an online risk calculator platform

Xinge Ji, Michael W. Kattan

Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA

Correspondence to: Michael W. Kattan, PhD. Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid

Avenue/JJN3-01, Cleveland, Ohio 44195, USA. Email: kattanm@ccf.org.

Abstract: Risk calculators are online tools developed for use by physicians in clinical settings to predict the
risk of a clinical event, and as an aid in personalizing medical decision-making. Cleveland Clinic prediction
models are listed at http://rcalc.ccf.org. We illustrate how we used R to create a risk calculator, and
demonstrate the ease of using R, RStudio, and a Shiny package.

Keywords: Online risk calculator; shiny server; platform

Submitted Nov 21, 2017. Accepted for publication Nov 24, 2017.

doi: 10.21037/atm.2017.11.37

View this article at: http://dx.doi.org/10.21037/atm.2017.11.37

Introduction

Risk calculators are online tools physicians used to predict
the risk of a clinical event. Our Cleveland Clinic Prediction
models are listed at http://rcalc.ccf.org.

If R (1) is new to you, go to the learning resources at
https://www.rstudio.com/training. We will build a risk
calculator as a Shiny application. For complete tutorials
about Shiny, see https://shiny.rstudio.com/. Basic HTML
and cascading style sheets (CSS) knowledge is required in
section 2.5; however, that section may be skipped.

You’ll need to have R and RStudio (2) installed on
your desktop. R will compile and run on a wide variety
of UNIX platforms, Windows, and MacOS. In addition,
you will need to install the Shiny package (3). Open
an R session, connect to the internet, and run: install.
packages(“shiny”).

Risk calculator

The Shiny app contains two scripts called ui.R and server.
R. The scripts live in a directory, e.g., app/, and the app can
be run with runApp("app"). Below we work through an
example of building an “Ideal Weight Calculator”.

Create a new directory named app in your working
directory. Copy and paste the following scripts into the
directory (the bullets are the filenames, followed by the file
content).

 ui.R
library(shiny)

fluidPage(

App title

 titlePanel("Ideal Weight Calculator"),

 # Sidebar layout with input and output definitions

 sidebarLayout(

 # Sidebar panel for inputs

 sidebarPanel(

 # Input: text input for Height

 textInput("Height", "Height (cm)"),

 # Input: select list input for Gender

 selectInput("Gender", "Gender", choices =
c("Male", "Female"))

),

 # Main panel for displaying outputs

 mainPanel(

 # Output: Table

 tableOutput("result")

)

)

)

46

Ji and Kattan. Online risk calculator platform

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

Page 2 of 7

 server.R
Define server logic required to create a table

shinyServer(function(input, output){

 # It is a function that creates a dataframe called data
for the inputs

 # The function is "reactive" and therefore should be
automatically

 # re-executed when inputs change

 inputdata <- reactive({

 data <- data.frame(

 MyHeight = as.numeric(input$Height),

 MyGender = input$Gender

)

 data

 })

 # Table to display the ideal body weight

 output$result <- renderTable({

 # Executes the "inputdata" function to save the data-
frame as "data"

 data = inputdata()

 # Determine the ideal weight by "MyGender" and
"MyHeight"

 if (data$MyGender == "Male") {

 idealWeight = 50 + 0.9 * (data$MyHeight - 152)

 } else {

 idealWeight = 45.5 + 0.9 * (data$MyHeight - 152)

 }

 # create a dataframe for output

 resultTable = data.frame(

 Result = "Your ideal weight (kg) is",

 Weight = idealWeight

)

 resultTable

 })

})

Your directory should look like this:
~/app/ui.R
~/app/server.R
Open either the ui.R script or the server.R script in your

RStudio editor, then launch the app by clicking the “Run
App” button (see Figure 1) or use the keyboard: Ctrl + Shift +
Enter (Cmd + Shift + Enter on the MacOS) (see Figure 1).

The new app should match Figure 2 below. You can input

a number into the text box for patient height, and select
male or female in the gender box and see the change in the
Result box (see Figure 2).

Using control widgets

A control widget is a web element with which users interact.
Shiny widgets collect a value from the user. When the user
changes the widget, the value will change as well. To add a
widget to the app, place a widget function in the sidebarPanel
or mainPanel in the ui.R. Each widget function requires
several parameters. The first two parameters for each widget
are the following:
 Name: you can use the name to access the widget’s value;
 Label: the label will appear in your app.
In the first example, we have seen the selectInput widget

and textInput widget.

SelectInput widget

In the selectInput widget, the name is Gender and the label

Figure 2 The ideal weight calculator Shiny App.

Figure 1 An example of launching Shiny app in RStudio.

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 3 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

is also Gender. There is another parameter called choices
which gives a vector of available values for the widget. In
our example, the choices for gender are Male and Female:

selectInput("Gender", "Gender", choices = c("Male",
"Female")).

TextInput widget

In the textInput widget, the name is Height and the label is
Height (cm):

textInput("Height", "Height (cm)").
There are two additional optional parameters for

textInput:
 Value: initial value;
 Placeholder: a character string giving the user a

hint as to what can be entered into the control.
For example, we can set 170 as the default value of

Height, and add a placeholder 150 - 200 to indicate an
appropriate range for the calculator:

textInput("Height", "Height (cm)", value = "170",
placeholder = "150 - 220").

In order to make sure the user input is valid, it makes
sense to validate the input value in the reactive function
of server.R. The following code validates that the input of
Height is a numerical value and is within 150 and 220. If
not validated a warning message “Please input a valid value
for Height” will show in the output.

validate(need(!is.na(as.numeric(input$Height)) &

 as.numeric(input$Height)>=150 &

 as.numeric(input$Height)<=220,

 "Please input a valid value for Height"))

The complete scripts are:
 ui.R
library(shiny)

fluidPage(

 # App title

 titlePanel("Ideal Weight Calculator"),

 # Sidebar layout with input and output definitions

 sidebarLayout(

 # Sidebar panel for inputs

 sidebarPanel(

 # Input: text input for Height

 textInput("Height", "Height (cm)",

 value = 170, placeholder = "150 - 220"),

 # Input: select list input for Gender

 selectInput("Gender", "Gender",

 choices = c("Male", "Female"))),

 # Main panel for displaying outputs

 mainPanel(

 # Output: Table

 tableOutput("result")

)

)

)

 server.R

Define server logic required to create a table

shinyServer(function(input, output){

 # It is a function that creates a dataframe called data
for the inputs

 # The function is "reactive" and therefore should be
automatically

 # re-executed when inputs change

 inputdata <- reactive({

 validate(need(!is.na(as.numeric(input$Height)) &

 as.numeric(input$Height)>=150 &

 as.numeric(input$Height)<=220,

 "Please input a valid value for Height"))

 data <- data.frame(

 MyHeight = as.numeric(input$Height),

 MyGender = input$Gender

)

 data

 })

 # Table to display the ideal body weight

 output$result <- renderTable({

 # Executes the "inputdata" function to save the data-
frame as "data"

 data = inputdata()

 # Determine the ideal weight by "MyGender" and
"MyHeight"

 if (data$MyGender == "Male") {

 idealWeight = 50 + 0.9 * (data$MyHeight - 152)

Ji and Kattan. Online risk calculator platform

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

Page 4 of 7

 } else {

 idealWeight = 45.5 + 0.9 * (data$MyHeight - 152)

 }

 # create a dataframe for output

 resultTable = data.frame(

 Result = "Your ideal weight (kg) is",

 Weight = idealWeight

)

 resultTable

 })

})

NumericInput widget

NumericInput is used as an input control for entry of numeric
values. The parameter value is required, and min and max are
optional. NumericInput and textInput are interchangeable
when it comes to a widget for numeric values.

SliderInput widget

Another option is using sliderInput instead of textInput
for numeric input, the parameters min, max and value are
required:

sliderInput("Height", "Height (cm)", min = 150, max =
220, value = 170).

This widget is not as flexible as textInput. For example,
if the predictor is optional, or if the value of the predictor
does not have a minimum or maximum, the variable cannot
fit in the sliderInput widget.

Predictive expression

The code of the ideal weight calculation can be reorganized
as a separate expression which would make it more readable
and maintainable. The reason for this is that it splits the
long code sequences into short pieces and people can easily
find the code for prediction model. If the prediction model
needs updating in the future, changes in the expression
won’t break the code sequences for the server.
 server.R
Expression to predict the ideal weight

ideal.weight <- expression({

 if (data$MyGender == "Male") {

 idealWeight = 50 + 0.9 * (data$MyHeight - 152)

 } else {

 idealWeight = 45.5 + 0.9 * (data$MyHeight - 152)

 }

 idealWeight

})

Define server logic required to create a table

shinyServer(function(input, output){

 # It is a function that creates a dataframe called data
for the inputs

 # The function is "reactive" and therefore should be
automatically

 # re-executed when inputs change

 inputdata <- reactive({

 validate(need(!is.na(as.numeric(input$Height)) &

 as.numeric(input$Height)>=150 &

 as.numeric(input$Height)<=220,

 "Please input a valid value for Height"))

 data <- data.frame(

 MyHeight = as.numeric(input$Height),

 MyGender = input$Gender

)

 data

 })

 # Table to display the ideal body weight

 output$result <- renderTable({

 # Executes the "inputdata" function to save the data-
frame as "data"

 data = inputdata()

 # Evaluate the "ideal.weight" expression with values
from "data"

 idealWeight = eval(ideal.weight, data)

 # create a dataframe for output

 resultTable = data.frame(

 Result = "Your ideal weight (kg) is",

 Weight = idealWeight

)

 resultTable

 })

})

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 5 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

Output

We use the renderTable in server.R and tableOutput in ui.R
to display the result as a table in our example. RenderTable
is a widget used to render static tables in a Shiny app, and
tableOutput renders the renderTable within the app page.

The Shiny package also supports rendering other types
of reactive output variables such as text and plot. Please
check out the reference of the package for usage.

Advanced topics

These require some knowledge of HTML and CSS.
However, these modifications can enhance the risk
calculator substantially by improving quality interaction
between a user and all information a user should know
about the calculator.

WellPanel

A well panel has a slightly inset border and grey background.
Let’s put the output table inside a well panel and the
reference for the calculator in another well panel. It visually
splits the two components and improves the user experience.
 ui.R
library(shiny)

fluidPage(

 # App title

 titlePanel("Ideal Weight Calculator"),

 # Sidebar layout with input and output definitions

 sidebarLayout(

 # Sidebar panel for inputs

 sidebarPanel(

 # Input: text input for Height

 textInput("Height", "Height (cm)",

 value = 170, placeholder = "150 - 220"),

 # Input: select list input for Gender

 selectInput("Gender", "Gender",

 choices = c("Male", "Female"))),

 # Main panel for displaying outputs

 mainPanel(

 # well panel for output

 wellPanel(

 # Output: Table

 tableOutput("result")),

 # well panel for reference

 wellPanel(

 # link is simplified by Google URL shorter

 p(a("Devine formula", href="https://goo.gl/
brjjjZ")),

 p("Men: Ideal Body Weight (kg) =

 50 kilograms + 0.9 kilograms × (height (cm) −
152)"),

 p("Women: Ideal Body Weight (kg) =

 45.5 kilograms + 0.9 kilograms × (height (cm)
− 152)")

)

)

)

)

Hide and show

Sometimes we want to hide (or show) some components in
the user interface. We can use functions from the shinyjs
(https://github.com/daattali/shinyjs) package to accomplish
this. For example, we might want to restrict to users who
are at least 18 years old to be able to access the calculator.
The following code implements this restriction.
 ui.R
library(shiny)

library(shinyjs)

fluidPage(

 useShinyjs(),

 # App title

 titlePanel("Ideal Weight Calculator"),

 # Check user"s age

 radioButtons("age", "Are you at least 18 years of age",

 choices = c("No", "Yes"), selected = "No"),

 hidden(

 div(

 id= "age18",

 # Sidebar layout with input and output definitions

 sidebarLayout(

Ji and Kattan. Online risk calculator platform

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

Page 6 of 7

 # Sidebar panel for inputs

 sidebarPanel(

 # Input: text input for Height

 textInput("Height", "Height (cm)",

 value = 170, placeholder = "150 - 220"),

 # Input: select list input for Gender

 selectInput("Gender", "Gender",

 choices = c("Male", "Female"))),

 # Main panel for displaying outputs

 mainPanel(

 # well panel for output

 wellPanel(

 # Output: Table

 tableOutput("result")),

 # well panel for reference

 wellPanel(

 # link is simplified by Google URL shorter

 p(a("Devine formula",href="https://goo.
gl/brjjjZ")),

 p("Men: Ideal Body Weight (kg) =

 50 kilograms + 0.9 kilograms × (height
(cm) − 152)"),

 p("Women: Ideal Body Weight (kg) =

 45.5 kilograms + 0.9 kilograms × (height
(cm) − 152)")

)

)

)

)

)

)

 server.R
Function to predict the ideal weight

ideal.weight <- expression({

 if (data$MyGender == "Male") {

 idealWeight = 50 + 0.9 * (data$MyHeight - 152)

 } else {

 idealWeight = 45.5 + 0.9 * (data$MyHeight - 152)

 }

 idealWeight

})

Define server logic required to create a table

shinyServer(function(input, output){

 # Show/hide the content in the "age18" div

 observe({

 if (input$age == "Yes") {

 show(id = "age18", anim = TRUE)

 } else {

 hide(id = "age18", anim = TRUE)

 }

 })

 # It is a function that creates a dataframe called data
for the inputs

 # The function is "reactive" and therefore should be
automatically

 # re-executed when inputs change

 inputdata <- reactive({

 validate(need(!is.na(as.numeric(input$Height)) &

 as.numeric(input$Height)>=150 &

 as.numeric(input$Height)<=220,

 "Please input a valid value for Height"))

 data <- data.frame(

 MyHeight = as.numeric(input$Height),

 MyGender = input$Gender

)

 data

 })

 # Table to display the ideal body weight

 output$result <- renderTable({

 # Executes the "inputdata" function to save the data-
frame as "data"

 data = inputdata()

 # Determine the ideal weight by "MyGender" and
"MyHeight"

 idealWeight = eval(ideal.weight, data)

 # create a dataframe for output

 resultTable = data.frame(

 Result = "Your ideal weight (kg) is",

 Weight = idealWeight

)

Annals of Translational Medicine, Vol 6, No 3 February 2018 Page 7 of 7

© Annals of Translational Medicine. All rights reserved. Ann Transl Med 2018;6(3):46atm.amegroups.com

 resultTable

 })

})

Themes

Appearance of the Shiny app can be altered with CSS,
a widely used language for describing the visual style of
web pages. For pre-built themes, please check out the
shinythemes package (https://rstudio.github.io/shinythemes/)
and the shinydashboard package (https://rstudio.github.io/
shinydashboard/).

Risk calculator deployment

There are several options for putting the calculator up on
the web:

Deploy to the Shinyapps.io (http://www.shinyapps.io/);
this is easy to use. No hardware or installation is required.
Free and paid options are available.

Deploy with the open source Shiny Server (https://www.
rstudio.com/products/shiny/shiny-server/);

Deploy the Shiny apps and interactive documents on-
premises with open source Shiny Server, like what is
done at http://rcalc.ccf.org/. The official configuration
reference can be found at http://docs.rstudio.com/shiny-
server/. We deploy our server on the Amazon Web Services
(AWS) framework. All files for Shiny apps are examined

to make sure that no data will be saved or modified on
the server before moving to the Shiny Server. We provide
only published models on the main index page and share
unpublished models with direct links. We enable Google
Analytics to collect user behaviors.

Collaborate with us (rcalcsupport@ccf.org).

Acknowledgements

The authors would like to thank Stephanie Kocian for her
editing of the manuscript.

Footnote

Conflicts of Interest: The authors have no conflicts of interest
to declare.

References

1. R Core Team. R: A Language and Environment for
Statistical Computing. Vienna, Austria: R Foundation for
Statistical Computing, 2017. Available online: https://
www.R-project.org/

2. RStudio Team. RStudio: Integrated Development
Environment for R. Boston, MA: RStudio, Inc., 2016.
Available online: http://www.rstudio.com/

3. Chang W, Cheng J, Allaire JJ, et al. Shiny: Web
Application Framework for R. 2017. Available online:
https://CRAN.R-project.org/package=shiny

Cite this article as: Ji X, Kattan MW. Tutorial: development of
an online risk calculator platform. Ann Transl Med 2018;6(3):46.
doi: 10.21037/atm.2017.11.37

